Scattering Matrices in Many-Body Scattering
Abstract: In this paper we show that generalized eigenfunctions of many-body Hamiltonians H with short-range two-body interactions have distributional asymptotics at non-threshold channels. The leading terms of the asymptotics can be used to define a scattering matrix, and we show that this is the s...
Ausführliche Beschreibung
Autor*in: |
Vasy, András [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1999 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 1999 |
---|
Übergeordnetes Werk: |
Enthalten in: Communications in mathematical physics - Springer-Verlag, 1965, 200(1999), 1 vom: Jan., Seite 105-124 |
---|---|
Übergeordnetes Werk: |
volume:200 ; year:1999 ; number:1 ; month:01 ; pages:105-124 |
Links: |
---|
DOI / URN: |
10.1007/s002200050524 |
---|
Katalog-ID: |
OLC203887249X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC203887249X | ||
003 | DE-627 | ||
005 | 20230323201650.0 | ||
007 | tu | ||
008 | 200819s1999 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s002200050524 |2 doi | |
035 | |a (DE-627)OLC203887249X | ||
035 | |a (DE-He213)s002200050524-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 510 |q VZ |
100 | 1 | |a Vasy, András |e verfasserin |4 aut | |
245 | 1 | 0 | |a Scattering Matrices in Many-Body Scattering |
264 | 1 | |c 1999 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 1999 | ||
520 | |a Abstract: In this paper we show that generalized eigenfunctions of many-body Hamiltonians H with short-range two-body interactions have distributional asymptotics at non-threshold channels. The leading terms of the asymptotics can be used to define a scattering matrix, and we show that this is the same (up to normalization) as that arising from the standard wave-operator approach. We also prove the existence of local distributional asymptotics for locally approximate generalized eigenfunctions in the more general setting of short range perturbations of a scattering metric, defined by Melrose in [13]. | ||
650 | 4 | |a General Setting | |
650 | 4 | |a Short Range | |
650 | 4 | |a Distributional Asymptotics | |
650 | 4 | |a Generalize Eigenfunctions | |
650 | 4 | |a Range Perturbation | |
773 | 0 | 8 | |i Enthalten in |t Communications in mathematical physics |d Springer-Verlag, 1965 |g 200(1999), 1 vom: Jan., Seite 105-124 |w (DE-627)129555002 |w (DE-600)220443-5 |w (DE-576)015011755 |x 0010-3616 |7 nnns |
773 | 1 | 8 | |g volume:200 |g year:1999 |g number:1 |g month:01 |g pages:105-124 |
856 | 4 | 1 | |u https://doi.org/10.1007/s002200050524 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2279 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4028 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4319 | ||
951 | |a AR | ||
952 | |d 200 |j 1999 |e 1 |c 01 |h 105-124 |
author_variant |
a v av |
---|---|
matchkey_str |
article:00103616:1999----::cteigarcsnayo |
hierarchy_sort_str |
1999 |
publishDate |
1999 |
allfields |
10.1007/s002200050524 doi (DE-627)OLC203887249X (DE-He213)s002200050524-p DE-627 ger DE-627 rakwb eng 530 510 VZ Vasy, András verfasserin aut Scattering Matrices in Many-Body Scattering 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1999 Abstract: In this paper we show that generalized eigenfunctions of many-body Hamiltonians H with short-range two-body interactions have distributional asymptotics at non-threshold channels. The leading terms of the asymptotics can be used to define a scattering matrix, and we show that this is the same (up to normalization) as that arising from the standard wave-operator approach. We also prove the existence of local distributional asymptotics for locally approximate generalized eigenfunctions in the more general setting of short range perturbations of a scattering metric, defined by Melrose in [13]. General Setting Short Range Distributional Asymptotics Generalize Eigenfunctions Range Perturbation Enthalten in Communications in mathematical physics Springer-Verlag, 1965 200(1999), 1 vom: Jan., Seite 105-124 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:200 year:1999 number:1 month:01 pages:105-124 https://doi.org/10.1007/s002200050524 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4028 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4125 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 AR 200 1999 1 01 105-124 |
spelling |
10.1007/s002200050524 doi (DE-627)OLC203887249X (DE-He213)s002200050524-p DE-627 ger DE-627 rakwb eng 530 510 VZ Vasy, András verfasserin aut Scattering Matrices in Many-Body Scattering 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1999 Abstract: In this paper we show that generalized eigenfunctions of many-body Hamiltonians H with short-range two-body interactions have distributional asymptotics at non-threshold channels. The leading terms of the asymptotics can be used to define a scattering matrix, and we show that this is the same (up to normalization) as that arising from the standard wave-operator approach. We also prove the existence of local distributional asymptotics for locally approximate generalized eigenfunctions in the more general setting of short range perturbations of a scattering metric, defined by Melrose in [13]. General Setting Short Range Distributional Asymptotics Generalize Eigenfunctions Range Perturbation Enthalten in Communications in mathematical physics Springer-Verlag, 1965 200(1999), 1 vom: Jan., Seite 105-124 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:200 year:1999 number:1 month:01 pages:105-124 https://doi.org/10.1007/s002200050524 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4028 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4125 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 AR 200 1999 1 01 105-124 |
