Nonlinear Elastic Free Energies and Gradient Young-Gibbs Measures
Abstract We investigate, in a fairly general setting, the limit of large volume equilibrium Gibbs measures for elasticity type Hamiltonians with clamped boundary conditions. The existence of a quasiconvex free energy, forming the large deviations rate functional, is shown using a new interpolation l...
Ausführliche Beschreibung
Autor*in: |
Kotecký, Roman [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: Communications in mathematical physics - Springer Berlin Heidelberg, 1965, 326(2014), 3 vom: 22. Feb., Seite 887-917 |
---|---|
Übergeordnetes Werk: |
volume:326 ; year:2014 ; number:3 ; day:22 ; month:02 ; pages:887-917 |
Links: |
---|
DOI / URN: |
10.1007/s00220-014-1903-6 |
---|
Katalog-ID: |
OLC2038906025 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2038906025 | ||
003 | DE-627 | ||
005 | 20230323202930.0 | ||
007 | tu | ||
008 | 200819s2014 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00220-014-1903-6 |2 doi | |
035 | |a (DE-627)OLC2038906025 | ||
035 | |a (DE-He213)s00220-014-1903-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 510 |q VZ |
100 | 1 | |a Kotecký, Roman |e verfasserin |4 aut | |
245 | 1 | 0 | |a Nonlinear Elastic Free Energies and Gradient Young-Gibbs Measures |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2014 | ||
520 | |a Abstract We investigate, in a fairly general setting, the limit of large volume equilibrium Gibbs measures for elasticity type Hamiltonians with clamped boundary conditions. The existence of a quasiconvex free energy, forming the large deviations rate functional, is shown using a new interpolation lemma for partition functions. The local behaviour of the Gibbs measures can be parametrized by Young measures on the space of gradient Gibbs measures. In view of the unboundedness of the state space, the crucial tool here is an exponential tightness estimate that holds for a vast class of potentials and the construction of suitable compact sets of gradient Gibbs measures. | ||
650 | 4 | |a Free Energy | |
650 | 4 | |a Radon | |
650 | 4 | |a Partition Function | |
650 | 4 | |a Topological Space | |
650 | 4 | |a Weak Topology | |
700 | 1 | |a Luckhaus, Stephan |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Communications in mathematical physics |d Springer Berlin Heidelberg, 1965 |g 326(2014), 3 vom: 22. Feb., Seite 887-917 |w (DE-627)129555002 |w (DE-600)220443-5 |w (DE-576)015011755 |x 0010-3616 |7 nnns |
773 | 1 | 8 | |g volume:326 |g year:2014 |g number:3 |g day:22 |g month:02 |g pages:887-917 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00220-014-1903-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2279 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4318 | ||
951 | |a AR | ||
952 | |d 326 |j 2014 |e 3 |b 22 |c 02 |h 887-917 |
author_variant |
r k rk s l sl |
---|---|
matchkey_str |
article:00103616:2014----::olnaeatcrenrisngainyu |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1007/s00220-014-1903-6 doi (DE-627)OLC2038906025 (DE-He213)s00220-014-1903-6-p DE-627 ger DE-627 rakwb eng 530 510 VZ Kotecký, Roman verfasserin aut Nonlinear Elastic Free Energies and Gradient Young-Gibbs Measures 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2014 Abstract We investigate, in a fairly general setting, the limit of large volume equilibrium Gibbs measures for elasticity type Hamiltonians with clamped boundary conditions. The existence of a quasiconvex free energy, forming the large deviations rate functional, is shown using a new interpolation lemma for partition functions. The local behaviour of the Gibbs measures can be parametrized by Young measures on the space of gradient Gibbs measures. In view of the unboundedness of the state space, the crucial tool here is an exponential tightness estimate that holds for a vast class of potentials and the construction of suitable compact sets of gradient Gibbs measures. Free Energy Radon Partition Function Topological Space Weak Topology Luckhaus, Stephan aut Enthalten in Communications in mathematical physics Springer Berlin Heidelberg, 1965 326(2014), 3 vom: 22. Feb., Seite 887-917 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:326 year:2014 number:3 day:22 month:02 pages:887-917 https://doi.org/10.1007/s00220-014-1903-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4318 AR 326 2014 3 22 02 887-917 |
spelling |
