Noncommutative Instantons on the 4-Sphere¶from Quantum Groups
Abstract: We describe an approach to the noncommutative instantons on the 4-sphere based on quantum group theory. We quantize the Hopf bundle ?7→?4 making use of the concept of quantum coisotropic subgroups. The analysis of the semiclassical Poisson–Lie structure of U(4) shows that the diagonal SU(2...
Ausführliche Beschreibung
Autor*in: |
Bonechi, F. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2002 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2002 |
---|
Übergeordnetes Werk: |
Enthalten in: Communications in mathematical physics - Springer-Verlag, 1965, 226(2002), 2 vom: März, Seite 419-432 |
---|---|
Übergeordnetes Werk: |
volume:226 ; year:2002 ; number:2 ; month:03 ; pages:419-432 |
Links: |
---|
DOI / URN: |
10.1007/s002200200618 |
---|
Katalog-ID: |
OLC2038880077 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2038880077 | ||
003 | DE-627 | ||
005 | 20230323202436.0 | ||
007 | tu | ||
008 | 200819s2002 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s002200200618 |2 doi | |
035 | |a (DE-627)OLC2038880077 | ||
035 | |a (DE-He213)s002200200618-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 510 |q VZ |
100 | 1 | |a Bonechi, F. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Noncommutative Instantons on the 4-Sphere¶from Quantum Groups |
264 | 1 | |c 2002 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2002 | ||
520 | |a Abstract: We describe an approach to the noncommutative instantons on the 4-sphere based on quantum group theory. We quantize the Hopf bundle ?7→?4 making use of the concept of quantum coisotropic subgroups. The analysis of the semiclassical Poisson–Lie structure of U(4) shows that the diagonal SU(2) must be conjugated to be properly quantized. The quantum coisotropic subgroup we obtain is the standard SUq(2); it determines a new deformation of the 4-sphere ∑4q as the algebra of coinvariants in ?q7. We show that the quantum vector bundle associated to the fundamental corepresentation of SUq(2) is finitely generated and projective and we compute the explicit projector. We give the unitary representations of ∑4q, we define two 0-summable Fredholm modules and we compute the Chern–Connes pairing between the projector and their characters. It comes out that even the zero class in cyclic homology is non-trivial. | ||
650 | 4 | |a Vector Bundle | |
650 | 4 | |a Group Theory | |
650 | 4 | |a Quantum Group | |
650 | 4 | |a Unitary Representation | |
650 | 4 | |a Quantum Vector | |
700 | 1 | |a Ciccoli, N. |4 aut | |
700 | 1 | |a Tarlini, M. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Communications in mathematical physics |d Springer-Verlag, 1965 |g 226(2002), 2 vom: März, Seite 419-432 |w (DE-627)129555002 |w (DE-600)220443-5 |w (DE-576)015011755 |x 0010-3616 |7 nnns |
773 | 1 | 8 | |g volume:226 |g year:2002 |g number:2 |g month:03 |g pages:419-432 |
856 | 4 | 1 | |u https://doi.org/10.1007/s002200200618 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2279 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4319 | ||
951 | |a AR | ||
952 | |d 226 |j 2002 |e 2 |c 03 |h 419-432 |
author_variant |
f b fb n c nc m t mt |
---|---|
matchkey_str |
article:00103616:2002----::ocmuaientnosnh4peer |
hierarchy_sort_str |
2002 |
publishDate |
2002 |
allfields |
10.1007/s002200200618 doi (DE-627)OLC2038880077 (DE-He213)s002200200618-p DE-627 ger DE-627 rakwb eng 530 510 VZ Bonechi, F. verfasserin aut Noncommutative Instantons on the 4-Sphere¶from Quantum Groups 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2002 Abstract: We describe an approach to the noncommutative instantons on the 4-sphere based on quantum group theory. We quantize the Hopf bundle ?7→?4 making use of the concept of quantum coisotropic subgroups. The analysis of the semiclassical Poisson–Lie structure of U(4) shows that the diagonal SU(2) must be conjugated to be properly quantized. The quantum coisotropic subgroup we obtain is the standard SUq(2); it determines a new deformation of the 4-sphere ∑4q as the algebra of coinvariants in ?q7. We show that the quantum vector bundle associated to the fundamental corepresentation of SUq(2) is finitely generated and projective and we compute the explicit projector. We give the unitary representations of ∑4q, we define two 0-summable Fredholm modules and we compute the Chern–Connes pairing between the projector and their characters. It comes out that even the zero class in cyclic homology is non-trivial. Vector Bundle Group Theory Quantum Group Unitary Representation Quantum Vector Ciccoli, N. aut Tarlini, M. aut Enthalten in Communications in mathematical physics Springer-Verlag, 1965 226(2002), 2 vom: März, Seite 419-432 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:226 year:2002 number:2 month:03 pages:419-432 https://doi.org/10.1007/s002200200618 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4125 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 AR 226 2002 2 03 419-432 |
