Low temperature phase diagrams for quantum perturbations of classical spin systems
Abstract We consider a quantum spin system with Hamiltonian$$H = H^{(0)} + \lambda V,$$ whereH(0) is diagonal in a basis ∣s〉=⊗x∣sx〉 which may be labeled by the configurationss={$ s_{x} $} of a suitable classical spin system on $ ℤ^{d} $,$$H^{(0)} |s\rangle = H^{(0)} (s)|s\rangle .$$ We assume thatH(...
Ausführliche Beschreibung
Autor*in: |
Borgs, C. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1996 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag 1996 |
---|
Übergeordnetes Werk: |
Enthalten in: Communications in mathematical physics - Springer-Verlag, 1965, 181(1996), 2 vom: Nov., Seite 409-446 |
---|---|
Übergeordnetes Werk: |
volume:181 ; year:1996 ; number:2 ; month:11 ; pages:409-446 |
Links: |
---|
DOI / URN: |
10.1007/BF02101010 |
---|
Katalog-ID: |
OLC2038866961 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2038866961 | ||
003 | DE-627 | ||
005 | 20230323201613.0 | ||
007 | tu | ||
008 | 200819s1996 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02101010 |2 doi | |
035 | |a (DE-627)OLC2038866961 | ||
035 | |a (DE-He213)BF02101010-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 510 |q VZ |
100 | 1 | |a Borgs, C. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Low temperature phase diagrams for quantum perturbations of classical spin systems |
264 | 1 | |c 1996 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 1996 | ||
520 | |a Abstract We consider a quantum spin system with Hamiltonian$$H = H^{(0)} + \lambda V,$$ whereH(0) is diagonal in a basis ∣s〉=⊗x∣sx〉 which may be labeled by the configurationss={$ s_{x} $} of a suitable classical spin system on $ ℤ^{d} $,$$H^{(0)} |s\rangle = H^{(0)} (s)|s\rangle .$$ We assume thatH(0)(s) is a finite range Hamiltonian with finitely many ground states and a suitable Peierls condition for excitation, whileV is a finite range or exponentially decaying quantum perturbation. Mapping thed dimensional quantum system onto aclassical contour system on ad+1 dimensional lattice, we use standard Pirogov-Sinai theory to show that the low temperature phase diagram of the quantum spin system is a small perturbation of the zero temperature phase diagram of the classical HamiltonianH(0), provided λ is sufficiently small. Our method can be applied to bosonic systems without substantial change. The extension to fermionic systems will be discussed in a subsequent paper. | ||
650 | 4 | |a Quantum System | |
650 | 4 | |a Quantum Computing | |
650 | 4 | |a Spin System | |
650 | 4 | |a Subsequent Paper | |
650 | 4 | |a Zero Temperature | |
700 | 1 | |a Kotecký, R. |4 aut | |
700 | 1 | |a Ueltschi, D. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Communications in mathematical physics |d Springer-Verlag, 1965 |g 181(1996), 2 vom: Nov., Seite 409-446 |w (DE-627)129555002 |w (DE-600)220443-5 |w (DE-576)015011755 |x 0010-3616 |7 nnns |
773 | 1 | 8 | |g volume:181 |g year:1996 |g number:2 |g month:11 |g pages:409-446 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02101010 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2192 | ||
912 | |a GBV_ILN_2279 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4028 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4319 | ||
951 | |a AR | ||
952 | |d 181 |j 1996 |e 2 |c 11 |h 409-446 |
author_variant |
c b cb r k rk d u du |
---|---|
matchkey_str |
article:00103616:1996----::otmeauehsdarmfrunuprubtosfl |
hierarchy_sort_str |
1996 |
publishDate |
1996 |
allfields |
10.1007/BF02101010 doi (DE-627)OLC2038866961 (DE-He213)BF02101010-p DE-627 ger DE-627 rakwb eng 530 510 VZ Borgs, C. verfasserin aut Low temperature phase diagrams for quantum perturbations of classical spin systems 1996 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1996 Abstract We consider a quantum spin system with Hamiltonian$$H = H^{(0)} + \lambda V,$$ whereH(0) is diagonal in a basis ∣s〉=⊗x∣sx〉 which may be labeled by the configurationss={$ s_{x} $} of a suitable classical spin system on $ ℤ^{d} $,$$H^{(0)} |s\rangle = H^{(0)} (s)|s\rangle .$$ We assume thatH(0)(s) is a finite range Hamiltonian with finitely many ground states and a suitable Peierls condition for excitation, whileV is a finite range or exponentially decaying quantum perturbation. Mapping thed dimensional quantum system onto aclassical contour system on ad+1 dimensional lattice, we use standard Pirogov-Sinai theory to show that the low temperature phase diagram of the quantum spin system is a small perturbation of the zero temperature phase diagram of the classical HamiltonianH(0), provided λ is sufficiently small. Our method can be applied to bosonic systems without substantial change. The extension to fermionic systems will be discussed in a subsequent paper. Quantum System Quantum Computing Spin System Subsequent Paper Zero Temperature Kotecký, R. aut Ueltschi, D. aut Enthalten in Communications in mathematical physics Springer-Verlag, 1965 181(1996), 2 vom: Nov., Seite 409-446 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:181 year:1996 number:2 month:11 pages:409-446 https://doi.org/10.1007/BF02101010 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2192 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 AR 181 1996 2 11 409-446 |
