Mean–Field Evolution of Fermionic Systems
Abstract The mean field limit for systems of many fermions is naturally coupled with a semiclassical limit. This makes the analysis of the mean field regime much more involved, compared with bosonic systems. In this paper, we study the dynamics of initial data close to a Slater determinant, whose re...
Ausführliche Beschreibung
Autor*in: |
Benedikter, Niels [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: Communications in mathematical physics - Springer Berlin Heidelberg, 1965, 331(2014), 3 vom: 23. Apr., Seite 1087-1131 |
---|---|
Übergeordnetes Werk: |
volume:331 ; year:2014 ; number:3 ; day:23 ; month:04 ; pages:1087-1131 |
Links: |
---|
DOI / URN: |
10.1007/s00220-014-2031-z |
---|
Katalog-ID: |
OLC2038907951 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2038907951 | ||
003 | DE-627 | ||
005 | 20230323202950.0 | ||
007 | tu | ||
008 | 200819s2014 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00220-014-2031-z |2 doi | |
035 | |a (DE-627)OLC2038907951 | ||
035 | |a (DE-He213)s00220-014-2031-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 510 |q VZ |
100 | 1 | |a Benedikter, Niels |e verfasserin |4 aut | |
245 | 1 | 0 | |a Mean–Field Evolution of Fermionic Systems |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2014 | ||
520 | |a Abstract The mean field limit for systems of many fermions is naturally coupled with a semiclassical limit. This makes the analysis of the mean field regime much more involved, compared with bosonic systems. In this paper, we study the dynamics of initial data close to a Slater determinant, whose reduced one-particle density is an orthogonal projection ωN with the appropriate semiclassical structure. Assuming some regularity of the interaction potential, we show that the evolution of such an initial data remains close to a Slater determinant, with reduced one-particle density given by the solution of the Hartree–Fock equation with initial data ωN. Our result holds for all (semiclassical) times, and gives effective bounds on the rate of the convergence towards the Hartree–Fock dynamics. | ||
650 | 4 | |a Fermionic System | |
650 | 4 | |a Slater Determinant | |
650 | 4 | |a Hartree Equation | |
650 | 4 | |a Bogoliubov Transformation | |
650 | 4 | |a Canonical Anticommutation Relation | |
700 | 1 | |a Porta, Marcello |4 aut | |
700 | 1 | |a Schlein, Benjamin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Communications in mathematical physics |d Springer Berlin Heidelberg, 1965 |g 331(2014), 3 vom: 23. Apr., Seite 1087-1131 |w (DE-627)129555002 |w (DE-600)220443-5 |w (DE-576)015011755 |x 0010-3616 |7 nnns |
773 | 1 | 8 | |g volume:331 |g year:2014 |g number:3 |g day:23 |g month:04 |g pages:1087-1131 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00220-014-2031-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2279 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4318 | ||
951 | |a AR | ||
952 | |d 331 |j 2014 |e 3 |b 23 |c 04 |h 1087-1131 |
author_variant |
n b nb m p mp b s bs |
---|---|
matchkey_str |
article:00103616:2014----::enileouinfemo |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1007/s00220-014-2031-z doi (DE-627)OLC2038907951 (DE-He213)s00220-014-2031-z-p DE-627 ger DE-627 rakwb eng 530 510 VZ Benedikter, Niels verfasserin aut Mean–Field Evolution of Fermionic Systems 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2014 Abstract The mean field limit for systems of many fermions is naturally coupled with a semiclassical limit. This makes the analysis of the mean field regime much more involved, compared with bosonic systems. In this paper, we study the dynamics of initial data close to a Slater determinant, whose reduced one-particle density is an orthogonal projection ωN with the appropriate semiclassical structure. Assuming some regularity of the interaction potential, we show that the evolution of such an initial data remains close to a Slater determinant, with reduced one-particle density given by the solution of the Hartree–Fock equation with initial data ωN. Our result holds for all (semiclassical) times, and gives effective bounds on the rate of the convergence towards the Hartree–Fock dynamics. Fermionic System Slater Determinant Hartree Equation Bogoliubov Transformation Canonical Anticommutation Relation Porta, Marcello aut Schlein, Benjamin aut Enthalten in Communications in mathematical physics Springer Berlin Heidelberg, 1965 331(2014), 3 vom: 23. Apr., Seite 1087-1131 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:331 year:2014 number:3 day:23 month:04 pages:1087-1131 https://doi.org/10.1007/s00220-014-2031-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4318 AR 331 2014 3 23 04 1087-1131 |
