Local Energy Statistics in Disordered Systems: A Proof of the Local REM Conjecture
Abstract Recently, Bauke and Mertens conjectured that the local statistics of energies in random spin systems with discrete spin space should, in most circumstances, be the same as in the random energy model. Here we give necessary conditions for this hypothesis to be true, which we show to be satis...
Ausführliche Beschreibung
Autor*in: |
Bovier, Anton [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2006 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2006 |
---|
Übergeordnetes Werk: |
Enthalten in: Communications in mathematical physics - Springer-Verlag, 1965, 263(2006), 2 vom: 23. Feb., Seite 513-533 |
---|---|
Übergeordnetes Werk: |
volume:263 ; year:2006 ; number:2 ; day:23 ; month:02 ; pages:513-533 |
Links: |
---|
DOI / URN: |
10.1007/s00220-005-1516-1 |
---|
Katalog-ID: |
OLC2038888639 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2038888639 | ||
003 | DE-627 | ||
005 | 20230506015108.0 | ||
007 | tu | ||
008 | 200819s2006 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00220-005-1516-1 |2 doi | |
035 | |a (DE-627)OLC2038888639 | ||
035 | |a (DE-He213)s00220-005-1516-1-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 510 |q VZ |
100 | 1 | |a Bovier, Anton |e verfasserin |4 aut | |
245 | 1 | 0 | |a Local Energy Statistics in Disordered Systems: A Proof of the Local REM Conjecture |
264 | 1 | |c 2006 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2006 | ||
520 | |a Abstract Recently, Bauke and Mertens conjectured that the local statistics of energies in random spin systems with discrete spin space should, in most circumstances, be the same as in the random energy model. Here we give necessary conditions for this hypothesis to be true, which we show to be satisfied in wide classes of examples: short range spin glasses and mean field spin glasses of the SK type. We also show that, under certain conditions, the conjecture holds even if energy levels that grow moderately with the volume of the system are considered. | ||
650 | 4 | |a Quantum Computing | |
650 | 4 | |a Spin System | |
650 | 4 | |a Energy Model | |
650 | 4 | |a Spin Glass | |
650 | 4 | |a Disorder System | |
700 | 1 | |a Kurkova, Irina |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Communications in mathematical physics |d Springer-Verlag, 1965 |g 263(2006), 2 vom: 23. Feb., Seite 513-533 |w (DE-627)129555002 |w (DE-600)220443-5 |w (DE-576)015011755 |x 0010-3616 |7 nnns |
773 | 1 | 8 | |g volume:263 |g year:2006 |g number:2 |g day:23 |g month:02 |g pages:513-533 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00220-005-1516-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2279 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4116 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4319 | ||
951 | |a AR | ||
952 | |d 263 |j 2006 |e 2 |b 23 |c 02 |h 513-533 |
author_variant |
a b ab i k ik |
---|---|
matchkey_str |
article:00103616:2006----::oaeegsaitcidsreessespoffh |
hierarchy_sort_str |
2006 |
publishDate |
2006 |
allfields |
10.1007/s00220-005-1516-1 doi (DE-627)OLC2038888639 (DE-He213)s00220-005-1516-1-p DE-627 ger DE-627 rakwb eng 530 510 VZ Bovier, Anton verfasserin aut Local Energy Statistics in Disordered Systems: A Proof of the Local REM Conjecture 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2006 Abstract Recently, Bauke and Mertens conjectured that the local statistics of energies in random spin systems with discrete spin space should, in most circumstances, be the same as in the random energy model. Here we give necessary conditions for this hypothesis to be true, which we show to be satisfied in wide classes of examples: short range spin glasses and mean field spin glasses of the SK type. We also show that, under certain conditions, the conjecture holds even if energy levels that grow moderately with the volume of the system are considered. Quantum Computing Spin System Energy Model Spin Glass Disorder System Kurkova, Irina aut Enthalten in Communications in mathematical physics Springer-Verlag, 1965 263(2006), 2 vom: 23. Feb., Seite 513-533 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:263 year:2006 number:2 day:23 month:02 pages:513-533 https://doi.org/10.1007/s00220-005-1516-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4116 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 AR 263 2006 2 23 02 513-533 |
spelling |