spelling |
10.1007/s002200200618 doi (DE-627)OLC2038880077 (DE-He213)s002200200618-p DE-627 ger DE-627 rakwb eng 530 510 VZ Bonechi, F. verfasserin aut Noncommutative Instantons on the 4-Sphere¶from Quantum Groups 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2002 Abstract: We describe an approach to the noncommutative instantons on the 4-sphere based on quantum group theory. We quantize the Hopf bundle ?7→?4 making use of the concept of quantum coisotropic subgroups. The analysis of the semiclassical Poisson–Lie structure of U(4) shows that the diagonal SU(2) must be conjugated to be properly quantized. The quantum coisotropic subgroup we obtain is the standard SUq(2); it determines a new deformation of the 4-sphere ∑4q as the algebra of coinvariants in ?q7. We show that the quantum vector bundle associated to the fundamental corepresentation of SUq(2) is finitely generated and projective and we compute the explicit projector. We give the unitary representations of ∑4q, we define two 0-summable Fredholm modules and we compute the Chern–Connes pairing between the projector and their characters. It comes out that even the zero class in cyclic homology is non-trivial. Vector Bundle Group Theory Quantum Group Unitary Representation Quantum Vector Ciccoli, N. aut Tarlini, M. aut Enthalten in Communications in mathematical physics Springer-Verlag, 1965 226(2002), 2 vom: März, Seite 419-432 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:226 year:2002 number:2 month:03 pages:419-432 https://doi.org/10.1007/s002200200618 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4125 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 AR 226 2002 2 03 419-432 |
allfields_unstemmed |
10.1007/s002200200618 doi (DE-627)OLC2038880077 (DE-He213)s002200200618-p DE-627 ger DE-627 rakwb eng 530 510 VZ Bonechi, F. verfasserin aut Noncommutative Instantons on the 4-Sphere¶from Quantum Groups 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2002 Abstract: We describe an approach to the noncommutative instantons on the 4-sphere based on quantum group theory. We quantize the Hopf bundle ?7→?4 making use of the concept of quantum coisotropic subgroups. The analysis of the semiclassical Poisson–Lie structure of U(4) shows that the diagonal SU(2) must be conjugated to be properly quantized. The quantum coisotropic subgroup we obtain is the standard SUq(2); it determines a new deformation of the 4-sphere ∑4q as the algebra of coinvariants in ?q7. We show that the quantum vector bundle associated to the fundamental corepresentation of SUq(2) is finitely generated and projective and we compute the explicit projector. We give the unitary representations of ∑4q, we define two 0-summable Fredholm modules and we compute the Chern–Connes pairing between the projector and their characters. It comes out that even the zero class in cyclic homology is non-trivial. Vector Bundle Group Theory Quantum Group Unitary Representation Quantum Vector Ciccoli, N. aut Tarlini, M. aut Enthalten in Communications in mathematical physics Springer-Verlag, 1965 226(2002), 2 vom: März, Seite 419-432 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:226 year:2002 number:2 month:03 pages:419-432 https://doi.org/10.1007/s002200200618 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4125 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 AR 226 2002 2 03 419-432 |
allfieldsGer |
10.1007/s002200200618 doi (DE-627)OLC2038880077 (DE-He213)s002200200618-p DE-627 ger DE-627 rakwb eng 530 510 VZ Bonechi, F. verfasserin aut Noncommutative Instantons on the 4-Sphere¶from Quantum Groups 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2002 Abstract: We describe an approach to the noncommutative instantons on the 4-sphere based on quantum group theory. We quantize the Hopf bundle ?7→?4 making use of the concept of quantum coisotropic subgroups. The analysis of the semiclassical Poisson–Lie structure of U(4) shows that the diagonal SU(2) must be conjugated to be properly quantized. The quantum coisotropic subgroup we obtain is the standard SUq(2); it determines a new deformation of the 4-sphere ∑4q as the algebra of coinvariants in ?q7. We show that the quantum vector bundle associated to the fundamental corepresentation of SUq(2) is finitely generated and projective and we compute the explicit projector. We give the unitary representations of ∑4q, we define two 0-summable Fredholm modules and we compute the Chern–Connes pairing between the projector and their characters. It comes out that even the zero class in cyclic homology is non-trivial. Vector Bundle Group Theory Quantum Group Unitary Representation Quantum Vector Ciccoli, N. aut Tarlini, M. aut Enthalten in Communications in mathematical physics Springer-Verlag, 1965 226(2002), 2 vom: März, Seite 419-432 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:226 year:2002 number:2 month:03 pages:419-432 https://doi.org/10.1007/s002200200618 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4125 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 AR 226 2002 2 03 419-432 |
