Blowup Criterion for Viscous Baratropic Flows with Vacuum States
Abstract We prove that the maximum norm of the deformation tensor of velocity gradients controls the possible breakdown of smooth(strong) solutions for the 3-dimensional (3D) barotropic compressible Navier-Stokes equations. More precisely, if a solution of the 3D barotropic compressible Navier-Stoke...
Ausführliche Beschreibung
Autor*in: |
Huang, Xiangdi [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag 2010 |
---|
Übergeordnetes Werk: |
Enthalten in: Communications in mathematical physics - Springer-Verlag, 1965, 301(2010), 1 vom: 09. Okt., Seite 23-35 |
---|---|
Übergeordnetes Werk: |
volume:301 ; year:2010 ; number:1 ; day:09 ; month:10 ; pages:23-35 |
Links: |
---|
DOI / URN: |
10.1007/s00220-010-1148-y |
---|
Katalog-ID: |
OLC2038899347 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2038899347 | ||
003 | DE-627 | ||
005 | 20230323202810.0 | ||
007 | tu | ||
008 | 200819s2010 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00220-010-1148-y |2 doi | |
035 | |a (DE-627)OLC2038899347 | ||
035 | |a (DE-He213)s00220-010-1148-y-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 510 |q VZ |
100 | 1 | |a Huang, Xiangdi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Blowup Criterion for Viscous Baratropic Flows with Vacuum States |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2010 | ||
520 | |a Abstract We prove that the maximum norm of the deformation tensor of velocity gradients controls the possible breakdown of smooth(strong) solutions for the 3-dimensional (3D) barotropic compressible Navier-Stokes equations. More precisely, if a solution of the 3D barotropic compressible Navier-Stokes equations is initially regular and loses its regularity at some later time, then the loss of regularity implies the growth without bound of the deformation tensor as the critical time approaches. Our result is the same as Ponce’s criterion for 3-dimensional incompressible Euler equations (Ponce in Commun Math Phys 98:349–353, 1985). In addition, initial vacuum states are allowed in our cases. | ||
650 | 4 | |a Weak Solution | |
650 | 4 | |a Global Existence | |
650 | 4 | |a Strong Solution | |
650 | 4 | |a Smooth Solution | |
650 | 4 | |a Local Existence | |
700 | 1 | |a Li, Jing |4 aut | |
700 | 1 | |a Xin, Zhouping |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Communications in mathematical physics |d Springer-Verlag, 1965 |g 301(2010), 1 vom: 09. Okt., Seite 23-35 |w (DE-627)129555002 |w (DE-600)220443-5 |w (DE-576)015011755 |x 0010-3616 |7 nnns |
773 | 1 | 8 | |g volume:301 |g year:2010 |g number:1 |g day:09 |g month:10 |g pages:23-35 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00220-010-1148-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2279 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4319 | ||
951 | |a AR | ||
952 | |d 301 |j 2010 |e 1 |b 09 |c 10 |h 23-35 |
author_variant |
x h xh j l jl z x zx |
---|---|
matchkey_str |
article:00103616:2010----::lwprtrofricubrtoifosi |
hierarchy_sort_str |
2010 |
publishDate |
2010 |
allfields |
10.1007/s00220-010-1148-y doi (DE-627)OLC2038899347 (DE-He213)s00220-010-1148-y-p DE-627 ger DE-627 rakwb eng 530 510 VZ Huang, Xiangdi verfasserin aut Blowup Criterion for Viscous Baratropic Flows with Vacuum States 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract We prove that the maximum norm of the deformation tensor of velocity gradients controls the possible breakdown of smooth(strong) solutions for the 3-dimensional (3D) barotropic compressible Navier-Stokes equations. More precisely, if a solution of the 3D barotropic compressible Navier-Stokes equations is initially regular and loses its regularity at some later time, then the loss of regularity implies the growth without bound of the deformation tensor as the critical time approaches. Our result is the same as Ponce’s criterion for 3-dimensional incompressible Euler equations (Ponce in Commun Math Phys 98:349–353, 1985). In addition, initial vacuum states are allowed in our cases. Weak Solution Global Existence Strong Solution Smooth Solution Local Existence Li, Jing aut Xin, Zhouping aut Enthalten in Communications in mathematical physics Springer-Verlag, 1965 301(2010), 1 vom: 09. Okt., Seite 23-35 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:301 year:2010 number:1 day:09 month:10 pages:23-35 https://doi.org/10.1007/s00220-010-1148-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 AR 301 2010 1 09 10 23-35 |
spelling |
10.1007/s00220-010-1148-y doi (DE-627)OLC2038899347 (DE-He213)s00220-010-1148-y-p DE-627 ger DE-627 rakwb eng 530 510 VZ Huang, Xiangdi verfasserin aut Blowup Criterion for Viscous Baratropic Flows with Vacuum States 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract We prove that the maximum norm of the deformation tensor of velocity gradients controls the possible breakdown of smooth(strong) solutions for the 3-dimensional (3D) barotropic compressible Navier-Stokes equations. More precisely, if a solution of the 3D barotropic compressible Navier-Stokes equations is initially regular and loses its regularity at some later time, then the loss of regularity implies the growth without bound of the deformation tensor as the critical time approaches. Our result is the same as Ponce’s criterion for 3-dimensional incompressible Euler equations (Ponce in Commun Math Phys 98:349–353, 1985). In addition, initial vacuum states are allowed in our cases. Weak Solution Global Existence Strong Solution Smooth Solution Local Existence Li, Jing aut Xin, Zhouping aut Enthalten in Communications in mathematical physics Springer-Verlag, 1965 301(2010), 1 vom: 09. Okt., Seite 23-35 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:301 year:2010 number:1 day:09 month:10 pages:23-35 https://doi.org/10.1007/s00220-010-1148-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 AR 301 2010 1 09 10 23-35 |
