Quantum Spin Systems at Positive Temperature
Abstract We develop a novel approach to phase transitions in quantum spin models based on a relation to their classical counterparts. Explicitly, we show that whenever chessboard estimates can be used to prove a phase transition in the classical model, the corresponding quantum model will have a sim...
Ausführliche Beschreibung
Autor*in: |
Biskup, Marek [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2006 |
---|
Schlagwörter: |
---|
Anmerkung: |
© M. Biskup, L. Chayes and S. Starr 2006 |
---|
Übergeordnetes Werk: |
Enthalten in: Communications in mathematical physics - Springer-Verlag, 1965, 269(2006), 3 vom: 15. Nov., Seite 611-657 |
---|---|
Übergeordnetes Werk: |
volume:269 ; year:2006 ; number:3 ; day:15 ; month:11 ; pages:611-657 |
Links: |
---|
DOI / URN: |
10.1007/s00220-006-0135-9 |
---|
Katalog-ID: |
OLC2038890617 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2038890617 | ||
003 | DE-627 | ||
005 | 20230323202623.0 | ||
007 | tu | ||
008 | 200819s2006 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00220-006-0135-9 |2 doi | |
035 | |a (DE-627)OLC2038890617 | ||
035 | |a (DE-He213)s00220-006-0135-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 510 |q VZ |
100 | 1 | |a Biskup, Marek |e verfasserin |4 aut | |
245 | 1 | 0 | |a Quantum Spin Systems at Positive Temperature |
264 | 1 | |c 2006 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © M. Biskup, L. Chayes and S. Starr 2006 | ||
520 | |a Abstract We develop a novel approach to phase transitions in quantum spin models based on a relation to their classical counterparts. Explicitly, we show that whenever chessboard estimates can be used to prove a phase transition in the classical model, the corresponding quantum model will have a similar phase transition, provided the inverse temperature β and the magnitude of the quantum spins $$\mathcal{S}$$ satisfy $$\beta\ll\sqrt\mathcal{S}$$. From the quantum system we require that it is reflection positive and that it has a meaningful classical limit; the core technical estimate may be described as an extension of the Berezin-Lieb inequalities down to the level of matrix elements. The general theory is applied to prove phase transitions in various quantum spin systems with $$\mathcal{S}\gg1$$. The most notable examples are the quantum orbital-compass model on $$\mathbb{Z}^2$$ and the quantum 120-degree model on $$\mathbb{Z}^3$$ which are shown to exhibit symmetry breaking at low-temperatures despite the infinite degeneracy of their (classical) ground state. | ||
650 | 4 | |a Partition Function | |
650 | 4 | |a Coherent State | |
650 | 4 | |a Positive Temperature | |
650 | 4 | |a Gibbs State | |
650 | 4 | |a Quantum Spin System | |
700 | 1 | |a Chayes, Lincoln |4 aut | |
700 | 1 | |a Starr, Shannon |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Communications in mathematical physics |d Springer-Verlag, 1965 |g 269(2006), 3 vom: 15. Nov., Seite 611-657 |w (DE-627)129555002 |w (DE-600)220443-5 |w (DE-576)015011755 |x 0010-3616 |7 nnns |
773 | 1 | 8 | |g volume:269 |g year:2006 |g number:3 |g day:15 |g month:11 |g pages:611-657 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00220-006-0135-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2279 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4116 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4319 | ||
951 | |a AR | ||
952 | |d 269 |j 2006 |e 3 |b 15 |c 11 |h 611-657 |
author_variant |
m b mb l c lc s s ss |
---|---|
matchkey_str |
article:00103616:2006----::unusissestoii |
hierarchy_sort_str |
2006 |
publishDate |
2006 |
allfields |
10.1007/s00220-006-0135-9 doi (DE-627)OLC2038890617 (DE-He213)s00220-006-0135-9-p DE-627 ger DE-627 rakwb eng 530 510 VZ Biskup, Marek verfasserin aut Quantum Spin Systems at Positive Temperature 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © M. Biskup, L. Chayes and S. Starr 2006 Abstract We develop a novel approach to phase transitions in quantum spin models based on a relation to their classical counterparts. Explicitly, we show that whenever chessboard estimates can be used to prove a phase transition in the classical model, the corresponding quantum model will have a similar phase transition, provided the inverse temperature β and the magnitude of the quantum spins $$\mathcal{S}$$ satisfy $$\beta\ll\sqrt\mathcal{S}$$. From the quantum system we require that it is reflection positive and that it has a meaningful classical limit; the core technical estimate may be described as an extension of the Berezin-Lieb inequalities down to the level of matrix elements. The general theory is applied to prove phase transitions in various quantum spin systems with $$\mathcal{S}\gg1$$. The most notable examples are the quantum orbital-compass model on $$\mathbb{Z}^2$$ and the quantum 120-degree model on $$\mathbb{Z}^3$$ which are shown to exhibit symmetry breaking at low-temperatures despite the infinite degeneracy of their (classical) ground state. Partition Function Coherent State Positive Temperature Gibbs State Quantum Spin System Chayes, Lincoln aut Starr, Shannon aut Enthalten in Communications in mathematical physics Springer-Verlag, 1965 269(2006), 3 vom: 15. Nov., Seite 611-657 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:269 year:2006 number:3 day:15 month:11 pages:611-657 https://doi.org/10.1007/s00220-006-0135-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4116 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 AR 269 2006 3 15 11 611-657 |