allfields_unstemmed |
10.1007/s002200050524 doi (DE-627)OLC203887249X (DE-He213)s002200050524-p DE-627 ger DE-627 rakwb eng 530 510 VZ Vasy, András verfasserin aut Scattering Matrices in Many-Body Scattering 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1999 Abstract: In this paper we show that generalized eigenfunctions of many-body Hamiltonians H with short-range two-body interactions have distributional asymptotics at non-threshold channels. The leading terms of the asymptotics can be used to define a scattering matrix, and we show that this is the same (up to normalization) as that arising from the standard wave-operator approach. We also prove the existence of local distributional asymptotics for locally approximate generalized eigenfunctions in the more general setting of short range perturbations of a scattering metric, defined by Melrose in [13]. General Setting Short Range Distributional Asymptotics Generalize Eigenfunctions Range Perturbation Enthalten in Communications in mathematical physics Springer-Verlag, 1965 200(1999), 1 vom: Jan., Seite 105-124 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:200 year:1999 number:1 month:01 pages:105-124 https://doi.org/10.1007/s002200050524 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4028 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4125 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 AR 200 1999 1 01 105-124 |
allfieldsGer |
10.1007/s002200050524 doi (DE-627)OLC203887249X (DE-He213)s002200050524-p DE-627 ger DE-627 rakwb eng 530 510 VZ Vasy, András verfasserin aut Scattering Matrices in Many-Body Scattering 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1999 Abstract: In this paper we show that generalized eigenfunctions of many-body Hamiltonians H with short-range two-body interactions have distributional asymptotics at non-threshold channels. The leading terms of the asymptotics can be used to define a scattering matrix, and we show that this is the same (up to normalization) as that arising from the standard wave-operator approach. We also prove the existence of local distributional asymptotics for locally approximate generalized eigenfunctions in the more general setting of short range perturbations of a scattering metric, defined by Melrose in [13]. General Setting Short Range Distributional Asymptotics Generalize Eigenfunctions Range Perturbation Enthalten in Communications in mathematical physics Springer-Verlag, 1965 200(1999), 1 vom: Jan., Seite 105-124 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:200 year:1999 number:1 month:01 pages:105-124 https://doi.org/10.1007/s002200050524 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4028 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4125 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 AR 200 1999 1 01 105-124 |
allfieldsSound |
10.1007/s002200050524 doi (DE-627)OLC203887249X (DE-He213)s002200050524-p DE-627 ger DE-627 rakwb eng 530 510 VZ Vasy, András verfasserin aut Scattering Matrices in Many-Body Scattering 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 1999 Abstract: In this paper we show that generalized eigenfunctions of many-body Hamiltonians H with short-range two-body interactions have distributional asymptotics at non-threshold channels. The leading terms of the asymptotics can be used to define a scattering matrix, and we show that this is the same (up to normalization) as that arising from the standard wave-operator approach. We also prove the existence of local distributional asymptotics for locally approximate generalized eigenfunctions in the more general setting of short range perturbations of a scattering metric, defined by Melrose in [13]. General Setting Short Range Distributional Asymptotics Generalize Eigenfunctions Range Perturbation Enthalten in Communications in mathematical physics Springer-Verlag, 1965 200(1999), 1 vom: Jan., Seite 105-124 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:200 year:1999 number:1 month:01 pages:105-124 https://doi.org/10.1007/s002200050524 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4028 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4125 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 AR 200 1999 1 01 105-124 |
language |
English |
source |
Enthalten in Communications in mathematical physics 200(1999), 1 vom: Jan., Seite 105-124 volume:200 year:1999 number:1 month:01 pages:105-124 |
sourceStr |