allfields_unstemmed |
10.1007/s00220-010-1148-y doi (DE-627)OLC2038899347 (DE-He213)s00220-010-1148-y-p DE-627 ger DE-627 rakwb eng 530 510 VZ Huang, Xiangdi verfasserin aut Blowup Criterion for Viscous Baratropic Flows with Vacuum States 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract We prove that the maximum norm of the deformation tensor of velocity gradients controls the possible breakdown of smooth(strong) solutions for the 3-dimensional (3D) barotropic compressible Navier-Stokes equations. More precisely, if a solution of the 3D barotropic compressible Navier-Stokes equations is initially regular and loses its regularity at some later time, then the loss of regularity implies the growth without bound of the deformation tensor as the critical time approaches. Our result is the same as Ponce’s criterion for 3-dimensional incompressible Euler equations (Ponce in Commun Math Phys 98:349–353, 1985). In addition, initial vacuum states are allowed in our cases. Weak Solution Global Existence Strong Solution Smooth Solution Local Existence Li, Jing aut Xin, Zhouping aut Enthalten in Communications in mathematical physics Springer-Verlag, 1965 301(2010), 1 vom: 09. Okt., Seite 23-35 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:301 year:2010 number:1 day:09 month:10 pages:23-35 https://doi.org/10.1007/s00220-010-1148-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 AR 301 2010 1 09 10 23-35 |
allfieldsGer |
10.1007/s00220-010-1148-y doi (DE-627)OLC2038899347 (DE-He213)s00220-010-1148-y-p DE-627 ger DE-627 rakwb eng 530 510 VZ Huang, Xiangdi verfasserin aut Blowup Criterion for Viscous Baratropic Flows with Vacuum States 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract We prove that the maximum norm of the deformation tensor of velocity gradients controls the possible breakdown of smooth(strong) solutions for the 3-dimensional (3D) barotropic compressible Navier-Stokes equations. More precisely, if a solution of the 3D barotropic compressible Navier-Stokes equations is initially regular and loses its regularity at some later time, then the loss of regularity implies the growth without bound of the deformation tensor as the critical time approaches. Our result is the same as Ponce’s criterion for 3-dimensional incompressible Euler equations (Ponce in Commun Math Phys 98:349–353, 1985). In addition, initial vacuum states are allowed in our cases. Weak Solution Global Existence Strong Solution Smooth Solution Local Existence Li, Jing aut Xin, Zhouping aut Enthalten in Communications in mathematical physics Springer-Verlag, 1965 301(2010), 1 vom: 09. Okt., Seite 23-35 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:301 year:2010 number:1 day:09 month:10 pages:23-35 https://doi.org/10.1007/s00220-010-1148-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 AR 301 2010 1 09 10 23-35 |
allfieldsSound |
10.1007/s00220-010-1148-y doi (DE-627)OLC2038899347 (DE-He213)s00220-010-1148-y-p DE-627 ger DE-627 rakwb eng 530 510 VZ Huang, Xiangdi verfasserin aut Blowup Criterion for Viscous Baratropic Flows with Vacuum States 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract We prove that the maximum norm of the deformation tensor of velocity gradients controls the possible breakdown of smooth(strong) solutions for the 3-dimensional (3D) barotropic compressible Navier-Stokes equations. More precisely, if a solution of the 3D barotropic compressible Navier-Stokes equations is initially regular and loses its regularity at some later time, then the loss of regularity implies the growth without bound of the deformation tensor as the critical time approaches. Our result is the same as Ponce’s criterion for 3-dimensional incompressible Euler equations (Ponce in Commun Math Phys 98:349–353, 1985). In addition, initial vacuum states are allowed in our cases. Weak Solution Global Existence Strong Solution Smooth Solution Local Existence Li, Jing aut Xin, Zhouping aut Enthalten in Communications in mathematical physics Springer-Verlag, 1965 301(2010), 1 vom: 09. Okt., Seite 23-35 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:301 year:2010 number:1 day:09 month:10 pages:23-35 https://doi.org/10.1007/s00220-010-1148-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 AR 301 2010 1 09 10 23-35 |
language |
English |
source |
Enthalten in Communications in mathematical physics 301(2010), 1 vom: 09. Okt., Seite 23-35 volume:301 year:2010 number:1 day:09 month:10 pages:23-35 |
sourceStr |