spelling |
10.1007/s00220-006-0135-9 doi (DE-627)OLC2038890617 (DE-He213)s00220-006-0135-9-p DE-627 ger DE-627 rakwb eng 530 510 VZ Biskup, Marek verfasserin aut Quantum Spin Systems at Positive Temperature 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © M. Biskup, L. Chayes and S. Starr 2006 Abstract We develop a novel approach to phase transitions in quantum spin models based on a relation to their classical counterparts. Explicitly, we show that whenever chessboard estimates can be used to prove a phase transition in the classical model, the corresponding quantum model will have a similar phase transition, provided the inverse temperature β and the magnitude of the quantum spins $$\mathcal{S}$$ satisfy $$\beta\ll\sqrt\mathcal{S}$$. From the quantum system we require that it is reflection positive and that it has a meaningful classical limit; the core technical estimate may be described as an extension of the Berezin-Lieb inequalities down to the level of matrix elements. The general theory is applied to prove phase transitions in various quantum spin systems with $$\mathcal{S}\gg1$$. The most notable examples are the quantum orbital-compass model on $$\mathbb{Z}^2$$ and the quantum 120-degree model on $$\mathbb{Z}^3$$ which are shown to exhibit symmetry breaking at low-temperatures despite the infinite degeneracy of their (classical) ground state. Partition Function Coherent State Positive Temperature Gibbs State Quantum Spin System Chayes, Lincoln aut Starr, Shannon aut Enthalten in Communications in mathematical physics Springer-Verlag, 1965 269(2006), 3 vom: 15. Nov., Seite 611-657 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:269 year:2006 number:3 day:15 month:11 pages:611-657 https://doi.org/10.1007/s00220-006-0135-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4116 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 AR 269 2006 3 15 11 611-657 |
allfields_unstemmed |
10.1007/s00220-006-0135-9 doi (DE-627)OLC2038890617 (DE-He213)s00220-006-0135-9-p DE-627 ger DE-627 rakwb eng 530 510 VZ Biskup, Marek verfasserin aut Quantum Spin Systems at Positive Temperature 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © M. Biskup, L. Chayes and S. Starr 2006 Abstract We develop a novel approach to phase transitions in quantum spin models based on a relation to their classical counterparts. Explicitly, we show that whenever chessboard estimates can be used to prove a phase transition in the classical model, the corresponding quantum model will have a similar phase transition, provided the inverse temperature β and the magnitude of the quantum spins $$\mathcal{S}$$ satisfy $$\beta\ll\sqrt\mathcal{S}$$. From the quantum system we require that it is reflection positive and that it has a meaningful classical limit; the core technical estimate may be described as an extension of the Berezin-Lieb inequalities down to the level of matrix elements. The general theory is applied to prove phase transitions in various quantum spin systems with $$\mathcal{S}\gg1$$. The most notable examples are the quantum orbital-compass model on $$\mathbb{Z}^2$$ and the quantum 120-degree model on $$\mathbb{Z}^3$$ which are shown to exhibit symmetry breaking at low-temperatures despite the infinite degeneracy of their (classical) ground state. Partition Function Coherent State Positive Temperature Gibbs State Quantum Spin System Chayes, Lincoln aut Starr, Shannon aut Enthalten in Communications in mathematical physics Springer-Verlag, 1965 269(2006), 3 vom: 15. Nov., Seite 611-657 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:269 year:2006 number:3 day:15 month:11 pages:611-657 https://doi.org/10.1007/s00220-006-0135-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4116 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 AR 269 2006 3 15 11 611-657 |
allfieldsGer |
10.1007/s00220-006-0135-9 doi (DE-627)OLC2038890617 (DE-He213)s00220-006-0135-9-p DE-627 ger DE-627 rakwb eng 530 510 VZ Biskup, Marek verfasserin aut Quantum Spin Systems at Positive Temperature 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © M. Biskup, L. Chayes and S. Starr 2006 Abstract We develop a novel approach to phase transitions in quantum spin models based on a relation to their classical counterparts. Explicitly, we show that whenever chessboard estimates can be used to prove a phase transition in the classical model, the corresponding quantum model will have a similar phase transition, provided the inverse temperature β and the magnitude of the quantum spins $$\mathcal{S}$$ satisfy $$\beta\ll\sqrt\mathcal{S}$$. From the quantum system we require that it is reflection positive and that it has a meaningful classical limit; the core technical estimate may be described as an extension of the Berezin-Lieb inequalities down to the level of matrix elements. The general theory is applied to prove phase transitions in various quantum spin systems with $$\mathcal{S}\gg1$$. The most notable examples are the quantum orbital-compass model on $$\mathbb{Z}^2$$ and the quantum 120-degree model on $$\mathbb{Z}^3$$ which are shown to exhibit symmetry breaking at low-temperatures despite the infinite degeneracy of their (classical) ground state. Partition Function Coherent State Positive Temperature Gibbs State Quantum Spin System Chayes, Lincoln aut Starr, Shannon aut Enthalten in Communications in mathematical physics Springer-Verlag, 1965 269(2006), 3 vom: 15. Nov., Seite 611-657 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:269 year:2006 number:3 day:15 month:11 pages:611-657 https://doi.org/10.1007/s00220-006-0135-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4116 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 AR 269 2006 3 15 11 611-657 |