spelling |
10.1007/BF02101010 doi (DE-627)OLC2038866961 (DE-He213)BF02101010-p DE-627 ger DE-627 rakwb eng 530 510 VZ Borgs, C. verfasserin aut Low temperature phase diagrams for quantum perturbations of classical spin systems 1996 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1996 Abstract We consider a quantum spin system with Hamiltonian$$H = H^{(0)} + \lambda V,$$ whereH(0) is diagonal in a basis ∣s〉=⊗x∣sx〉 which may be labeled by the configurationss={$ s_{x} $} of a suitable classical spin system on $ ℤ^{d} $,$$H^{(0)} |s\rangle = H^{(0)} (s)|s\rangle .$$ We assume thatH(0)(s) is a finite range Hamiltonian with finitely many ground states and a suitable Peierls condition for excitation, whileV is a finite range or exponentially decaying quantum perturbation. Mapping thed dimensional quantum system onto aclassical contour system on ad+1 dimensional lattice, we use standard Pirogov-Sinai theory to show that the low temperature phase diagram of the quantum spin system is a small perturbation of the zero temperature phase diagram of the classical HamiltonianH(0), provided λ is sufficiently small. Our method can be applied to bosonic systems without substantial change. The extension to fermionic systems will be discussed in a subsequent paper. Quantum System Quantum Computing Spin System Subsequent Paper Zero Temperature Kotecký, R. aut Ueltschi, D. aut Enthalten in Communications in mathematical physics Springer-Verlag, 1965 181(1996), 2 vom: Nov., Seite 409-446 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:181 year:1996 number:2 month:11 pages:409-446 https://doi.org/10.1007/BF02101010 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2192 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 AR 181 1996 2 11 409-446 |
allfields_unstemmed |
10.1007/BF02101010 doi (DE-627)OLC2038866961 (DE-He213)BF02101010-p DE-627 ger DE-627 rakwb eng 530 510 VZ Borgs, C. verfasserin aut Low temperature phase diagrams for quantum perturbations of classical spin systems 1996 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1996 Abstract We consider a quantum spin system with Hamiltonian$$H = H^{(0)} + \lambda V,$$ whereH(0) is diagonal in a basis ∣s〉=⊗x∣sx〉 which may be labeled by the configurationss={$ s_{x} $} of a suitable classical spin system on $ ℤ^{d} $,$$H^{(0)} |s\rangle = H^{(0)} (s)|s\rangle .$$ We assume thatH(0)(s) is a finite range Hamiltonian with finitely many ground states and a suitable Peierls condition for excitation, whileV is a finite range or exponentially decaying quantum perturbation. Mapping thed dimensional quantum system onto aclassical contour system on ad+1 dimensional lattice, we use standard Pirogov-Sinai theory to show that the low temperature phase diagram of the quantum spin system is a small perturbation of the zero temperature phase diagram of the classical HamiltonianH(0), provided λ is sufficiently small. Our method can be applied to bosonic systems without substantial change. The extension to fermionic systems will be discussed in a subsequent paper. Quantum System Quantum Computing Spin System Subsequent Paper Zero Temperature Kotecký, R. aut Ueltschi, D. aut Enthalten in Communications in mathematical physics Springer-Verlag, 1965 181(1996), 2 vom: Nov., Seite 409-446 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:181 year:1996 number:2 month:11 pages:409-446 https://doi.org/10.1007/BF02101010 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2192 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 AR 181 1996 2 11 409-446 |
allfieldsGer |
10.1007/BF02101010 doi (DE-627)OLC2038866961 (DE-He213)BF02101010-p DE-627 ger DE-627 rakwb eng 530 510 VZ Borgs, C. verfasserin aut Low temperature phase diagrams for quantum perturbations of classical spin systems 1996 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1996 Abstract We consider a quantum spin system with Hamiltonian$$H = H^{(0)} + \lambda V,$$ whereH(0) is diagonal in a basis ∣s〉=⊗x∣sx〉 which may be labeled by the configurationss={$ s_{x} $} of a suitable classical spin system on $ ℤ^{d} $,$$H^{(0)} |s\rangle = H^{(0)} (s)|s\rangle .$$ We assume thatH(0)(s) is a finite range Hamiltonian with finitely many ground states and a suitable Peierls condition for excitation, whileV is a finite range or exponentially decaying quantum perturbation. Mapping thed dimensional quantum system onto aclassical contour system on ad+1 dimensional lattice, we use standard Pirogov-Sinai theory to show that the low temperature phase diagram of the quantum spin system is a small perturbation of the zero temperature phase diagram of the classical HamiltonianH(0), provided λ is sufficiently small. Our method can be applied to bosonic systems without substantial change. The extension to fermionic systems will be discussed in a subsequent paper. Quantum System Quantum Computing Spin System Subsequent Paper Zero Temperature Kotecký, R. aut Ueltschi, D. aut Enthalten in Communications in mathematical physics Springer-Verlag, 1965 181(1996), 2 vom: Nov., Seite 409-446 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:181 year:1996 number:2 month:11 pages:409-446 https://doi.org/10.1007/BF02101010 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2192 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 AR 181 1996 2 11 409-446 |