spelling |
10.1007/s00220-014-2031-z doi (DE-627)OLC2038907951 (DE-He213)s00220-014-2031-z-p DE-627 ger DE-627 rakwb eng 530 510 VZ Benedikter, Niels verfasserin aut Mean–Field Evolution of Fermionic Systems 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2014 Abstract The mean field limit for systems of many fermions is naturally coupled with a semiclassical limit. This makes the analysis of the mean field regime much more involved, compared with bosonic systems. In this paper, we study the dynamics of initial data close to a Slater determinant, whose reduced one-particle density is an orthogonal projection ωN with the appropriate semiclassical structure. Assuming some regularity of the interaction potential, we show that the evolution of such an initial data remains close to a Slater determinant, with reduced one-particle density given by the solution of the Hartree–Fock equation with initial data ωN. Our result holds for all (semiclassical) times, and gives effective bounds on the rate of the convergence towards the Hartree–Fock dynamics. Fermionic System Slater Determinant Hartree Equation Bogoliubov Transformation Canonical Anticommutation Relation Porta, Marcello aut Schlein, Benjamin aut Enthalten in Communications in mathematical physics Springer Berlin Heidelberg, 1965 331(2014), 3 vom: 23. Apr., Seite 1087-1131 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:331 year:2014 number:3 day:23 month:04 pages:1087-1131 https://doi.org/10.1007/s00220-014-2031-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4318 AR 331 2014 3 23 04 1087-1131 |
allfields_unstemmed |
10.1007/s00220-014-2031-z doi (DE-627)OLC2038907951 (DE-He213)s00220-014-2031-z-p DE-627 ger DE-627 rakwb eng 530 510 VZ Benedikter, Niels verfasserin aut Mean–Field Evolution of Fermionic Systems 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2014 Abstract The mean field limit for systems of many fermions is naturally coupled with a semiclassical limit. This makes the analysis of the mean field regime much more involved, compared with bosonic systems. In this paper, we study the dynamics of initial data close to a Slater determinant, whose reduced one-particle density is an orthogonal projection ωN with the appropriate semiclassical structure. Assuming some regularity of the interaction potential, we show that the evolution of such an initial data remains close to a Slater determinant, with reduced one-particle density given by the solution of the Hartree–Fock equation with initial data ωN. Our result holds for all (semiclassical) times, and gives effective bounds on the rate of the convergence towards the Hartree–Fock dynamics. Fermionic System Slater Determinant Hartree Equation Bogoliubov Transformation Canonical Anticommutation Relation Porta, Marcello aut Schlein, Benjamin aut Enthalten in Communications in mathematical physics Springer Berlin Heidelberg, 1965 331(2014), 3 vom: 23. Apr., Seite 1087-1131 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:331 year:2014 number:3 day:23 month:04 pages:1087-1131 https://doi.org/10.1007/s00220-014-2031-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4318 AR 331 2014 3 23 04 1087-1131 |
allfieldsGer |
10.1007/s00220-014-2031-z doi (DE-627)OLC2038907951 (DE-He213)s00220-014-2031-z-p DE-627 ger DE-627 rakwb eng 530 510 VZ Benedikter, Niels verfasserin aut Mean–Field Evolution of Fermionic Systems 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2014 Abstract The mean field limit for systems of many fermions is naturally coupled with a semiclassical limit. This makes the analysis of the mean field regime much more involved, compared with bosonic systems. In this paper, we study the dynamics of initial data close to a Slater determinant, whose reduced one-particle density is an orthogonal projection ωN with the appropriate semiclassical structure. Assuming some regularity of the interaction potential, we show that the evolution of such an initial data remains close to a Slater determinant, with reduced one-particle density given by the solution of the Hartree–Fock equation with initial data ωN. Our result holds for all (semiclassical) times, and gives effective bounds on the rate of the convergence towards the Hartree–Fock dynamics. Fermionic System Slater Determinant Hartree Equation Bogoliubov Transformation Canonical Anticommutation Relation Porta, Marcello aut Schlein, Benjamin aut Enthalten in Communications in mathematical physics Springer Berlin Heidelberg, 1965 331(2014), 3 vom: 23. Apr., Seite 1087-1131 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:331 year:2014 number:3 day:23 month:04 pages:1087-1131 https://doi.org/10.1007/s00220-014-2031-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4318 AR 331 2014 3 23 04 1087-1131 |