allfieldsSound |
10.1007/s00220-006-0135-9 doi (DE-627)OLC2038890617 (DE-He213)s00220-006-0135-9-p DE-627 ger DE-627 rakwb eng 530 510 VZ Biskup, Marek verfasserin aut Quantum Spin Systems at Positive Temperature 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © M. Biskup, L. Chayes and S. Starr 2006 Abstract We develop a novel approach to phase transitions in quantum spin models based on a relation to their classical counterparts. Explicitly, we show that whenever chessboard estimates can be used to prove a phase transition in the classical model, the corresponding quantum model will have a similar phase transition, provided the inverse temperature β and the magnitude of the quantum spins $$\mathcal{S}$$ satisfy $$\beta\ll\sqrt\mathcal{S}$$. From the quantum system we require that it is reflection positive and that it has a meaningful classical limit; the core technical estimate may be described as an extension of the Berezin-Lieb inequalities down to the level of matrix elements. The general theory is applied to prove phase transitions in various quantum spin systems with $$\mathcal{S}\gg1$$. The most notable examples are the quantum orbital-compass model on $$\mathbb{Z}^2$$ and the quantum 120-degree model on $$\mathbb{Z}^3$$ which are shown to exhibit symmetry breaking at low-temperatures despite the infinite degeneracy of their (classical) ground state. Partition Function Coherent State Positive Temperature Gibbs State Quantum Spin System Chayes, Lincoln aut Starr, Shannon aut Enthalten in Communications in mathematical physics Springer-Verlag, 1965 269(2006), 3 vom: 15. Nov., Seite 611-657 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:269 year:2006 number:3 day:15 month:11 pages:611-657 https://doi.org/10.1007/s00220-006-0135-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4116 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 AR 269 2006 3 15 11 611-657 |
language |
English |
source |
Enthalten in Communications in mathematical physics 269(2006), 3 vom: 15. Nov., Seite 611-657 volume:269 year:2006 number:3 day:15 month:11 pages:611-657 |
sourceStr |
Enthalten in Communications in mathematical physics 269(2006), 3 vom: 15. Nov., Seite 611-657 volume:269 year:2006 number:3 day:15 month:11 pages:611-657 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Partition Function Coherent State Positive Temperature Gibbs State Quantum Spin System |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Communications in mathematical physics |
authorswithroles_txt_mv |
Biskup, Marek @@aut@@ Chayes, Lincoln @@aut@@ Starr, Shannon @@aut@@ |
publishDateDaySort_date |
2006-11-15T00:00:00Z |
hierarchy_top_id |
129555002 |
dewey-sort |
3530 |
id |
OLC2038890617 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2038890617</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323202623.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2006 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00220-006-0135-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2038890617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00220-006-0135-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Biskup, Marek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum Spin Systems at Positive Temperature</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2006</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© M. Biskup, L. Chayes and S. Starr 2006</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We develop a novel approach to phase transitions in quantum spin models based on a relation to their classical counterparts. Explicitly, we show that whenever chessboard estimates can be used to prove a phase transition in the classical model, the corresponding quantum model will have a similar phase transition, provided the inverse temperature β and the magnitude of the quantum spins $$\mathcal{S}$$ satisfy $$\beta\ll\sqrt\mathcal{S}$$. From the quantum system we require that it is reflection positive and that it has a meaningful classical limit; the core technical estimate may be described as an extension of the Berezin-Lieb inequalities down to the level of matrix elements. The general theory is applied to prove phase transitions in various quantum spin systems with $$\mathcal{S}\gg1$$. The most notable examples are the quantum orbital-compass model on $$\mathbb{Z}^2$$ and the quantum 120-degree model on $$\mathbb{Z}^3$$ which are shown to exhibit symmetry breaking at low-temperatures despite the infinite degeneracy of their (classical) ground state.