Enthalten in Communications in mathematical physics 301(2010), 1 vom: 09. Okt., Seite 23-35 volume:301 year:2010 number:1 day:09 month:10 pages:23-35 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Weak Solution Global Existence Strong Solution Smooth Solution Local Existence |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Communications in mathematical physics |
authorswithroles_txt_mv |
Huang, Xiangdi @@aut@@ Li, Jing @@aut@@ Xin, Zhouping @@aut@@ |
publishDateDaySort_date |
2010-10-09T00:00:00Z |
hierarchy_top_id |
129555002 |
dewey-sort |
3530 |
id |
OLC2038899347 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2038899347</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323202810.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00220-010-1148-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2038899347</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00220-010-1148-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, Xiangdi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Blowup Criterion for Viscous Baratropic Flows with Vacuum States</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We prove that the maximum norm of the deformation tensor of velocity gradients controls the possible breakdown of smooth(strong) solutions for the 3-dimensional (3D) barotropic compressible Navier-Stokes equations. More precisely, if a solution of the 3D barotropic compressible Navier-Stokes equations is initially regular and loses its regularity at some later time, then the loss of regularity implies the growth without bound of the deformation tensor as the critical time approaches. Our result is the same as Ponce’s criterion for 3-dimensional incompressible Euler equations (Ponce in Commun Math Phys 98:349–353, 1985). In addition, initial vacuum states are allowed in our cases.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weak Solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Existence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strong Solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Smooth Solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local Existence</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xin, Zhouping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in mathematical physics</subfield><subfield code="d">Springer-Verlag, 1965</subfield><subfield code="g">301(2010), 1 vom: 09. Okt., Seite 23-35</subfield><subfield code="w">(DE-627)129555002</subfield><subfield code="w">(DE-600)220443-5</subfield><subfield code="w">(DE-576)015011755</subfield><subfield code="x">0010-3616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:301</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:1</subfield><subfield code="g">day:09</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:23-35</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00220-010-1148-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">301</subfield><subfield code="j">2010</subfield><subfield code="e">1</subfield><subfield code="b">09</subfield><subfield code="c">10</subfield><subfield code="h">23-35</subfield></datafield></record></collection>
|
author |
Huang, Xiangdi |
spellingShingle |
Huang, Xiangdi ddc 530 misc Weak Solution misc Global Existence misc Strong Solution misc Smooth Solution misc Local Existence Blowup Criterion for Viscous Baratropic Flows with Vacuum States |
authorStr |
Huang, Xiangdi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129555002 |
format |
Article |
dewey-ones |
530 - Physics 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0010-3616 |
topic_title |
530 510 VZ Blowup Criterion for Viscous Baratropic Flows with Vacuum States Weak Solution Global Existence Strong Solution Smooth Solution Local Existence |
topic |
ddc 530 misc Weak Solution misc Global Existence misc Strong Solution misc Smooth Solution misc Local Existence |
topic_unstemmed |
ddc 530 misc Weak Solution misc Global Existence misc Strong Solution misc Smooth Solution misc Local Existence |
topic_browse |
ddc 530 misc Weak Solution misc Global Existence misc Strong Solution misc Smooth Solution misc Local Existence |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Communications in mathematical physics |
hierarchy_parent_id |
129555002 |
dewey-tens |
530 - Physics 510 - Mathematics |
hierarchy_top_title |
Communications in mathematical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 |
title |
Blowup Criterion for Viscous Baratropic Flows with Vacuum States |
ctrlnum |
(DE-627)OLC2038899347 (DE-He213)s00220-010-1148-y-p |
title_full |
Blowup Criterion for Viscous Baratropic Flows with Vacuum States |
author_sort |
Huang, Xiangdi |
journal |
Communications in mathematical physics |
journalStr |
Communications in mathematical physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
23 |
author_browse |
Huang, Xiangdi Li, Jing Xin, Zhouping |
container_volume |
301 |
class |
530 510 VZ |
format_se |
Aufsätze |
author-letter |
Huang, Xiangdi |
doi_str_mv |
10.1007/s00220-010-1148-y |
dewey-full |
530 510 |
title_sort |
blowup criterion for viscous baratropic flows with vacuum states |
title_auth |
Blowup Criterion for Viscous Baratropic Flows with Vacuum States |
abstract |