allfieldsSound |
10.1007/s002200200618 doi (DE-627)OLC2038880077 (DE-He213)s002200200618-p DE-627 ger DE-627 rakwb eng 530 510 VZ Bonechi, F. verfasserin aut Noncommutative Instantons on the 4-Sphere¶from Quantum Groups 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2002 Abstract: We describe an approach to the noncommutative instantons on the 4-sphere based on quantum group theory. We quantize the Hopf bundle ?7→?4 making use of the concept of quantum coisotropic subgroups. The analysis of the semiclassical Poisson–Lie structure of U(4) shows that the diagonal SU(2) must be conjugated to be properly quantized. The quantum coisotropic subgroup we obtain is the standard SUq(2); it determines a new deformation of the 4-sphere ∑4q as the algebra of coinvariants in ?q7. We show that the quantum vector bundle associated to the fundamental corepresentation of SUq(2) is finitely generated and projective and we compute the explicit projector. We give the unitary representations of ∑4q, we define two 0-summable Fredholm modules and we compute the Chern–Connes pairing between the projector and their characters. It comes out that even the zero class in cyclic homology is non-trivial. Vector Bundle Group Theory Quantum Group Unitary Representation Quantum Vector Ciccoli, N. aut Tarlini, M. aut Enthalten in Communications in mathematical physics Springer-Verlag, 1965 226(2002), 2 vom: März, Seite 419-432 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:226 year:2002 number:2 month:03 pages:419-432 https://doi.org/10.1007/s002200200618 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4125 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 AR 226 2002 2 03 419-432 |
language |
English |
source |
Enthalten in Communications in mathematical physics 226(2002), 2 vom: März, Seite 419-432 volume:226 year:2002 number:2 month:03 pages:419-432 |
sourceStr |
Enthalten in Communications in mathematical physics 226(2002), 2 vom: März, Seite 419-432 volume:226 year:2002 number:2 month:03 pages:419-432 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Vector Bundle Group Theory Quantum Group Unitary Representation Quantum Vector |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Communications in mathematical physics |
authorswithroles_txt_mv |
Bonechi, F. @@aut@@ Ciccoli, N. @@aut@@ Tarlini, M. @@aut@@ |
publishDateDaySort_date |
2002-03-01T00:00:00Z |
hierarchy_top_id |
129555002 |
dewey-sort |
3530 |
id |
OLC2038880077 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2038880077</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323202436.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2002 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s002200200618</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2038880077</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s002200200618-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bonechi, F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Noncommutative Instantons on the 4-Sphere¶from Quantum Groups</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2002</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2002</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract: We describe an approach to the noncommutative instantons on the 4-sphere based on quantum group theory. We quantize the Hopf bundle ?7→?4 making use of the concept of quantum coisotropic subgroups. The analysis of the semiclassical Poisson–Lie structure of U(4) shows that the diagonal SU(2) must be conjugated to be properly quantized. The quantum coisotropic subgroup we obtain is the standard SUq(2); it determines a new deformation of the 4-sphere ∑4q as the algebra of coinvariants in ?q7. We show that the quantum vector bundle associated to the fundamental corepresentation of SUq(2) is finitely generated and projective and we compute the explicit projector. We give the unitary representations of ∑4q, we define two 0-summable Fredholm modules and we compute the Chern–Connes pairing between the projector and their characters. It comes out that even the zero class in cyclic homology is non-trivial.