Enthalten in Communications in mathematical physics 200(1999), 1 vom: Jan., Seite 105-124 volume:200 year:1999 number:1 month:01 pages:105-124 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
General Setting Short Range Distributional Asymptotics Generalize Eigenfunctions Range Perturbation |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Communications in mathematical physics |
authorswithroles_txt_mv |
Vasy, András @@aut@@ |
publishDateDaySort_date |
1999-01-01T00:00:00Z |
hierarchy_top_id |
129555002 |
dewey-sort |
3530 |
id |
OLC203887249X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC203887249X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323201650.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1999 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s002200050524</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC203887249X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s002200050524-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vasy, András</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Scattering Matrices in Many-Body Scattering</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1999</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 1999</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract: In this paper we show that generalized eigenfunctions of many-body Hamiltonians H with short-range two-body interactions have distributional asymptotics at non-threshold channels. The leading terms of the asymptotics can be used to define a scattering matrix, and we show that this is the same (up to normalization) as that arising from the standard wave-operator approach. We also prove the existence of local distributional asymptotics for locally approximate generalized eigenfunctions in the more general setting of short range perturbations of a scattering metric, defined by Melrose in [13].</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">General Setting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Short Range</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distributional Asymptotics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generalize Eigenfunctions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Range Perturbation</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in mathematical physics</subfield><subfield code="d">Springer-Verlag, 1965</subfield><subfield code="g">200(1999), 1 vom: Jan., Seite 105-124</subfield><subfield code="w">(DE-627)129555002</subfield><subfield code="w">(DE-600)220443-5</subfield><subfield code="w">(DE-576)015011755</subfield><subfield code="x">0010-3616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:200</subfield><subfield code="g">year:1999</subfield><subfield code="g">number:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:105-124</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s002200050524</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4028</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">200</subfield><subfield code="j">1999</subfield><subfield code="e">1</subfield><subfield code="c">01</subfield><subfield code="h">105-124</subfield></datafield></record></collection>
|
author |
Vasy, András |
spellingShingle |
Vasy, András ddc 530 misc General Setting misc Short Range misc Distributional Asymptotics misc Generalize Eigenfunctions misc Range Perturbation Scattering Matrices in Many-Body Scattering |
authorStr |
Vasy, András |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129555002 |
format |
Article |
dewey-ones |
530 - Physics 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0010-3616 |
topic_title |
530 510 VZ Scattering Matrices in Many-Body Scattering General Setting Short Range Distributional Asymptotics Generalize Eigenfunctions Range Perturbation |
topic |
ddc 530 misc General Setting misc Short Range misc Distributional Asymptotics misc Generalize Eigenfunctions misc Range Perturbation |
topic_unstemmed |
ddc 530 misc General Setting misc Short Range misc Distributional Asymptotics misc Generalize Eigenfunctions misc Range Perturbation |
topic_browse |
ddc 530 misc General Setting misc Short Range misc Distributional Asymptotics misc Generalize Eigenfunctions misc Range Perturbation |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Communications in mathematical physics |
hierarchy_parent_id |
129555002 |
dewey-tens |
530 - Physics 510 - Mathematics |
hierarchy_top_title |
Communications in mathematical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 |
title |
Scattering Matrices in Many-Body Scattering |
ctrlnum |
(DE-627)OLC203887249X (DE-He213)s002200050524-p |
title_full |
Scattering Matrices in Many-Body Scattering |
author_sort |
Vasy, András |
journal |
Communications in mathematical physics |
journalStr |
Communications in mathematical physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1999 |
contenttype_str_mv |
txt |
container_start_page |
105 |
author_browse |
Vasy, András |
container_volume |
200 |
class |
530 510 VZ |
format_se |
Aufsätze |
author-letter |
Vasy, András |
doi_str_mv |
10.1007/s002200050524 |
dewey-full |
530 510 |
title_sort |
scattering matrices in many-body scattering |
title_auth |