10.1007/s00220-014-1903-6 doi (DE-627)OLC2038906025 (DE-He213)s00220-014-1903-6-p DE-627 ger DE-627 rakwb eng 530 510 VZ Kotecký, Roman verfasserin aut Nonlinear Elastic Free Energies and Gradient Young-Gibbs Measures 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2014 Abstract We investigate, in a fairly general setting, the limit of large volume equilibrium Gibbs measures for elasticity type Hamiltonians with clamped boundary conditions. The existence of a quasiconvex free energy, forming the large deviations rate functional, is shown using a new interpolation lemma for partition functions. The local behaviour of the Gibbs measures can be parametrized by Young measures on the space of gradient Gibbs measures. In view of the unboundedness of the state space, the crucial tool here is an exponential tightness estimate that holds for a vast class of potentials and the construction of suitable compact sets of gradient Gibbs measures. Free Energy Radon Partition Function Topological Space Weak Topology Luckhaus, Stephan aut Enthalten in Communications in mathematical physics Springer Berlin Heidelberg, 1965 326(2014), 3 vom: 22. Feb., Seite 887-917 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:326 year:2014 number:3 day:22 month:02 pages:887-917 https://doi.org/10.1007/s00220-014-1903-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4318 AR 326 2014 3 22 02 887-917 |
allfields_unstemmed |
10.1007/s00220-014-1903-6 doi (DE-627)OLC2038906025 (DE-He213)s00220-014-1903-6-p DE-627 ger DE-627 rakwb eng 530 510 VZ Kotecký, Roman verfasserin aut Nonlinear Elastic Free Energies and Gradient Young-Gibbs Measures 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2014 Abstract We investigate, in a fairly general setting, the limit of large volume equilibrium Gibbs measures for elasticity type Hamiltonians with clamped boundary conditions. The existence of a quasiconvex free energy, forming the large deviations rate functional, is shown using a new interpolation lemma for partition functions. The local behaviour of the Gibbs measures can be parametrized by Young measures on the space of gradient Gibbs measures. In view of the unboundedness of the state space, the crucial tool here is an exponential tightness estimate that holds for a vast class of potentials and the construction of suitable compact sets of gradient Gibbs measures. Free Energy Radon Partition Function Topological Space Weak Topology Luckhaus, Stephan aut Enthalten in Communications in mathematical physics Springer Berlin Heidelberg, 1965 326(2014), 3 vom: 22. Feb., Seite 887-917 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:326 year:2014 number:3 day:22 month:02 pages:887-917 https://doi.org/10.1007/s00220-014-1903-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4318 AR 326 2014 3 22 02 887-917 |
allfieldsGer |
10.1007/s00220-014-1903-6 doi (DE-627)OLC2038906025 (DE-He213)s00220-014-1903-6-p DE-627 ger DE-627 rakwb eng 530 510 VZ Kotecký, Roman verfasserin aut Nonlinear Elastic Free Energies and Gradient Young-Gibbs Measures 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2014 Abstract We investigate, in a fairly general setting, the limit of large volume equilibrium Gibbs measures for elasticity type Hamiltonians with clamped boundary conditions. The existence of a quasiconvex free energy, forming the large deviations rate functional, is shown using a new interpolation lemma for partition functions. The local behaviour of the Gibbs measures can be parametrized by Young measures on the space of gradient Gibbs measures. In view of the unboundedness of the state space, the crucial tool here is an exponential tightness estimate that holds for a vast class of potentials and the construction of suitable compact sets of gradient Gibbs measures. Free Energy Radon Partition Function Topological Space Weak Topology Luckhaus, Stephan aut Enthalten in Communications in mathematical physics Springer Berlin Heidelberg, 1965 326(2014), 3 vom: 22. Feb., Seite 887-917 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:326 year:2014 number:3 day:22 month:02 pages:887-917 https://doi.org/10.1007/s00220-014-1903-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4318 AR 326 2014 3 22 02 887-917 |
allfieldsSound |
10.1007/s00220-014-1903-6 doi (DE-627)OLC2038906025 (DE-He213)s00220-014-1903-6-p DE-627 ger DE-627 rakwb eng 530 510 VZ Kotecký, Roman verfasserin aut Nonlinear Elastic Free Energies and Gradient Young-Gibbs Measures 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2014 Abstract We investigate, in a fairly general setting, the limit of large volume equilibrium Gibbs measures for elasticity type Hamiltonians with clamped boundary conditions. The existence of a quasiconvex free energy, forming the large deviations rate functional, is shown using a new interpolation lemma for partition functions. The local behaviour of the Gibbs measures can be parametrized by Young measures on the space of gradient Gibbs measures. In view of the unboundedness of the state space, the crucial tool here is an exponential tightness estimate that holds for a vast class of potentials and the construction of suitable compact sets of gradient Gibbs measures. Free Energy Radon Partition Function Topological Space Weak Topology Luckhaus, Stephan aut Enthalten in Communications in mathematical physics Springer Berlin Heidelberg, 1965 326(2014), 3 vom: 22. Feb., Seite 887-917 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:326 year:2014 number:3 day:22 month:02 pages:887-917 https://doi.org/10.1007/s00220-014-1903-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4318 AR 326 2014 3 22 02 887-917 |
language |
English |
source |
Enthalten in Communications in mathematical physics 326(2014), 3 vom: 22. Feb., Seite 887-917 volume:326 year:2014 number:3 day:22 month:02 pages:887-917 |
