Forbidden Gap Argument for Phase Transitions Proved by Means of Chessboard Estimates
Abstract Chessboard estimates are one of the standard tools for proving phase coexistence in spin systems of physical interest. In this note we show that the method not only produces a point in the phase diagram where more than one Gibbs states coexist, but that it can also be used to rule out the e...
Ausführliche Beschreibung
Autor*in: |
Biskup, Marek [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2006 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2006 |
---|
Übergeordnetes Werk: |
Enthalten in: Communications in mathematical physics - Springer-Verlag, 1965, 264(2006), 3 vom: 22. März, Seite 631-656 |
---|---|
Übergeordnetes Werk: |
volume:264 ; year:2006 ; number:3 ; day:22 ; month:03 ; pages:631-656 |
Links: |
---|
DOI / URN: |
10.1007/s00220-006-1523-x |
---|
Katalog-ID: |
OLC2038889147 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2038889147 | ||
003 | DE-627 | ||
005 | 20230506015110.0 | ||
007 | tu | ||
008 | 200819s2006 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00220-006-1523-x |2 doi | |
035 | |a (DE-627)OLC2038889147 | ||
035 | |a (DE-He213)s00220-006-1523-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 510 |q VZ |
100 | 1 | |a Biskup, Marek |e verfasserin |4 aut | |
245 | 1 | 0 | |a Forbidden Gap Argument for Phase Transitions Proved by Means of Chessboard Estimates |
264 | 1 | |c 2006 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2006 | ||
520 | |a Abstract Chessboard estimates are one of the standard tools for proving phase coexistence in spin systems of physical interest. In this note we show that the method not only produces a point in the phase diagram where more than one Gibbs states coexist, but that it can also be used to rule out the existence of shift-ergodic states that differ significantly from those proved to exist. For models depending on a parameter (say, the temperature), this shows that the values of the conjugate thermodynamic quantity (the energy) inside the ``transitional gap'' are forbidden in all shift-ergodic Gibbs states. We point out several models where our result provides useful additional information concerning the set of possible thermodynamic equilibria. | ||
650 | 4 | |a Neural Network | |
650 | 4 | |a Phase Transition | |
650 | 4 | |a Statistical Physic | |
650 | 4 | |a Phase Diagram | |
650 | 4 | |a Complex System | |
700 | 1 | |a Kotecký, Roman |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Communications in mathematical physics |d Springer-Verlag, 1965 |g 264(2006), 3 vom: 22. März, Seite 631-656 |w (DE-627)129555002 |w (DE-600)220443-5 |w (DE-576)015011755 |x 0010-3616 |7 nnns |
773 | 1 | 8 | |g volume:264 |g year:2006 |g number:3 |g day:22 |g month:03 |g pages:631-656 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00220-006-1523-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2279 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4116 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4319 | ||
951 | |a AR | ||
952 | |d 264 |j 2006 |e 3 |b 22 |c 03 |h 631-656 |
author_variant |
m b mb r k rk |
---|---|
matchkey_str |
article:00103616:2006----::obdegpruetopaerniinpoebmasf |
hierarchy_sort_str |
2006 |
publishDate |
2006 |
allfields |
10.1007/s00220-006-1523-x doi (DE-627)OLC2038889147 (DE-He213)s00220-006-1523-x-p DE-627 ger DE-627 rakwb eng 530 510 VZ Biskup, Marek verfasserin aut Forbidden Gap Argument for Phase Transitions Proved by Means of Chessboard Estimates 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2006 Abstract Chessboard estimates are one of the standard tools for proving phase coexistence in spin systems of physical interest. In this note we show that the method not only produces a point in the phase diagram where more than one Gibbs states coexist, but that it can also be used to rule out the existence of shift-ergodic states that differ significantly from those proved to exist. For models depending on a parameter (say, the temperature), this shows that the values of the conjugate thermodynamic quantity (the energy) inside the ``transitional gap'' are forbidden in all shift-ergodic Gibbs states. We point out several models where our result provides useful additional information concerning the set of possible thermodynamic equilibria. Neural Network Phase Transition Statistical Physic Phase Diagram Complex System Kotecký, Roman aut Enthalten in Communications in mathematical physics Springer-Verlag, 1965 264(2006), 3 vom: 22. März, Seite 631-656 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:264 year:2006 number:3 day:22 month:03 pages:631-656 https://doi.org/10.1007/s00220-006-1523-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4116 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 AR 264 2006 3 22 03 631-656 |
spelling |
10.1007/s00220-006-1523-x doi (DE-627)OLC2038889147 (DE-He213)s00220-006-1523-x-p DE-627 ger DE-627 rakwb eng 530 510 VZ Biskup, Marek verfasserin aut Forbidden Gap Argument for Phase Transitions Proved by Means of Chessboard Estimates 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2006 Abstract Chessboard estimates are one of the standard tools for proving phase coexistence in spin systems of physical interest. In this note we show that the method not only produces a point in the phase diagram where more than one Gibbs states coexist, but that it can also be used to rule out the existence of shift-ergodic states that differ significantly from those proved to exist. For models depending on a parameter (say, the temperature), this shows that the values of the conjugate thermodynamic quantity (the energy) inside the ``transitional gap'' are forbidden in all shift-ergodic Gibbs states. We point out several models where our result provides useful additional information concerning the set of possible thermodynamic equilibria. Neural Network Phase Transition Statistical Physic Phase Diagram Complex System Kotecký, Roman aut Enthalten in Communications in mathematical physics Springer-Verlag, 1965 264(2006), 3 vom: 22. März, Seite 631-656 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:264 year:2006 number:3 day:22 month:03 pages:631-656 https://doi.org/10.1007/s00220-006-1523-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4116 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 AR 264 2006 3 22 03 631-656 |