allfieldsSound |
10.1007/BF02101010 doi (DE-627)OLC2038866961 (DE-He213)BF02101010-p DE-627 ger DE-627 rakwb eng 530 510 VZ Borgs, C. verfasserin aut Low temperature phase diagrams for quantum perturbations of classical spin systems 1996 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1996 Abstract We consider a quantum spin system with Hamiltonian$$H = H^{(0)} + \lambda V,$$ whereH(0) is diagonal in a basis ∣s〉=⊗x∣sx〉 which may be labeled by the configurationss={$ s_{x} $} of a suitable classical spin system on $ ℤ^{d} $,$$H^{(0)} |s\rangle = H^{(0)} (s)|s\rangle .$$ We assume thatH(0)(s) is a finite range Hamiltonian with finitely many ground states and a suitable Peierls condition for excitation, whileV is a finite range or exponentially decaying quantum perturbation. Mapping thed dimensional quantum system onto aclassical contour system on ad+1 dimensional lattice, we use standard Pirogov-Sinai theory to show that the low temperature phase diagram of the quantum spin system is a small perturbation of the zero temperature phase diagram of the classical HamiltonianH(0), provided λ is sufficiently small. Our method can be applied to bosonic systems without substantial change. The extension to fermionic systems will be discussed in a subsequent paper. Quantum System Quantum Computing Spin System Subsequent Paper Zero Temperature Kotecký, R. aut Ueltschi, D. aut Enthalten in Communications in mathematical physics Springer-Verlag, 1965 181(1996), 2 vom: Nov., Seite 409-446 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:181 year:1996 number:2 month:11 pages:409-446 https://doi.org/10.1007/BF02101010 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2192 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 AR 181 1996 2 11 409-446 |
language |
English |
source |
Enthalten in Communications in mathematical physics 181(1996), 2 vom: Nov., Seite 409-446 volume:181 year:1996 number:2 month:11 pages:409-446 |
sourceStr |
Enthalten in Communications in mathematical physics 181(1996), 2 vom: Nov., Seite 409-446 volume:181 year:1996 number:2 month:11 pages:409-446 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Quantum System Quantum Computing Spin System Subsequent Paper Zero Temperature |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Communications in mathematical physics |
authorswithroles_txt_mv |
Borgs, C. @@aut@@ Kotecký, R. @@aut@@ Ueltschi, D. @@aut@@ |
publishDateDaySort_date |
1996-11-01T00:00:00Z |
hierarchy_top_id |
129555002 |
dewey-sort |
3530 |
id |
OLC2038866961 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2038866961</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323201613.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1996 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02101010</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2038866961</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02101010-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Borgs, C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Low temperature phase diagrams for quantum perturbations of classical spin systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1996</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1996</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider a quantum spin system with Hamiltonian$$H = H^{(0)} + \lambda V,$$ whereH(0) is diagonal in a basis ∣s〉=⊗x∣sx〉 which may be labeled by the configurationss={$ s_{x} $} of a suitable classical spin system on $ ℤ^{d} $,$$H^{(0)} |s\rangle = H^{(0)} (s)|s\rangle .$$ We assume thatH(0)(s) is a finite range Hamiltonian with finitely many ground states and a suitable Peierls condition for excitation, whileV is a finite range or exponentially decaying quantum perturbation. Mapping thed dimensional quantum system onto aclassical contour system on ad+1 dimensional lattice, we use standard Pirogov-Sinai theory to show that the low temperature phase diagram of the quantum spin system is a small perturbation of the zero temperature phase diagram of the classical HamiltonianH(0), provided λ is sufficiently small. Our method can be applied to bosonic systems without substantial change. The extension to fermionic systems will be discussed in a subsequent paper.