Renormalizations and Wandering Jordan Curves of Rational Maps
Abstract We realize a dynamical decomposition for a post-critically finite rational map which admits a combinatorial decomposition. We split the Riemann sphere into two completely invariant subsets. One is a subset of the Julia set consisting of uncountably many Jordan curve components. Most of them...
Ausführliche Beschreibung
Autor*in: |
Cui, Guizhen [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Communications in mathematical physics - Springer Berlin Heidelberg, 1965, 344(2016), 1 vom: 16. Apr., Seite 67-115 |
---|---|
Übergeordnetes Werk: |
volume:344 ; year:2016 ; number:1 ; day:16 ; month:04 ; pages:67-115 |
Links: |
---|
DOI / URN: |
10.1007/s00220-016-2623-x |
---|
Katalog-ID: |
OLC2038912823 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2038912823 | ||
003 | DE-627 | ||
005 | 20230323203050.0 | ||
007 | tu | ||
008 | 200819s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00220-016-2623-x |2 doi | |
035 | |a (DE-627)OLC2038912823 | ||
035 | |a (DE-He213)s00220-016-2623-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 510 |q VZ |
100 | 1 | |a Cui, Guizhen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Renormalizations and Wandering Jordan Curves of Rational Maps |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2016 | ||
520 | |a Abstract We realize a dynamical decomposition for a post-critically finite rational map which admits a combinatorial decomposition. We split the Riemann sphere into two completely invariant subsets. One is a subset of the Julia set consisting of uncountably many Jordan curve components. Most of them are wandering. The other consists of components that are pullbacks of finitely many renormalizations, together with possibly uncountably many points. The quotient action on the decomposed pieces is encoded by a dendrite dynamical system. We also introduce a surgery procedure to produce post-critically finite rational maps with wandering Jordan curves and prescribed renormalizations. | ||
650 | 4 | |a Jordan Curve | |
650 | 4 | |a Jordan Domain | |
650 | 4 | |a Sierpinski Carpet | |
650 | 4 | |a Hyperbolic Component | |
650 | 4 | |a Critical Cycle | |
700 | 1 | |a Peng, Wenjuan |4 aut | |
700 | 1 | |a Tan, Lei |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Communications in mathematical physics |d Springer Berlin Heidelberg, 1965 |g 344(2016), 1 vom: 16. Apr., Seite 67-115 |w (DE-627)129555002 |w (DE-600)220443-5 |w (DE-576)015011755 |x 0010-3616 |7 nnns |
773 | 1 | 8 | |g volume:344 |g year:2016 |g number:1 |g day:16 |g month:04 |g pages:67-115 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00220-016-2623-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2279 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4318 | ||
951 | |a AR | ||
952 | |d 344 |j 2016 |e 1 |b 16 |c 04 |h 67-115 |
author_variant |
g c gc w p wp l t lt |
---|---|
matchkey_str |
article:00103616:2016----::eomlztosnwneigodnuv |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1007/s00220-016-2623-x doi (DE-627)OLC2038912823 (DE-He213)s00220-016-2623-x-p DE-627 ger DE-627 rakwb eng 530 510 VZ Cui, Guizhen verfasserin aut Renormalizations and Wandering Jordan Curves of Rational Maps 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract We realize a dynamical decomposition for a post-critically finite rational map which admits a combinatorial decomposition. We split the Riemann sphere into two completely invariant subsets. One is a subset of the Julia set consisting of uncountably many Jordan curve components. Most of them are wandering. The other consists of components that are pullbacks of finitely many renormalizations, together with possibly uncountably many points. The quotient action on the decomposed pieces is encoded by a dendrite dynamical system. We also introduce a surgery procedure to produce post-critically finite rational maps with wandering Jordan curves and prescribed renormalizations. Jordan Curve Jordan Domain Sierpinski Carpet Hyperbolic Component Critical Cycle Peng, Wenjuan aut Tan, Lei aut Enthalten in Communications in mathematical physics Springer Berlin Heidelberg, 1965 344(2016), 1 vom: 16. Apr., Seite 67-115 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:344 year:2016 number:1 day:16 month:04 pages:67-115 https://doi.org/10.1007/s00220-016-2623-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4318 AR 344 2016 1 16 04 67-115 |
spelling |
10.1007/s00220-016-2623-x doi (DE-627)OLC2038912823 (DE-He213)s00220-016-2623-x-p DE-627 ger DE-627 rakwb eng 530 510 VZ Cui, Guizhen verfasserin aut Renormalizations and Wandering Jordan Curves of Rational Maps 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract We realize a dynamical decomposition for a post-critically finite rational map which admits a combinatorial decomposition. We split the Riemann sphere into two completely invariant subsets. One is a subset of the Julia set consisting of uncountably many Jordan curve components. Most of them are wandering. The other consists of components that are pullbacks of finitely many renormalizations, together with possibly uncountably many points. The quotient action on the decomposed pieces is encoded by a dendrite dynamical system. We also introduce a surgery procedure to produce post-critically finite rational maps with wandering Jordan curves and prescribed renormalizations. Jordan Curve Jordan Domain Sierpinski Carpet Hyperbolic Component Critical Cycle Peng, Wenjuan aut Tan, Lei aut Enthalten in Communications in mathematical physics Springer Berlin Heidelberg, 1965 344(2016), 1 vom: 16. Apr., Seite 67-115 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:344 year:2016 number:1 day:16 month:04 pages:67-115 https://doi.org/10.1007/s00220-016-2623-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4318 AR 344 2016 1 16 04 67-115 |
allfields_unstemmed |