Scattering Matrices in Many-Body Scattering |
abstract |
Abstract: In this paper we show that generalized eigenfunctions of many-body Hamiltonians H with short-range two-body interactions have distributional asymptotics at non-threshold channels. The leading terms of the asymptotics can be used to define a scattering matrix, and we show that this is the same (up to normalization) as that arising from the standard wave-operator approach. We also prove the existence of local distributional asymptotics for locally approximate generalized eigenfunctions in the more general setting of short range perturbations of a scattering metric, defined by Melrose in [13]. © Springer-Verlag Berlin Heidelberg 1999 |
abstractGer |
Abstract: In this paper we show that generalized eigenfunctions of many-body Hamiltonians H with short-range two-body interactions have distributional asymptotics at non-threshold channels. The leading terms of the asymptotics can be used to define a scattering matrix, and we show that this is the same (up to normalization) as that arising from the standard wave-operator approach. We also prove the existence of local distributional asymptotics for locally approximate generalized eigenfunctions in the more general setting of short range perturbations of a scattering metric, defined by Melrose in [13]. © Springer-Verlag Berlin Heidelberg 1999 |
abstract_unstemmed |
Abstract: In this paper we show that generalized eigenfunctions of many-body Hamiltonians H with short-range two-body interactions have distributional asymptotics at non-threshold channels. The leading terms of the asymptotics can be used to define a scattering matrix, and we show that this is the same (up to normalization) as that arising from the standard wave-operator approach. We also prove the existence of local distributional asymptotics for locally approximate generalized eigenfunctions in the more general setting of short range perturbations of a scattering metric, defined by Melrose in [13]. © Springer-Verlag Berlin Heidelberg 1999 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4028 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4125 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 |
container_issue |
1 |
title_short |
Scattering Matrices in Many-Body Scattering |
url |
https://doi.org/10.1007/s002200050524 |
remote_bool |
false |
ppnlink |
129555002 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s002200050524 |
up_date |
2024-07-03T20:40:14.918Z |
_version_ |
1803591839822905344 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC203887249X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323201650.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1999 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s002200050524</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC203887249X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s002200050524-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vasy, András</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Scattering Matrices in Many-Body Scattering</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1999</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 1999</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract: In this paper we show that generalized eigenfunctions of many-body Hamiltonians H with short-range two-body interactions have distributional asymptotics at non-threshold channels. The leading terms of the asymptotics can be used to define a scattering matrix, and we show that this is the same (up to normalization) as that arising from the standard wave-operator approach. We also prove the existence of local distributional asymptotics for locally approximate generalized eigenfunctions in the more general setting of short range perturbations of a scattering metric, defined by Melrose in [13].</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">General Setting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Short Range</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distributional Asymptotics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generalize Eigenfunctions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Range Perturbation</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in mathematical physics</subfield><subfield code="d">Springer-Verlag, 1965</subfield><subfield code="g">200(1999), 1 vom: Jan., Seite 105-124</subfield><subfield code="w">(DE-627)129555002</subfield><subfield code="w">(DE-600)220443-5</subfield><subfield code="w">(DE-576)015011755</subfield><subfield code="x">0010-3616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:200</subfield><subfield code="g">year:1999</subfield><subfield code="g">number:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:105-124</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s002200050524</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4028</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">200</subfield><subfield code="j">1999</subfield><subfield code="e">1</subfield><subfield code="c">01</subfield><subfield code="h">105-124</subfield></datafield></record></collection>
|
score |
7.398863 |