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spin System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Subsequent Paper</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zero Temperature</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kotecký, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ueltschi, D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in mathematical physics</subfield><subfield code="d">Springer-Verlag, 1965</subfield><subfield code="g">181(1996), 2 vom: Nov., Seite 409-446</subfield><subfield code="w">(DE-627)129555002</subfield><subfield code="w">(DE-600)220443-5</subfield><subfield code="w">(DE-576)015011755</subfield><subfield code="x">0010-3616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:181</subfield><subfield code="g">year:1996</subfield><subfield code="g">number:2</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:409-446</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02101010</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2192</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4028</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">181</subfield><subfield code="j">1996</subfield><subfield code="e">2</subfield><subfield code="c">11</subfield><subfield code="h">409-446</subfield></datafield></record></collection>
|
author |
Borgs, C. |
spellingShingle |
Borgs, C. ddc 530 misc Quantum System misc Quantum Computing misc Spin System misc Subsequent Paper misc Zero Temperature Low temperature phase diagrams for quantum perturbations of classical spin systems |
authorStr |
Borgs, C. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129555002 |
format |
Article |
dewey-ones |
530 - Physics 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0010-3616 |
topic_title |
530 510 VZ Low temperature phase diagrams for quantum perturbations of classical spin systems Quantum System Quantum Computing Spin System Subsequent Paper Zero Temperature |
topic |
ddc 530 misc Quantum System misc Quantum Computing misc Spin System misc Subsequent Paper misc Zero Temperature |
topic_unstemmed |
ddc 530 misc Quantum System misc Quantum Computing misc Spin System misc Subsequent Paper misc Zero Temperature |
topic_browse |
ddc 530 misc Quantum System misc Quantum Computing misc Spin System misc Subsequent Paper misc Zero Temperature |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Communications in mathematical physics |
hierarchy_parent_id |
129555002 |
dewey-tens |
530 - Physics 510 - Mathematics |
hierarchy_top_title |
Communications in mathematical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 |
title |
Low temperature phase diagrams for quantum perturbations of classical spin systems |
ctrlnum |
(DE-627)OLC2038866961 (DE-He213)BF02101010-p |
title_full |
Low temperature phase diagrams for quantum perturbations of classical spin systems |
author_sort |
Borgs, C. |
journal |
Communications in mathematical physics |
journalStr |
Communications in mathematical physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1996 |
contenttype_str_mv |
txt |
container_start_page |
409 |
author_browse |
Borgs, C. Kotecký, R. Ueltschi, D. |
container_volume |
181 |
class |
530 510 VZ |
format_se |
Aufsätze |
author-letter |
Borgs, C. |
doi_str_mv |
10.1007/BF02101010 |
dewey-full |
530 510 |
title_sort |
low temperature phase diagrams for quantum perturbations of classical spin systems |
title_auth |
Low temperature phase diagrams for quantum perturbations of classical spin systems |
abstract |
Abstract We consider a quantum spin system with Hamiltonian$$H = H^{(0)} + \lambda V,$$ whereH(0) is diagonal in a basis ∣s〉=⊗x∣sx〉 which may be labeled by the configurationss={$ s_{x} $} of a suitable classical spin system on $ ℤ^{d} $,$$H^{(0)} |s\rangle = H^{(0)} (s)|s\rangle .$$ We assume thatH(0)(s) is a finite range Hamiltonian with finitely many ground states and a suitable Peierls condition for excitation, whileV is a finite range or exponentially decaying quantum perturbation. Mapping thed dimensional quantum system onto aclassical contour system on ad+1 dimensional lattice, we use standard Pirogov-Sinai theory to show that the low temperature phase diagram of the quantum spin system is a small perturbation of the zero temperature phase diagram of the classical HamiltonianH(0), provided λ is sufficiently small. Our method can be applied to bosonic systems without substantial change. The extension to fermionic systems will be discussed in a subsequent paper. © Springer-Verlag 1996 |
abstractGer |
Abstract We consider a quantum spin system with Hamiltonian$$H = H^{(0)} + \lambda V,$$ whereH(0) is diagonal in a basis ∣s〉=⊗x∣sx〉 which may be labeled by the configurationss={$ s_{x} $} of a suitable classical spin system on $ ℤ^{d} $,$$H^{(0)} |s\rangle = H^{(0)} (s)|s\rangle .$$ We assume thatH(0)(s) is a finite range Hamiltonian with finitely many ground states and a suitable Peierls condition for excitation, whileV is a finite range or exponentially decaying quantum perturbation. Mapping thed dimensional quantum system onto aclassical contour system on ad+1 dimensional lattice, we use standard Pirogov-Sinai theory to show that the low temperature phase diagram of the quantum spin system is a small perturbation of the zero temperature phase diagram of the classical HamiltonianH(0), provided λ is sufficiently small. Our method can be applied to bosonic systems without substantial change. The extension to fermionic systems will be discussed in a subsequent paper. © Springer-Verlag 1996 |