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partition Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coherent State</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Positive Temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gibbs State</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Spin System</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chayes, Lincoln</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Starr, Shannon</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in mathematical physics</subfield><subfield code="d">Springer-Verlag, 1965</subfield><subfield code="g">269(2006), 3 vom: 15. Nov., Seite 611-657</subfield><subfield code="w">(DE-627)129555002</subfield><subfield code="w">(DE-600)220443-5</subfield><subfield code="w">(DE-576)015011755</subfield><subfield code="x">0010-3616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:269</subfield><subfield code="g">year:2006</subfield><subfield code="g">number:3</subfield><subfield code="g">day:15</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:611-657</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00220-006-0135-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">269</subfield><subfield code="j">2006</subfield><subfield code="e">3</subfield><subfield code="b">15</subfield><subfield code="c">11</subfield><subfield code="h">611-657</subfield></datafield></record></collection>
|
author |
Biskup, Marek |
spellingShingle |
Biskup, Marek ddc 530 misc Partition Function misc Coherent State misc Positive Temperature misc Gibbs State misc Quantum Spin System Quantum Spin Systems at Positive Temperature |
authorStr |
Biskup, Marek |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129555002 |
format |
Article |
dewey-ones |
530 - Physics 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0010-3616 |
topic_title |
530 510 VZ Quantum Spin Systems at Positive Temperature Partition Function Coherent State Positive Temperature Gibbs State Quantum Spin System |
topic |
ddc 530 misc Partition Function misc Coherent State misc Positive Temperature misc Gibbs State misc Quantum Spin System |
topic_unstemmed |
ddc 530 misc Partition Function misc Coherent State misc Positive Temperature misc Gibbs State misc Quantum Spin System |
topic_browse |
ddc 530 misc Partition Function misc Coherent State misc Positive Temperature misc Gibbs State misc Quantum Spin System |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Communications in mathematical physics |
hierarchy_parent_id |
129555002 |
dewey-tens |
530 - Physics 510 - Mathematics |
hierarchy_top_title |
Communications in mathematical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 |
title |
Quantum Spin Systems at Positive Temperature |
ctrlnum |
(DE-627)OLC2038890617 (DE-He213)s00220-006-0135-9-p |
title_full |
Quantum Spin Systems at Positive Temperature |
author_sort |
Biskup, Marek |
journal |
Communications in mathematical physics |
journalStr |
Communications in mathematical physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2006 |
contenttype_str_mv |
txt |
container_start_page |
611 |
author_browse |
Biskup, Marek Chayes, Lincoln Starr, Shannon |
container_volume |
269 |
class |
530 510 VZ |
format_se |
Aufsätze |
author-letter |
Biskup, Marek |
doi_str_mv |
10.1007/s00220-006-0135-9 |
dewey-full |
530 510 |
title_sort |
quantum spin systems at positive temperature |
title_auth |
Quantum Spin Systems at Positive Temperature |
abstract |
Abstract We develop a novel approach to phase transitions in quantum spin models based on a relation to their classical counterparts. Explicitly, we show that whenever chessboard estimates can be used to prove a phase transition in the classical model, the corresponding quantum model will have a similar phase transition, provided the inverse temperature β and the magnitude of the quantum spins $$\mathcal{S}$$ satisfy $$\beta\ll\sqrt\mathcal{S}$$. From the quantum system we require that it is reflection positive and that it has a meaningful classical limit; the core technical estimate may be described as an extension of the Berezin-Lieb inequalities down to the level of matrix elements. The general theory is applied to prove phase transitions in various quantum spin systems with $$\mathcal{S}\gg1$$. The most notable examples are the quantum orbital-compass model on $$\mathbb{Z}^2$$ and the quantum 120-degree model on $$\mathbb{Z}^3$$ which are shown to exhibit symmetry breaking at low-temperatures despite the infinite degeneracy of their (classical) ground state. © M. Biskup, L. Chayes and S. Starr 2006 |
abstractGer |
Abstract We develop a novel approach to phase transitions in quantum spin models based on a relation to their classical counterparts. Explicitly, we show that whenever chessboard estimates can be used to prove a phase transition in the classical model, the corresponding quantum model will have a similar phase transition, provided the inverse temperature β and the magnitude of the quantum spins $$\mathcal{S}$$ satisfy $$\beta\ll\sqrt\mathcal{S}$$. From the quantum system we require that it is reflection positive and that it has a meaningful classical limit; the core technical estimate may be described as an extension of the Berezin-Lieb inequalities down to the level of matrix elements. The general theory is applied to prove phase transitions in various quantum spin systems with $$\mathcal{S}\gg1$$. The most notable examples are the quantum orbital-compass model on $$\mathbb{Z}^2$$ and the quantum 120-degree model on $$\mathbb{Z}^3$$ which are shown to exhibit symmetry breaking at low-temperatures despite the infinite degeneracy of their (classical) ground state. © M. Biskup, L. Chayes and S. Starr 2006 |