allfields_unstemmed |
10.1007/s00220-006-1523-x doi (DE-627)OLC2038889147 (DE-He213)s00220-006-1523-x-p DE-627 ger DE-627 rakwb eng 530 510 VZ Biskup, Marek verfasserin aut Forbidden Gap Argument for Phase Transitions Proved by Means of Chessboard Estimates 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2006 Abstract Chessboard estimates are one of the standard tools for proving phase coexistence in spin systems of physical interest. In this note we show that the method not only produces a point in the phase diagram where more than one Gibbs states coexist, but that it can also be used to rule out the existence of shift-ergodic states that differ significantly from those proved to exist. For models depending on a parameter (say, the temperature), this shows that the values of the conjugate thermodynamic quantity (the energy) inside the ``transitional gap'' are forbidden in all shift-ergodic Gibbs states. We point out several models where our result provides useful additional information concerning the set of possible thermodynamic equilibria. Neural Network Phase Transition Statistical Physic Phase Diagram Complex System Kotecký, Roman aut Enthalten in Communications in mathematical physics Springer-Verlag, 1965 264(2006), 3 vom: 22. März, Seite 631-656 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:264 year:2006 number:3 day:22 month:03 pages:631-656 https://doi.org/10.1007/s00220-006-1523-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4116 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 AR 264 2006 3 22 03 631-656 |
allfieldsGer |
10.1007/s00220-006-1523-x doi (DE-627)OLC2038889147 (DE-He213)s00220-006-1523-x-p DE-627 ger DE-627 rakwb eng 530 510 VZ Biskup, Marek verfasserin aut Forbidden Gap Argument for Phase Transitions Proved by Means of Chessboard Estimates 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2006 Abstract Chessboard estimates are one of the standard tools for proving phase coexistence in spin systems of physical interest. In this note we show that the method not only produces a point in the phase diagram where more than one Gibbs states coexist, but that it can also be used to rule out the existence of shift-ergodic states that differ significantly from those proved to exist. For models depending on a parameter (say, the temperature), this shows that the values of the conjugate thermodynamic quantity (the energy) inside the ``transitional gap'' are forbidden in all shift-ergodic Gibbs states. We point out several models where our result provides useful additional information concerning the set of possible thermodynamic equilibria. Neural Network Phase Transition Statistical Physic Phase Diagram Complex System Kotecký, Roman aut Enthalten in Communications in mathematical physics Springer-Verlag, 1965 264(2006), 3 vom: 22. März, Seite 631-656 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:264 year:2006 number:3 day:22 month:03 pages:631-656 https://doi.org/10.1007/s00220-006-1523-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4116 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 AR 264 2006 3 22 03 631-656 |
allfieldsSound |
10.1007/s00220-006-1523-x doi (DE-627)OLC2038889147 (DE-He213)s00220-006-1523-x-p DE-627 ger DE-627 rakwb eng 530 510 VZ Biskup, Marek verfasserin aut Forbidden Gap Argument for Phase Transitions Proved by Means of Chessboard Estimates 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2006 Abstract Chessboard estimates are one of the standard tools for proving phase coexistence in spin systems of physical interest. In this note we show that the method not only produces a point in the phase diagram where more than one Gibbs states coexist, but that it can also be used to rule out the existence of shift-ergodic states that differ significantly from those proved to exist. For models depending on a parameter (say, the temperature), this shows that the values of the conjugate thermodynamic quantity (the energy) inside the ``transitional gap'' are forbidden in all shift-ergodic Gibbs states. We point out several models where our result provides useful additional information concerning the set of possible thermodynamic equilibria. Neural Network Phase Transition Statistical Physic Phase Diagram Complex System Kotecký, Roman aut Enthalten in Communications in mathematical physics Springer-Verlag, 1965 264(2006), 3 vom: 22. März, Seite 631-656 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:264 year:2006 number:3 day:22 month:03 pages:631-656 https://doi.org/10.1007/s00220-006-1523-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4116 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 AR 264 2006 3 22 03 631-656 |
language |
English |
source |
Enthalten in Communications in mathematical physics 264(2006), 3 vom: 22. März, Seite 631-656 volume:264 year:2006 number:3 day:22 month:03 pages:631-656 |
sourceStr |