10.1007/s00220-005-1516-1 doi (DE-627)OLC2038888639 (DE-He213)s00220-005-1516-1-p DE-627 ger DE-627 rakwb eng 530 510 VZ Bovier, Anton verfasserin aut Local Energy Statistics in Disordered Systems: A Proof of the Local REM Conjecture 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2006 Abstract Recently, Bauke and Mertens conjectured that the local statistics of energies in random spin systems with discrete spin space should, in most circumstances, be the same as in the random energy model. Here we give necessary conditions for this hypothesis to be true, which we show to be satisfied in wide classes of examples: short range spin glasses and mean field spin glasses of the SK type. We also show that, under certain conditions, the conjecture holds even if energy levels that grow moderately with the volume of the system are considered. Quantum Computing Spin System Energy Model Spin Glass Disorder System Kurkova, Irina aut Enthalten in Communications in mathematical physics Springer-Verlag, 1965 263(2006), 2 vom: 23. Feb., Seite 513-533 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:263 year:2006 number:2 day:23 month:02 pages:513-533 https://doi.org/10.1007/s00220-005-1516-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4116 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 AR 263 2006 2 23 02 513-533 |
allfields_unstemmed |
10.1007/s00220-005-1516-1 doi (DE-627)OLC2038888639 (DE-He213)s00220-005-1516-1-p DE-627 ger DE-627 rakwb eng 530 510 VZ Bovier, Anton verfasserin aut Local Energy Statistics in Disordered Systems: A Proof of the Local REM Conjecture 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2006 Abstract Recently, Bauke and Mertens conjectured that the local statistics of energies in random spin systems with discrete spin space should, in most circumstances, be the same as in the random energy model. Here we give necessary conditions for this hypothesis to be true, which we show to be satisfied in wide classes of examples: short range spin glasses and mean field spin glasses of the SK type. We also show that, under certain conditions, the conjecture holds even if energy levels that grow moderately with the volume of the system are considered. Quantum Computing Spin System Energy Model Spin Glass Disorder System Kurkova, Irina aut Enthalten in Communications in mathematical physics Springer-Verlag, 1965 263(2006), 2 vom: 23. Feb., Seite 513-533 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:263 year:2006 number:2 day:23 month:02 pages:513-533 https://doi.org/10.1007/s00220-005-1516-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4116 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 AR 263 2006 2 23 02 513-533 |
allfieldsGer |
10.1007/s00220-005-1516-1 doi (DE-627)OLC2038888639 (DE-He213)s00220-005-1516-1-p DE-627 ger DE-627 rakwb eng 530 510 VZ Bovier, Anton verfasserin aut Local Energy Statistics in Disordered Systems: A Proof of the Local REM Conjecture 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2006 Abstract Recently, Bauke and Mertens conjectured that the local statistics of energies in random spin systems with discrete spin space should, in most circumstances, be the same as in the random energy model. Here we give necessary conditions for this hypothesis to be true, which we show to be satisfied in wide classes of examples: short range spin glasses and mean field spin glasses of the SK type. We also show that, under certain conditions, the conjecture holds even if energy levels that grow moderately with the volume of the system are considered. Quantum Computing Spin System Energy Model Spin Glass Disorder System Kurkova, Irina aut Enthalten in Communications in mathematical physics Springer-Verlag, 1965 263(2006), 2 vom: 23. Feb., Seite 513-533 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:263 year:2006 number:2 day:23 month:02 pages:513-533 https://doi.org/10.1007/s00220-005-1516-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4116 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 AR 263 2006 2 23 02 513-533 |
allfieldsSound |
10.1007/s00220-005-1516-1 doi (DE-627)OLC2038888639 (DE-He213)s00220-005-1516-1-p DE-627 ger DE-627 rakwb eng 530 510 VZ Bovier, Anton verfasserin aut Local Energy Statistics in Disordered Systems: A Proof of the Local REM Conjecture 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2006 Abstract Recently, Bauke and Mertens conjectured that the local statistics of energies in random spin systems with discrete spin space should, in most circumstances, be the same as in the random energy model. Here we give necessary conditions for this hypothesis to be true, which we show to be satisfied in wide classes of examples: short range spin glasses and mean field spin glasses of the SK type. We also show that, under certain conditions, the conjecture holds even if energy levels that grow moderately with the volume of the system are considered. Quantum Computing Spin System Energy Model Spin Glass Disorder System Kurkova, Irina aut Enthalten in Communications in mathematical physics Springer-Verlag, 1965 263(2006), 2 vom: 23. Feb., Seite 513-533 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:263 year:2006 number:2 day:23 month:02 pages:513-533 https://doi.org/10.1007/s00220-005-1516-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4116 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 AR 263 2006 2 23 02 513-533 |
language |
English |
source |
Enthalten in Communications in mathematical physics 263(2006), 2 vom: 23. Feb., Seite 513-533 volume:263 year:2006 number:2 day:23 month:02 pages:513-533 |
sourceStr |