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector Bundle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unitary Representation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Vector</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ciccoli, N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tarlini, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in mathematical physics</subfield><subfield code="d">Springer-Verlag, 1965</subfield><subfield code="g">226(2002), 2 vom: März, Seite 419-432</subfield><subfield code="w">(DE-627)129555002</subfield><subfield code="w">(DE-600)220443-5</subfield><subfield code="w">(DE-576)015011755</subfield><subfield code="x">0010-3616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:226</subfield><subfield code="g">year:2002</subfield><subfield code="g">number:2</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:419-432</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s002200200618</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">226</subfield><subfield code="j">2002</subfield><subfield code="e">2</subfield><subfield code="c">03</subfield><subfield code="h">419-432</subfield></datafield></record></collection>
|
author |
Bonechi, F. |
spellingShingle |
Bonechi, F. ddc 530 misc Vector Bundle misc Group Theory misc Quantum Group misc Unitary Representation misc Quantum Vector Noncommutative Instantons on the 4-Sphere¶from Quantum Groups |
authorStr |
Bonechi, F. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129555002 |
format |
Article |
dewey-ones |
530 - Physics 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0010-3616 |
topic_title |
530 510 VZ Noncommutative Instantons on the 4-Sphere¶from Quantum Groups Vector Bundle Group Theory Quantum Group Unitary Representation Quantum Vector |
topic |
ddc 530 misc Vector Bundle misc Group Theory misc Quantum Group misc Unitary Representation misc Quantum Vector |
topic_unstemmed |
ddc 530 misc Vector Bundle misc Group Theory misc Quantum Group misc Unitary Representation misc Quantum Vector |
topic_browse |
ddc 530 misc Vector Bundle misc Group Theory misc Quantum Group misc Unitary Representation misc Quantum Vector |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Communications in mathematical physics |
hierarchy_parent_id |
129555002 |
dewey-tens |
530 - Physics 510 - Mathematics |
hierarchy_top_title |
Communications in mathematical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 |
title |
Noncommutative Instantons on the 4-Sphere¶from Quantum Groups |
ctrlnum |
(DE-627)OLC2038880077 (DE-He213)s002200200618-p |
title_full |
Noncommutative Instantons on the 4-Sphere¶from Quantum Groups |
author_sort |
Bonechi, F. |
journal |
Communications in mathematical physics |
journalStr |
Communications in mathematical physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2002 |
contenttype_str_mv |
txt |
container_start_page |
419 |
author_browse |
Bonechi, F. Ciccoli, N. Tarlini, M. |
container_volume |
226 |
class |
530 510 VZ |
format_se |
Aufsätze |
author-letter |
Bonechi, F. |
doi_str_mv |
10.1007/s002200200618 |
dewey-full |
530 510 |
title_sort |
noncommutative instantons on the 4-sphere¶from quantum groups |
title_auth |
Noncommutative Instantons on the 4-Sphere¶from Quantum Groups |
abstract |
Abstract: We describe an approach to the noncommutative instantons on the 4-sphere based on quantum group theory. We quantize the Hopf bundle ?7→?4 making use of the concept of quantum coisotropic subgroups. The analysis of the semiclassical Poisson–Lie structure of U(4) shows that the diagonal SU(2) must be conjugated to be properly quantized. The quantum coisotropic subgroup we obtain is the standard SUq(2); it determines a new deformation of the 4-sphere ∑4q as the algebra of coinvariants in ?q7. We show that the quantum vector bundle associated to the fundamental corepresentation of SUq(2) is finitely generated and projective and we compute the explicit projector. We give the unitary representations of ∑4q, we define two 0-summable Fredholm modules and we compute the Chern–Connes pairing between the projector and their characters. It comes out that even the zero class in cyclic homology is non-trivial. © Springer-Verlag Berlin Heidelberg 2002 |
abstractGer |
Abstract: We describe an approach to the noncommutative instantons on the 4-sphere based on quantum group theory. We quantize the Hopf bundle ?7→?4 making use of the concept of quantum coisotropic subgroups. The analysis of the semiclassical Poisson–Lie structure of U(4) shows that the diagonal SU(2) must be conjugated to be properly quantized. The quantum coisotropic subgroup we obtain is the standard SUq(2); it determines a new deformation of the 4-sphere ∑4q as the algebra of coinvariants in ?q7. We show that the quantum vector bundle associated to the fundamental corepresentation of SUq(2) is finitely generated and projective and we compute the explicit projector. We give the unitary representations of ∑4q, we define two 0-summable Fredholm modules and we compute the Chern–Connes pairing between the projector and their characters. It comes out that even the zero class in cyclic homology is non-trivial. © Springer-Verlag Berlin Heidelberg 2002 |