allfieldsSound |
10.1007/s00220-014-2031-z doi (DE-627)OLC2038907951 (DE-He213)s00220-014-2031-z-p DE-627 ger DE-627 rakwb eng 530 510 VZ Benedikter, Niels verfasserin aut Mean–Field Evolution of Fermionic Systems 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2014 Abstract The mean field limit for systems of many fermions is naturally coupled with a semiclassical limit. This makes the analysis of the mean field regime much more involved, compared with bosonic systems. In this paper, we study the dynamics of initial data close to a Slater determinant, whose reduced one-particle density is an orthogonal projection ωN with the appropriate semiclassical structure. Assuming some regularity of the interaction potential, we show that the evolution of such an initial data remains close to a Slater determinant, with reduced one-particle density given by the solution of the Hartree–Fock equation with initial data ωN. Our result holds for all (semiclassical) times, and gives effective bounds on the rate of the convergence towards the Hartree–Fock dynamics. Fermionic System Slater Determinant Hartree Equation Bogoliubov Transformation Canonical Anticommutation Relation Porta, Marcello aut Schlein, Benjamin aut Enthalten in Communications in mathematical physics Springer Berlin Heidelberg, 1965 331(2014), 3 vom: 23. Apr., Seite 1087-1131 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:331 year:2014 number:3 day:23 month:04 pages:1087-1131 https://doi.org/10.1007/s00220-014-2031-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4318 AR 331 2014 3 23 04 1087-1131 |
language |
English |
source |
Enthalten in Communications in mathematical physics 331(2014), 3 vom: 23. Apr., Seite 1087-1131 volume:331 year:2014 number:3 day:23 month:04 pages:1087-1131 |
sourceStr |
Enthalten in Communications in mathematical physics 331(2014), 3 vom: 23. Apr., Seite 1087-1131 volume:331 year:2014 number:3 day:23 month:04 pages:1087-1131 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Fermionic System Slater Determinant Hartree Equation Bogoliubov Transformation Canonical Anticommutation Relation |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Communications in mathematical physics |
authorswithroles_txt_mv |
Benedikter, Niels @@aut@@ Porta, Marcello @@aut@@ Schlein, Benjamin @@aut@@ |
publishDateDaySort_date |
2014-04-23T00:00:00Z |
hierarchy_top_id |
129555002 |
dewey-sort |
3530 |
id |
OLC2038907951 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2038907951</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323202950.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00220-014-2031-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2038907951</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00220-014-2031-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Benedikter, Niels</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mean–Field Evolution of Fermionic Systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The mean field limit for systems of many fermions is naturally coupled with a semiclassical limit. This makes the analysis of the mean field regime much more involved, compared with bosonic systems. In this paper, we study the dynamics of initial data close to a Slater determinant, whose reduced one-particle density is an orthogonal projection ωN with the appropriate semiclassical structure. Assuming some regularity of the interaction potential, we show that the evolution of such an initial data remains close to a Slater determinant, with reduced one-particle density given by the solution of the Hartree–Fock equation with initial data ωN. Our result holds for all (semiclassical) times, and gives effective bounds on the rate of the convergence towards the Hartree–Fock dynamics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fermionic System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Slater Determinant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hartree Equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bogoliubov Transformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Canonical