abstract_unstemmed |
Abstract We consider a quantum spin system with Hamiltonian$$H = H^{(0)} + \lambda V,$$ whereH(0) is diagonal in a basis ∣s〉=⊗x∣sx〉 which may be labeled by the configurationss={$ s_{x} $} of a suitable classical spin system on $ ℤ^{d} $,$$H^{(0)} |s\rangle = H^{(0)} (s)|s\rangle .$$ We assume thatH(0)(s) is a finite range Hamiltonian with finitely many ground states and a suitable Peierls condition for excitation, whileV is a finite range or exponentially decaying quantum perturbation. Mapping thed dimensional quantum system onto aclassical contour system on ad+1 dimensional lattice, we use standard Pirogov-Sinai theory to show that the low temperature phase diagram of the quantum spin system is a small perturbation of the zero temperature phase diagram of the classical HamiltonianH(0), provided λ is sufficiently small. Our method can be applied to bosonic systems without substantial change. The extension to fermionic systems will be discussed in a subsequent paper. © Springer-Verlag 1996 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2192 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4028 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 |
container_issue |
2 |
title_short |
Low temperature phase diagrams for quantum perturbations of classical spin systems |
url |
https://doi.org/10.1007/BF02101010 |
remote_bool |
false |
author2 |
Kotecký, R. Ueltschi, D. |
author2Str |
Kotecký, R. Ueltschi, D. |
ppnlink |
129555002 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02101010 |
up_date |
2024-07-03T20:38:46.659Z |
_version_ |
1803591747276636160 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2038866961</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323201613.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1996 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02101010</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2038866961</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02101010-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Borgs, C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Low temperature phase diagrams for quantum perturbations of classical spin systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1996</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1996</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider a quantum spin system with Hamiltonian$$H = H^{(0)} + \lambda V,$$ whereH(0) is diagonal in a basis ∣s〉=⊗x∣sx〉 which may be labeled by the configurationss={$ s_{x} $} of a suitable classical spin system on $ ℤ^{d} $,$$H^{(0)} |s\rangle = H^{(0)} (s)|s\rangle .$$ We assume thatH(0)(s) is a finite range Hamiltonian with finitely many ground states and a suitable Peierls condition for excitation, whileV is a finite range or exponentially decaying quantum perturbation. Mapping thed dimensional quantum system onto aclassical contour system on ad+1 dimensional lattice, we use standard Pirogov-Sinai theory to show that the low temperature phase diagram of the quantum spin system is a small perturbation of the zero temperature phase diagram of the classical HamiltonianH(0), provided λ is sufficiently small. Our method can be applied to bosonic systems without substantial change. The extension to fermionic systems will be discussed in a subsequent paper.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spin System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Subsequent Paper</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zero Temperature</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kotecký, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ueltschi, D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in mathematical physics</subfield><subfield code="d">Springer-Verlag, 1965</subfield><subfield code="g">181(1996), 2 vom: Nov., Seite 409-446</subfield><subfield code="w">(DE-627)129555002</subfield><subfield code="w">(DE-600)220443-5</subfield><subfield code="w">(DE-576)015011755</subfield><subfield code="x">0010-3616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:181</subfield><subfield code="g">year:1996</subfield><subfield code="g">number:2</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:409-446</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02101010</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2192</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4028</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">181</subfield><subfield code="j">1996</subfield><subfield code="e">2</subfield><subfield code="c">11</subfield><subfield code="h">409-446</subfield></datafield></record></collection>
|
score |
7.4013977 |