Abstract We prove that the maximum norm of the deformation tensor of velocity gradients controls the possible breakdown of smooth(strong) solutions for the 3-dimensional (3D) barotropic compressible Navier-Stokes equations. More precisely, if a solution of the 3D barotropic compressible Navier-Stokes equations is initially regular and loses its regularity at some later time, then the loss of regularity implies the growth without bound of the deformation tensor as the critical time approaches. Our result is the same as Ponce’s criterion for 3-dimensional incompressible Euler equations (Ponce in Commun Math Phys 98:349–353, 1985). In addition, initial vacuum states are allowed in our cases. © Springer-Verlag 2010 |
abstractGer |
Abstract We prove that the maximum norm of the deformation tensor of velocity gradients controls the possible breakdown of smooth(strong) solutions for the 3-dimensional (3D) barotropic compressible Navier-Stokes equations. More precisely, if a solution of the 3D barotropic compressible Navier-Stokes equations is initially regular and loses its regularity at some later time, then the loss of regularity implies the growth without bound of the deformation tensor as the critical time approaches. Our result is the same as Ponce’s criterion for 3-dimensional incompressible Euler equations (Ponce in Commun Math Phys 98:349–353, 1985). In addition, initial vacuum states are allowed in our cases. © Springer-Verlag 2010 |
abstract_unstemmed |
Abstract We prove that the maximum norm of the deformation tensor of velocity gradients controls the possible breakdown of smooth(strong) solutions for the 3-dimensional (3D) barotropic compressible Navier-Stokes equations. More precisely, if a solution of the 3D barotropic compressible Navier-Stokes equations is initially regular and loses its regularity at some later time, then the loss of regularity implies the growth without bound of the deformation tensor as the critical time approaches. Our result is the same as Ponce’s criterion for 3-dimensional incompressible Euler equations (Ponce in Commun Math Phys 98:349–353, 1985). In addition, initial vacuum states are allowed in our cases. © Springer-Verlag 2010 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_30 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 |
container_issue |
1 |
title_short |
Blowup Criterion for Viscous Baratropic Flows with Vacuum States |
url |
https://doi.org/10.1007/s00220-010-1148-y |
remote_bool |
false |
author2 |
Li, Jing Xin, Zhouping |
author2Str |
Li, Jing Xin, Zhouping |
ppnlink |
129555002 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00220-010-1148-y |
up_date |
2024-07-03T20:46:53.282Z |
_version_ |
1803592257544126464 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2038899347</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323202810.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00220-010-1148-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2038899347</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00220-010-1148-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, Xiangdi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Blowup Criterion for Viscous Baratropic Flows with Vacuum States</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We prove that the maximum norm of the deformation tensor of velocity gradients controls the possible breakdown of smooth(strong) solutions for the 3-dimensional (3D) barotropic compressible Navier-Stokes equations. More precisely, if a solution of the 3D barotropic compressible Navier-Stokes equations is initially regular and loses its regularity at some later time, then the loss of regularity implies the growth without bound of the deformation tensor as the critical time approaches. Our result is the same as Ponce’s criterion for 3-dimensional incompressible Euler equations (Ponce in Commun Math Phys 98:349–353, 1985). In addition, initial vacuum states are allowed in our cases.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weak Solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Existence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strong Solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Smooth Solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local Existence</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xin, Zhouping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in mathematical physics</subfield><subfield code="d">Springer-Verlag, 1965</subfield><subfield code="g">301(2010), 1 vom: 09. Okt., Seite 23-35</subfield><subfield code="w">(DE-627)129555002</subfield><subfield code="w">(DE-600)220443-5</subfield><subfield code="w">(DE-576)015011755</subfield><subfield code="x">0010-3616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:301</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:1</subfield><subfield code="g">day:09</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:23-35</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00220-010-1148-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">301</subfield><subfield code="j">2010</subfield><subfield code="e">1</subfield><subfield code="b">09</subfield><subfield code="c">10</subfield><subfield code="h">23-35</subfield></datafield></record></collection>
|
score |
7.402135 |