Enthalten in Communications in mathematical physics 263(2006), 2 vom: 23. Feb., Seite 513-533 volume:263 year:2006 number:2 day:23 month:02 pages:513-533 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Quantum Computing Spin System Energy Model Spin Glass Disorder System |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Communications in mathematical physics |
authorswithroles_txt_mv |
Bovier, Anton @@aut@@ Kurkova, Irina @@aut@@ |
publishDateDaySort_date |
2006-02-23T00:00:00Z |
hierarchy_top_id |
129555002 |
dewey-sort |
3530 |
id |
OLC2038888639 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2038888639</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506015108.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2006 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00220-005-1516-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2038888639</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00220-005-1516-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bovier, Anton</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Local Energy Statistics in Disordered Systems: A Proof of the Local REM Conjecture</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2006</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2006</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Recently, Bauke and Mertens conjectured that the local statistics of energies in random spin systems with discrete spin space should, in most circumstances, be the same as in the random energy model. Here we give necessary conditions for this hypothesis to be true, which we show to be satisfied in wide classes of examples: short range spin glasses and mean field spin glasses of the SK type. We also show that, under certain conditions, the conjecture holds even if energy levels that grow moderately with the volume of the system are considered.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spin System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy Model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spin Glass</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Disorder System</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kurkova, Irina</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in mathematical physics</subfield><subfield code="d">Springer-Verlag, 1965</subfield><subfield code="g">263(2006), 2 vom: 23. Feb., Seite 513-533</subfield><subfield code="w">(DE-627)129555002</subfield><subfield code="w">(DE-600)220443-5</subfield><subfield code="w">(DE-576)015011755</subfield><subfield code="x">0010-3616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:263</subfield><subfield code="g">year:2006</subfield><subfield code="g">number:2</subfield><subfield code="g">day:23</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:513-533</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00220-005-1516-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">263</subfield><subfield code="j">2006</subfield><subfield code="e">2</subfield><subfield code="b">23</subfield><subfield code="c">02</subfield><subfield code="h">513-533</subfield></datafield></record></collection>
|
author |
Bovier, Anton |
spellingShingle |
Bovier, Anton ddc 530 misc Quantum Computing misc Spin System misc Energy Model misc Spin Glass misc Disorder System Local Energy Statistics in Disordered Systems: A Proof of the Local REM Conjecture |
authorStr |
Bovier, Anton |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129555002 |
format |
Article |
dewey-ones |
530 - Physics 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0010-3616 |
topic_title |
530 510 VZ Local Energy Statistics in Disordered Systems: A Proof of the Local REM Conjecture Quantum Computing Spin System Energy Model Spin Glass Disorder System |
topic |
ddc 530 misc Quantum Computing misc Spin System misc Energy Model misc Spin Glass misc Disorder System |
topic_unstemmed |
ddc 530 misc Quantum Computing misc Spin System misc Energy Model misc Spin Glass misc Disorder System |
topic_browse |
ddc 530 misc Quantum Computing misc Spin System misc Energy Model misc Spin Glass misc Disorder System |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Communications in mathematical physics |
hierarchy_parent_id |
129555002 |
dewey-tens |
530 - Physics 510 - Mathematics |
hierarchy_top_title |
Communications in mathematical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 |
title |
Local Energy Statistics in Disordered Systems: A Proof of the Local REM Conjecture |
ctrlnum |
(DE-627)OLC2038888639 (DE-He213)s00220-005-1516-1-p |
title_full |
Local Energy Statistics in Disordered Systems: A Proof of the Local REM Conjecture |
author_sort |
Bovier, Anton |
journal |
Communications in mathematical physics |
journalStr |
Communications in mathematical physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2006 |
contenttype_str_mv |
txt |
container_start_page |
513 |
author_browse |
Bovier, Anton Kurkova, Irina |
container_volume |
263 |
class |
530 510 VZ |
format_se |
Aufsätze |
author-letter |
Bovier, Anton |
doi_str_mv |
10.1007/s00220-005-1516-1 |
dewey-full |
530 510 |
title_sort |
local energy statistics in disordered systems: a proof of the local rem conjecture |