Enthalten in Communications in mathematical physics 264(2006), 3 vom: 22. März, Seite 631-656 volume:264 year:2006 number:3 day:22 month:03 pages:631-656 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Neural Network Phase Transition Statistical Physic Phase Diagram Complex System |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Communications in mathematical physics |
authorswithroles_txt_mv |
Biskup, Marek @@aut@@ Kotecký, Roman @@aut@@ |
publishDateDaySort_date |
2006-03-22T00:00:00Z |
hierarchy_top_id |
129555002 |
dewey-sort |
3530 |
id |
OLC2038889147 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2038889147</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506015110.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2006 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00220-006-1523-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2038889147</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00220-006-1523-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Biskup, Marek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Forbidden Gap Argument for Phase Transitions Proved by Means of Chessboard Estimates</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2006</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2006</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Chessboard estimates are one of the standard tools for proving phase coexistence in spin systems of physical interest. In this note we show that the method not only produces a point in the phase diagram where more than one Gibbs states coexist, but that it can also be used to rule out the existence of shift-ergodic states that differ significantly from those proved to exist. For models depending on a parameter (say, the temperature), this shows that the values of the conjugate thermodynamic quantity (the energy) inside the ``transitional gap'' are forbidden in all shift-ergodic Gibbs states. We point out several models where our result provides useful additional information concerning the set of possible thermodynamic equilibria.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural Network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase Transition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Physic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase Diagram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex System</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kotecký, Roman</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in mathematical physics</subfield><subfield code="d">Springer-Verlag, 1965</subfield><subfield code="g">264(2006), 3 vom: 22. März, Seite 631-656</subfield><subfield code="w">(DE-627)129555002</subfield><subfield code="w">(DE-600)220443-5</subfield><subfield code="w">(DE-576)015011755</subfield><subfield code="x">0010-3616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:264</subfield><subfield code="g">year:2006</subfield><subfield code="g">number:3</subfield><subfield code="g">day:22</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:631-656</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00220-006-1523-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">264</subfield><subfield code="j">2006</subfield><subfield code="e">3</subfield><subfield code="b">22</subfield><subfield code="c">03</subfield><subfield code="h">631-656</subfield></datafield></record></collection>
|
author |
Biskup, Marek |
spellingShingle |
Biskup, Marek ddc 530 misc Neural Network misc Phase Transition misc Statistical Physic misc Phase Diagram misc Complex System Forbidden Gap Argument for Phase Transitions Proved by Means of Chessboard Estimates |
authorStr |
Biskup, Marek |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129555002 |
format |
Article |
dewey-ones |
530 - Physics 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0010-3616 |
topic_title |
530 510 VZ Forbidden Gap Argument for Phase Transitions Proved by Means of Chessboard Estimates Neural Network Phase Transition Statistical Physic Phase Diagram Complex System |
topic |
ddc 530 misc Neural Network misc Phase Transition misc Statistical Physic misc Phase Diagram misc Complex System |
topic_unstemmed |
ddc 530 misc Neural Network misc Phase Transition misc Statistical Physic misc Phase Diagram misc Complex System |
topic_browse |
ddc 530 misc Neural Network misc Phase Transition misc Statistical Physic misc Phase Diagram misc Complex System |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Communications in mathematical physics |
hierarchy_parent_id |
129555002 |
dewey-tens |
530 - Physics 510 - Mathematics |
hierarchy_top_title |
Communications in mathematical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 |
title |
Forbidden Gap Argument for Phase Transitions Proved by Means of Chessboard Estimates |
ctrlnum |
(DE-627)OLC2038889147 (DE-He213)s00220-006-1523-x-p |
title_full |
Forbidden Gap Argument for Phase Transitions Proved by Means of Chessboard Estimates |
author_sort |
Biskup, Marek |
journal |
Communications in mathematical physics |
journalStr |
Communications in mathematical physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2006 |
contenttype_str_mv |
txt |
container_start_page |
631 |
author_browse |
Biskup, Marek Kotecký, Roman |
container_volume |
264 |
class |
530 510 VZ |
format_se |
Aufsätze |
author-letter |
Biskup, Marek |
doi_str_mv |
10.1007/s00220-006-1523-x |
dewey-full |
530 510 |
title_sort |
forbidden gap argument for phase transitions proved by means of chessboard estimates |
title_auth |
Forbidden Gap Argument for Phase Transitions Proved by Means of Chessboard Estimates |
abstract |