Anticommutation Relation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Porta, Marcello</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schlein, Benjamin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in mathematical physics</subfield><subfield code="d">Springer Berlin Heidelberg, 1965</subfield><subfield code="g">331(2014), 3 vom: 23. Apr., Seite 1087-1131</subfield><subfield code="w">(DE-627)129555002</subfield><subfield code="w">(DE-600)220443-5</subfield><subfield code="w">(DE-576)015011755</subfield><subfield code="x">0010-3616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:331</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:3</subfield><subfield code="g">day:23</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:1087-1131</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00220-014-2031-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">331</subfield><subfield code="j">2014</subfield><subfield code="e">3</subfield><subfield code="b">23</subfield><subfield code="c">04</subfield><subfield code="h">1087-1131</subfield></datafield></record></collection>
|
author |
Benedikter, Niels |
spellingShingle |
Benedikter, Niels ddc 530 misc Fermionic System misc Slater Determinant misc Hartree Equation misc Bogoliubov Transformation misc Canonical Anticommutation Relation Mean–Field Evolution of Fermionic Systems |
authorStr |
Benedikter, Niels |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129555002 |
format |
Article |
dewey-ones |
530 - Physics 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0010-3616 |
topic_title |
530 510 VZ Mean–Field Evolution of Fermionic Systems Fermionic System Slater Determinant Hartree Equation Bogoliubov Transformation Canonical Anticommutation Relation |
topic |
ddc 530 misc Fermionic System misc Slater Determinant misc Hartree Equation misc Bogoliubov Transformation misc Canonical Anticommutation Relation |
topic_unstemmed |
ddc 530 misc Fermionic System misc Slater Determinant misc Hartree Equation misc Bogoliubov Transformation misc Canonical Anticommutation Relation |
topic_browse |
ddc 530 misc Fermionic System misc Slater Determinant misc Hartree Equation misc Bogoliubov Transformation misc Canonical Anticommutation Relation |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Communications in mathematical physics |
hierarchy_parent_id |
129555002 |
dewey-tens |
530 - Physics 510 - Mathematics |
hierarchy_top_title |
Communications in mathematical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 |
title |
Mean–Field Evolution of Fermionic Systems |
ctrlnum |
(DE-627)OLC2038907951 (DE-He213)s00220-014-2031-z-p |
title_full |
Mean–Field Evolution of Fermionic Systems |
author_sort |
Benedikter, Niels |
journal |
Communications in mathematical physics |
journalStr |
Communications in mathematical physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
1087 |
author_browse |
Benedikter, Niels Porta, Marcello Schlein, Benjamin |
container_volume |
331 |
class |
530 510 VZ |
format_se |
Aufsätze |
author-letter |
Benedikter, Niels |
doi_str_mv |
10.1007/s00220-014-2031-z |
dewey-full |
530 510 |
title_sort |
mean–field evolution of fermionic systems |
title_auth |
Mean–Field Evolution of Fermionic Systems |
abstract |
Abstract The mean field limit for systems of many fermions is naturally coupled with a semiclassical limit. This makes the analysis of the mean field regime much more involved, compared with bosonic systems. In this paper, we study the dynamics of initial data close to a Slater determinant, whose reduced one-particle density is an orthogonal projection ωN with the appropriate semiclassical structure. Assuming some regularity of the interaction potential, we show that the evolution of such an initial data remains close to a Slater determinant, with reduced one-particle density given by the solution of the Hartree–Fock equation with initial data ωN. Our result holds for all (semiclassical) times, and gives effective bounds on the rate of the convergence towards the Hartree–Fock dynamics. © Springer-Verlag Berlin Heidelberg 2014 |
abstractGer |
Abstract The mean field limit for systems of many fermions is naturally coupled with a semiclassical limit. This makes the analysis of the mean field regime much more involved, compared with bosonic systems. In this paper, we study the dynamics of initial data close to a Slater determinant, whose reduced one-particle density is an orthogonal projection ωN with the appropriate semiclassical structure. Assuming some regularity of the interaction potential, we show that the evolution of such an initial data remains close to a Slater determinant, with reduced one-particle density given by the solution of the Hartree–Fock equation with initial data ωN. Our result holds for all (semiclassical) times, and gives effective bounds on the rate of the convergence towards the Hartree–Fock dynamics. © Springer-Verlag Berlin Heidelberg 2014 |