abstract_unstemmed |
Abstract: We describe an approach to the noncommutative instantons on the 4-sphere based on quantum group theory. We quantize the Hopf bundle ?7→?4 making use of the concept of quantum coisotropic subgroups. The analysis of the semiclassical Poisson–Lie structure of U(4) shows that the diagonal SU(2) must be conjugated to be properly quantized. The quantum coisotropic subgroup we obtain is the standard SUq(2); it determines a new deformation of the 4-sphere ∑4q as the algebra of coinvariants in ?q7. We show that the quantum vector bundle associated to the fundamental corepresentation of SUq(2) is finitely generated and projective and we compute the explicit projector. We give the unitary representations of ∑4q, we define two 0-summable Fredholm modules and we compute the Chern–Connes pairing between the projector and their characters. It comes out that even the zero class in cyclic homology is non-trivial. © Springer-Verlag Berlin Heidelberg 2002 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4125 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 |
container_issue |
2 |
title_short |
Noncommutative Instantons on the 4-Sphere¶from Quantum Groups |
url |
https://doi.org/10.1007/s002200200618 |
remote_bool |
false |
author2 |
Ciccoli, N. Tarlini, M. |
author2Str |
Ciccoli, N. Tarlini, M. |
ppnlink |
129555002 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s002200200618 |
up_date |
2024-07-03T20:42:05.790Z |
_version_ |
1803591956080623616 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2038880077</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323202436.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2002 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s002200200618</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2038880077</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s002200200618-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bonechi, F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Noncommutative Instantons on the 4-Sphere¶from Quantum Groups</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2002</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2002</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract: We describe an approach to the noncommutative instantons on the 4-sphere based on quantum group theory. We quantize the Hopf bundle ?7→?4 making use of the concept of quantum coisotropic subgroups. The analysis of the semiclassical Poisson–Lie structure of U(4) shows that the diagonal SU(2) must be conjugated to be properly quantized. The quantum coisotropic subgroup we obtain is the standard SUq(2); it determines a new deformation of the 4-sphere ∑4q as the algebra of coinvariants in ?q7. We show that the quantum vector bundle associated to the fundamental corepresentation of SUq(2) is finitely generated and projective and we compute the explicit projector. We give the unitary representations of ∑4q, we define two 0-summable Fredholm modules and we compute the Chern–Connes pairing between the projector and their characters. It comes out that even the zero class in cyclic homology is non-trivial.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector Bundle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unitary Representation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Vector</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ciccoli, N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tarlini, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in mathematical physics</subfield><subfield code="d">Springer-Verlag, 1965</subfield><subfield code="g">226(2002), 2 vom: März, Seite 419-432</subfield><subfield code="w">(DE-627)129555002</subfield><subfield code="w">(DE-600)220443-5</subfield><subfield code="w">(DE-576)015011755</subfield><subfield code="x">0010-3616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:226</subfield><subfield code="g">year:2002</subfield><subfield code="g">number:2</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:419-432</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s002200200618</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">226</subfield><subfield code="j">2002</subfield><subfield code="e">2</subfield><subfield code="c">03</subfield><subfield code="h">419-432</subfield></datafield></record></collection>
|
score |
7.401602 |