Abstract Chessboard estimates are one of the standard tools for proving phase coexistence in spin systems of physical interest. In this note we show that the method not only produces a point in the phase diagram where more than one Gibbs states coexist, but that it can also be used to rule out the existence of shift-ergodic states that differ significantly from those proved to exist. For models depending on a parameter (say, the temperature), this shows that the values of the conjugate thermodynamic quantity (the energy) inside the ``transitional gap'' are forbidden in all shift-ergodic Gibbs states. We point out several models where our result provides useful additional information concerning the set of possible thermodynamic equilibria. © Springer-Verlag Berlin Heidelberg 2006 |
abstractGer |
Abstract Chessboard estimates are one of the standard tools for proving phase coexistence in spin systems of physical interest. In this note we show that the method not only produces a point in the phase diagram where more than one Gibbs states coexist, but that it can also be used to rule out the existence of shift-ergodic states that differ significantly from those proved to exist. For models depending on a parameter (say, the temperature), this shows that the values of the conjugate thermodynamic quantity (the energy) inside the ``transitional gap'' are forbidden in all shift-ergodic Gibbs states. We point out several models where our result provides useful additional information concerning the set of possible thermodynamic equilibria. © Springer-Verlag Berlin Heidelberg 2006 |
abstract_unstemmed |
Abstract Chessboard estimates are one of the standard tools for proving phase coexistence in spin systems of physical interest. In this note we show that the method not only produces a point in the phase diagram where more than one Gibbs states coexist, but that it can also be used to rule out the existence of shift-ergodic states that differ significantly from those proved to exist. For models depending on a parameter (say, the temperature), this shows that the values of the conjugate thermodynamic quantity (the energy) inside the ``transitional gap'' are forbidden in all shift-ergodic Gibbs states. We point out several models where our result provides useful additional information concerning the set of possible thermodynamic equilibria. © Springer-Verlag Berlin Heidelberg 2006 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4116 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 |
container_issue |
3 |
title_short |
Forbidden Gap Argument for Phase Transitions Proved by Means of Chessboard Estimates |
url |
https://doi.org/10.1007/s00220-006-1523-x |
remote_bool |
false |
author2 |
Kotecký, Roman |
author2Str |
Kotecký, Roman |
ppnlink |
129555002 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00220-006-1523-x |
up_date |
2024-07-03T20:44:21.885Z |
_version_ |
1803592098786574336 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2038889147</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506015110.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2006 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00220-006-1523-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2038889147</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00220-006-1523-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Biskup, Marek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Forbidden Gap Argument for Phase Transitions Proved by Means of Chessboard Estimates</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2006</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2006</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Chessboard estimates are one of the standard tools for proving phase coexistence in spin systems of physical interest. In this note we show that the method not only produces a point in the phase diagram where more than one Gibbs states coexist, but that it can also be used to rule out the existence of shift-ergodic states that differ significantly from those proved to exist. For models depending on a parameter (say, the temperature), this shows that the values of the conjugate thermodynamic quantity (the energy) inside the ``transitional gap'' are forbidden in all shift-ergodic Gibbs states. We point out several models where our result provides useful additional information concerning the set of possible thermodynamic equilibria.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural Network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase Transition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Physic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase Diagram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex System</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kotecký, Roman</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in mathematical physics</subfield><subfield code="d">Springer-Verlag, 1965</subfield><subfield code="g">264(2006), 3 vom: 22. März, Seite 631-656</subfield><subfield code="w">(DE-627)129555002</subfield><subfield code="w">(DE-600)220443-5</subfield><subfield code="w">(DE-576)015011755</subfield><subfield code="x">0010-3616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:264</subfield><subfield code="g">year:2006</subfield><subfield code="g">number:3</subfield><subfield code="g">day:22</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:631-656</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00220-006-1523-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">264</subfield><subfield code="j">2006</subfield><subfield code="e">3</subfield><subfield code="b">22</subfield><subfield code="c">03</subfield><subfield code="h">631-656</subfield></datafield></record></collection>
|
score |
7.4016085 |