abstract_unstemmed |
Abstract The mean field limit for systems of many fermions is naturally coupled with a semiclassical limit. This makes the analysis of the mean field regime much more involved, compared with bosonic systems. In this paper, we study the dynamics of initial data close to a Slater determinant, whose reduced one-particle density is an orthogonal projection ωN with the appropriate semiclassical structure. Assuming some regularity of the interaction potential, we show that the evolution of such an initial data remains close to a Slater determinant, with reduced one-particle density given by the solution of the Hartree–Fock equation with initial data ωN. Our result holds for all (semiclassical) times, and gives effective bounds on the rate of the convergence towards the Hartree–Fock dynamics. © Springer-Verlag Berlin Heidelberg 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4318 |
container_issue |
3 |
title_short |
Mean–Field Evolution of Fermionic Systems |
url |
https://doi.org/10.1007/s00220-014-2031-z |
remote_bool |
false |
author2 |
Porta, Marcello Schlein, Benjamin |
author2Str |
Porta, Marcello Schlein, Benjamin |
ppnlink |
129555002 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00220-014-2031-z |
up_date |
2024-07-03T20:48:57.052Z |
_version_ |
1803592387321135104 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2038907951</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323202950.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00220-014-2031-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2038907951</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00220-014-2031-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Benedikter, Niels</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mean–Field Evolution of Fermionic Systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The mean field limit for systems of many fermions is naturally coupled with a semiclassical limit. This makes the analysis of the mean field regime much more involved, compared with bosonic systems. In this paper, we study the dynamics of initial data close to a Slater determinant, whose reduced one-particle density is an orthogonal projection ωN with the appropriate semiclassical structure. Assuming some regularity of the interaction potential, we show that the evolution of such an initial data remains close to a Slater determinant, with reduced one-particle density given by the solution of the Hartree–Fock equation with initial data ωN. Our result holds for all (semiclassical) times, and gives effective bounds on the rate of the convergence towards the Hartree–Fock dynamics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fermionic System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Slater Determinant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hartree Equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bogoliubov Transformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Canonical Anticommutation Relation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Porta, Marcello</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schlein, Benjamin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in mathematical physics</subfield><subfield code="d">Springer Berlin Heidelberg, 1965</subfield><subfield code="g">331(2014), 3 vom: 23. Apr., Seite 1087-1131</subfield><subfield code="w">(DE-627)129555002</subfield><subfield code="w">(DE-600)220443-5</subfield><subfield code="w">(DE-576)015011755</subfield><subfield code="x">0010-3616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:331</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:3</subfield><subfield code="g">day:23</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:1087-1131</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00220-014-2031-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">331</subfield><subfield code="j">2014</subfield><subfield code="e">3</subfield><subfield code="b">23</subfield><subfield code="c">04</subfield><subfield code="h">1087-1131</subfield></datafield></record></collection>
|
score |
7.3997984 |