sourceStr |
Enthalten in Communications in mathematical physics 326(2014), 3 vom: 22. Feb., Seite 887-917 volume:326 year:2014 number:3 day:22 month:02 pages:887-917 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Free Energy Radon Partition Function Topological Space Weak Topology |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Communications in mathematical physics |
authorswithroles_txt_mv |
Kotecký, Roman @@aut@@ Luckhaus, Stephan @@aut@@ |
publishDateDaySort_date |
2014-02-22T00:00:00Z |
hierarchy_top_id |
129555002 |
dewey-sort |
3530 |
id |
OLC2038906025 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2038906025</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323202930.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00220-014-1903-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2038906025</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00220-014-1903-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kotecký, Roman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear Elastic Free Energies and Gradient Young-Gibbs Measures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We investigate, in a fairly general setting, the limit of large volume equilibrium Gibbs measures for elasticity type Hamiltonians with clamped boundary conditions. The existence of a quasiconvex free energy, forming the large deviations rate functional, is shown using a new interpolation lemma for partition functions. The local behaviour of the Gibbs measures can be parametrized by Young measures on the space of gradient Gibbs measures. In view of the unboundedness of the state space, the crucial tool here is an exponential tightness estimate that holds for a vast class of potentials and the construction of suitable compact sets of gradient Gibbs measures.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Free Energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partition Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weak Topology</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luckhaus, Stephan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in mathematical physics</subfield><subfield code="d">Springer Berlin Heidelberg, 1965</subfield><subfield code="g">326(2014), 3 vom: 22. Feb., Seite 887-917</subfield><subfield code="w">(DE-627)129555002</subfield><subfield code="w">(DE-600)220443-5</subfield><subfield code="w">(DE-576)015011755</subfield><subfield code="x">0010-3616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:326</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:3</subfield><subfield code="g">day:22</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:887-917</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00220-014-1903-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">326</subfield><subfield code="j">2014</subfield><subfield code="e">3</subfield><subfield code="b">22</subfield><subfield code="c">02</subfield><subfield code="h">887-917</subfield></datafield></record></collection>
|
author |
Kotecký, Roman |
spellingShingle |
Kotecký, Roman ddc 530 misc Free Energy misc Radon misc Partition Function misc Topological Space misc Weak Topology Nonlinear Elastic Free Energies and Gradient Young-Gibbs Measures |
authorStr |
Kotecký, Roman |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129555002 |
format |
Article |
dewey-ones |
530 - Physics 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0010-3616 |
topic_title |
530 510 VZ Nonlinear Elastic Free Energies and Gradient Young-Gibbs Measures Free Energy Radon Partition Function Topological Space Weak Topology |
topic |
ddc 530 misc Free Energy misc Radon misc Partition Function misc Topological Space misc Weak Topology |
topic_unstemmed |
ddc 530 misc Free Energy misc Radon misc Partition Function misc Topological Space misc Weak Topology |
topic_browse |
ddc 530 misc Free Energy misc Radon misc Partition Function misc Topological Space misc Weak Topology |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Communications in mathematical physics |
hierarchy_parent_id |
129555002 |
dewey-tens |
530 - Physics 510 - Mathematics |
hierarchy_top_title |
Communications in mathematical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 |
title |
Nonlinear Elastic Free Energies and Gradient Young-Gibbs Measures |
ctrlnum |
(DE-627)OLC2038906025 (DE-He213)s00220-014-1903-6-p |
title_full |
Nonlinear Elastic Free Energies and Gradient Young-Gibbs Measures |
author_sort |
Kotecký, Roman |
journal |
Communications in mathematical physics |
journalStr |
Communications in mathematical physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
887 |
author_browse |
Kotecký, Roman Luckhaus, Stephan |
container_volume |
326 |
class |
530 510 VZ |
format_se |
Aufsätze |
author-letter |
Kotecký, Roman |
doi_str_mv |
10.1007/s00220-014-1903-6 |
dewey-full |
530 510 |
title_sort |
nonlinear elastic free energies and gradient young-gibbs measures |
title_auth |
Nonlinear Elastic Free Energies and Gradient Young-Gibbs Measures |