title_auth |
Local Energy Statistics in Disordered Systems: A Proof of the Local REM Conjecture |
abstract |
Abstract Recently, Bauke and Mertens conjectured that the local statistics of energies in random spin systems with discrete spin space should, in most circumstances, be the same as in the random energy model. Here we give necessary conditions for this hypothesis to be true, which we show to be satisfied in wide classes of examples: short range spin glasses and mean field spin glasses of the SK type. We also show that, under certain conditions, the conjecture holds even if energy levels that grow moderately with the volume of the system are considered. © Springer-Verlag Berlin Heidelberg 2006 |
abstractGer |
Abstract Recently, Bauke and Mertens conjectured that the local statistics of energies in random spin systems with discrete spin space should, in most circumstances, be the same as in the random energy model. Here we give necessary conditions for this hypothesis to be true, which we show to be satisfied in wide classes of examples: short range spin glasses and mean field spin glasses of the SK type. We also show that, under certain conditions, the conjecture holds even if energy levels that grow moderately with the volume of the system are considered. © Springer-Verlag Berlin Heidelberg 2006 |
abstract_unstemmed |
Abstract Recently, Bauke and Mertens conjectured that the local statistics of energies in random spin systems with discrete spin space should, in most circumstances, be the same as in the random energy model. Here we give necessary conditions for this hypothesis to be true, which we show to be satisfied in wide classes of examples: short range spin glasses and mean field spin glasses of the SK type. We also show that, under certain conditions, the conjecture holds even if energy levels that grow moderately with the volume of the system are considered. © Springer-Verlag Berlin Heidelberg 2006 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4116 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 |
container_issue |
2 |
title_short |
Local Energy Statistics in Disordered Systems: A Proof of the Local REM Conjecture |
url |
https://doi.org/10.1007/s00220-005-1516-1 |
remote_bool |
false |
author2 |
Kurkova, Irina |
author2Str |
Kurkova, Irina |
ppnlink |
129555002 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00220-005-1516-1 |
up_date |
2024-07-03T20:44:14.086Z |
_version_ |
1803592090608730112 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2038888639</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506015108.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2006 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00220-005-1516-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2038888639</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00220-005-1516-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bovier, Anton</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Local Energy Statistics in Disordered Systems: A Proof of the Local REM Conjecture</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2006</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2006</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Recently, Bauke and Mertens conjectured that the local statistics of energies in random spin systems with discrete spin space should, in most circumstances, be the same as in the random energy model. Here we give necessary conditions for this hypothesis to be true, which we show to be satisfied in wide classes of examples: short range spin glasses and mean field spin glasses of the SK type. We also show that, under certain conditions, the conjecture holds even if energy levels that grow moderately with the volume of the system are considered.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spin System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy Model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spin Glass</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Disorder System</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kurkova, Irina</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in mathematical physics</subfield><subfield code="d">Springer-Verlag, 1965</subfield><subfield code="g">263(2006), 2 vom: 23. Feb., Seite 513-533</subfield><subfield code="w">(DE-627)129555002</subfield><subfield code="w">(DE-600)220443-5</subfield><subfield code="w">(DE-576)015011755</subfield><subfield code="x">0010-3616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:263</subfield><subfield code="g">year:2006</subfield><subfield code="g">number:2</subfield><subfield code="g">day:23</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:513-533</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00220-005-1516-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">263</subfield><subfield code="j">2006</subfield><subfield code="e">2</subfield><subfield code="b">23</subfield><subfield code="c">02</subfield><subfield code="h">513-533</subfield></datafield></record></collection>
|
score |
7.401745 |