abstract_unstemmed |
Abstract We develop a novel approach to phase transitions in quantum spin models based on a relation to their classical counterparts. Explicitly, we show that whenever chessboard estimates can be used to prove a phase transition in the classical model, the corresponding quantum model will have a similar phase transition, provided the inverse temperature β and the magnitude of the quantum spins $$\mathcal{S}$$ satisfy $$\beta\ll\sqrt\mathcal{S}$$. From the quantum system we require that it is reflection positive and that it has a meaningful classical limit; the core technical estimate may be described as an extension of the Berezin-Lieb inequalities down to the level of matrix elements. The general theory is applied to prove phase transitions in various quantum spin systems with $$\mathcal{S}\gg1$$. The most notable examples are the quantum orbital-compass model on $$\mathbb{Z}^2$$ and the quantum 120-degree model on $$\mathbb{Z}^3$$ which are shown to exhibit symmetry breaking at low-temperatures despite the infinite degeneracy of their (classical) ground state. © M. Biskup, L. Chayes and S. Starr 2006 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4116 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 |
container_issue |
3 |
title_short |
Quantum Spin Systems at Positive Temperature |
url |
https://doi.org/10.1007/s00220-006-0135-9 |
remote_bool |
false |
author2 |
Chayes, Lincoln Starr, Shannon |
author2Str |
Chayes, Lincoln Starr, Shannon |
ppnlink |
129555002 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00220-006-0135-9 |
up_date |
2024-07-03T20:44:42.485Z |
_version_ |
1803592120388288512 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2038890617</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323202623.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2006 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00220-006-0135-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2038890617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00220-006-0135-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Biskup, Marek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum Spin Systems at Positive Temperature</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2006</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© M. Biskup, L. Chayes and S. Starr 2006</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We develop a novel approach to phase transitions in quantum spin models based on a relation to their classical counterparts. Explicitly, we show that whenever chessboard estimates can be used to prove a phase transition in the classical model, the corresponding quantum model will have a similar phase transition, provided the inverse temperature β and the magnitude of the quantum spins $$\mathcal{S}$$ satisfy $$\beta\ll\sqrt\mathcal{S}$$. From the quantum system we require that it is reflection positive and that it has a meaningful classical limit; the core technical estimate may be described as an extension of the Berezin-Lieb inequalities down to the level of matrix elements. The general theory is applied to prove phase transitions in various quantum spin systems with $$\mathcal{S}\gg1$$. The most notable examples are the quantum orbital-compass model on $$\mathbb{Z}^2$$ and the quantum 120-degree model on $$\mathbb{Z}^3$$ which are shown to exhibit symmetry breaking at low-temperatures despite the infinite degeneracy of their (classical) ground state.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partition Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coherent State</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Positive Temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gibbs State</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Spin System</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chayes, Lincoln</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Starr, Shannon</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in mathematical physics</subfield><subfield code="d">Springer-Verlag, 1965</subfield><subfield code="g">269(2006), 3 vom: 15. Nov., Seite 611-657</subfield><subfield code="w">(DE-627)129555002</subfield><subfield code="w">(DE-600)220443-5</subfield><subfield code="w">(DE-576)015011755</subfield><subfield code="x">0010-3616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:269</subfield><subfield code="g">year:2006</subfield><subfield code="g">number:3</subfield><subfield code="g">day:15</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:611-657</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00220-006-0135-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">269</subfield><subfield code="j">2006</subfield><subfield code="e">3</subfield><subfield code="b">15</subfield><subfield code="c">11</subfield><subfield code="h">611-657</subfield></datafield></record></collection>
|
score |
7.4013977 |