abstract |
Abstract We investigate, in a fairly general setting, the limit of large volume equilibrium Gibbs measures for elasticity type Hamiltonians with clamped boundary conditions. The existence of a quasiconvex free energy, forming the large deviations rate functional, is shown using a new interpolation lemma for partition functions. The local behaviour of the Gibbs measures can be parametrized by Young measures on the space of gradient Gibbs measures. In view of the unboundedness of the state space, the crucial tool here is an exponential tightness estimate that holds for a vast class of potentials and the construction of suitable compact sets of gradient Gibbs measures. © Springer-Verlag Berlin Heidelberg 2014 |
abstractGer |
Abstract We investigate, in a fairly general setting, the limit of large volume equilibrium Gibbs measures for elasticity type Hamiltonians with clamped boundary conditions. The existence of a quasiconvex free energy, forming the large deviations rate functional, is shown using a new interpolation lemma for partition functions. The local behaviour of the Gibbs measures can be parametrized by Young measures on the space of gradient Gibbs measures. In view of the unboundedness of the state space, the crucial tool here is an exponential tightness estimate that holds for a vast class of potentials and the construction of suitable compact sets of gradient Gibbs measures. © Springer-Verlag Berlin Heidelberg 2014 |
abstract_unstemmed |
Abstract We investigate, in a fairly general setting, the limit of large volume equilibrium Gibbs measures for elasticity type Hamiltonians with clamped boundary conditions. The existence of a quasiconvex free energy, forming the large deviations rate functional, is shown using a new interpolation lemma for partition functions. The local behaviour of the Gibbs measures can be parametrized by Young measures on the space of gradient Gibbs measures. In view of the unboundedness of the state space, the crucial tool here is an exponential tightness estimate that holds for a vast class of potentials and the construction of suitable compact sets of gradient Gibbs measures. © Springer-Verlag Berlin Heidelberg 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4318 |
container_issue |
3 |
title_short |
Nonlinear Elastic Free Energies and Gradient Young-Gibbs Measures |
url |
https://doi.org/10.1007/s00220-014-1903-6 |
remote_bool |
false |
author2 |
Luckhaus, Stephan |
author2Str |
Luckhaus, Stephan |
ppnlink |
129555002 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00220-014-1903-6 |
up_date |
2024-07-03T20:48:29.483Z |
_version_ |
1803592358413991936 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2038906025</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323202930.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00220-014-1903-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2038906025</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00220-014-1903-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kotecký, Roman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear Elastic Free Energies and Gradient Young-Gibbs Measures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We investigate, in a fairly general setting, the limit of large volume equilibrium Gibbs measures for elasticity type Hamiltonians with clamped boundary conditions. The existence of a quasiconvex free energy, forming the large deviations rate functional, is shown using a new interpolation lemma for partition functions. The local behaviour of the Gibbs measures can be parametrized by Young measures on the space of gradient Gibbs measures. In view of the unboundedness of the state space, the crucial tool here is an exponential tightness estimate that holds for a vast class of potentials and the construction of suitable compact sets of gradient Gibbs measures.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Free Energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partition Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weak Topology</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luckhaus, Stephan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in mathematical physics</subfield><subfield code="d">Springer Berlin Heidelberg, 1965</subfield><subfield code="g">326(2014), 3 vom: 22. Feb., Seite 887-917</subfield><subfield code="w">(DE-627)129555002</subfield><subfield code="w">(DE-600)220443-5</subfield><subfield code="w">(DE-576)015011755</subfield><subfield code="x">0010-3616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:326</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:3</subfield><subfield code="g">day:22</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:887-917</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00220-014-1903-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">326</subfield><subfield code="j">2014</subfield><subfield code="e">3</subfield><subfield code="b">22</subfield><subfield code="c">02</subfield><subfield code="h">887-917</subfield></datafield></record></collection>
|
score |
7.4018087 |