10.1007/s00220-016-2623-x doi (DE-627)OLC2038912823 (DE-He213)s00220-016-2623-x-p DE-627 ger DE-627 rakwb eng 530 510 VZ Cui, Guizhen verfasserin aut Renormalizations and Wandering Jordan Curves of Rational Maps 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract We realize a dynamical decomposition for a post-critically finite rational map which admits a combinatorial decomposition. We split the Riemann sphere into two completely invariant subsets. One is a subset of the Julia set consisting of uncountably many Jordan curve components. Most of them are wandering. The other consists of components that are pullbacks of finitely many renormalizations, together with possibly uncountably many points. The quotient action on the decomposed pieces is encoded by a dendrite dynamical system. We also introduce a surgery procedure to produce post-critically finite rational maps with wandering Jordan curves and prescribed renormalizations. Jordan Curve Jordan Domain Sierpinski Carpet Hyperbolic Component Critical Cycle Peng, Wenjuan aut Tan, Lei aut Enthalten in Communications in mathematical physics Springer Berlin Heidelberg, 1965 344(2016), 1 vom: 16. Apr., Seite 67-115 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:344 year:2016 number:1 day:16 month:04 pages:67-115 https://doi.org/10.1007/s00220-016-2623-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4318 AR 344 2016 1 16 04 67-115 |
allfieldsGer |
10.1007/s00220-016-2623-x doi (DE-627)OLC2038912823 (DE-He213)s00220-016-2623-x-p DE-627 ger DE-627 rakwb eng 530 510 VZ Cui, Guizhen verfasserin aut Renormalizations and Wandering Jordan Curves of Rational Maps 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract We realize a dynamical decomposition for a post-critically finite rational map which admits a combinatorial decomposition. We split the Riemann sphere into two completely invariant subsets. One is a subset of the Julia set consisting of uncountably many Jordan curve components. Most of them are wandering. The other consists of components that are pullbacks of finitely many renormalizations, together with possibly uncountably many points. The quotient action on the decomposed pieces is encoded by a dendrite dynamical system. We also introduce a surgery procedure to produce post-critically finite rational maps with wandering Jordan curves and prescribed renormalizations. Jordan Curve Jordan Domain Sierpinski Carpet Hyperbolic Component Critical Cycle Peng, Wenjuan aut Tan, Lei aut Enthalten in Communications in mathematical physics Springer Berlin Heidelberg, 1965 344(2016), 1 vom: 16. Apr., Seite 67-115 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:344 year:2016 number:1 day:16 month:04 pages:67-115 https://doi.org/10.1007/s00220-016-2623-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4318 AR 344 2016 1 16 04 67-115 |
allfieldsSound |
10.1007/s00220-016-2623-x doi (DE-627)OLC2038912823 (DE-He213)s00220-016-2623-x-p DE-627 ger DE-627 rakwb eng 530 510 VZ Cui, Guizhen verfasserin aut Renormalizations and Wandering Jordan Curves of Rational Maps 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract We realize a dynamical decomposition for a post-critically finite rational map which admits a combinatorial decomposition. We split the Riemann sphere into two completely invariant subsets. One is a subset of the Julia set consisting of uncountably many Jordan curve components. Most of them are wandering. The other consists of components that are pullbacks of finitely many renormalizations, together with possibly uncountably many points. The quotient action on the decomposed pieces is encoded by a dendrite dynamical system. We also introduce a surgery procedure to produce post-critically finite rational maps with wandering Jordan curves and prescribed renormalizations. Jordan Curve Jordan Domain Sierpinski Carpet Hyperbolic Component Critical Cycle Peng, Wenjuan aut Tan, Lei aut Enthalten in Communications in mathematical physics Springer Berlin Heidelberg, 1965 344(2016), 1 vom: 16. Apr., Seite 67-115 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:344 year:2016 number:1 day:16 month:04 pages:67-115 https://doi.org/10.1007/s00220-016-2623-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4318 AR 344 2016 1 16 04 67-115 |
language |
English |
source |
Enthalten in Communications in mathematical physics 344(2016), 1 vom: 16. Apr., Seite 67-115 volume:344 year:2016 number:1 day:16 month:04 pages:67-115 |
sourceStr |
Enthalten in Communications in mathematical physics 344(2016), 1 vom: 16. Apr., Seite 67-115 volume:344 year:2016 number:1 day:16 month:04 pages:67-115 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Jordan Curve Jordan Domain Sierpinski Carpet Hyperbolic Component Critical Cycle |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Communications in mathematical physics |
authorswithroles_txt_mv |
Cui, Guizhen @@aut@@ Peng, Wenjuan @@aut@@ Tan, Lei @@aut@@ |
publishDateDaySort_date |
2016-04-16T00:00:00Z |
hierarchy_top_id |
129555002 |
dewey-sort |
3530 |
id |
OLC2038912823 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2038912823</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323203050.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00220-016-2623-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2038912823</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00220-016-2623-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cui, Guizhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Renormalizations and Wandering Jordan Curves of Rational Maps</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We realize a dynamical decomposition for a post-critically finite rational map which admits a combinatorial decomposition. We split the Riemann sphere into two completely invariant subsets. One is a subset of the Julia set consisting of uncountably many Jordan curve components. Most of them are wandering. The other consists of components that are pullbacks of finitely many renormalizations, together with possibly uncountably many points. The quotient action on the decomposed pieces is encoded by a dendrite dynamical system. We also introduce a surgery procedure to produce post-critically finite rational maps with wandering Jordan curves and prescribed renormalizations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jordan Curve</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jordan Domain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sierpinski Carpet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hyperbolic Component</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Critical Cycle</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Wenjuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tan, Lei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in mathematical physics</subfield><subfield code="d">Springer Berlin Heidelberg, 1965</subfield><subfield code="g">344(2016), 1 vom: 16. Apr., Seite 67-115</subfield><subfield code="w">(DE-627)129555002</subfield><subfield code="w">(DE-600)220443-5</subfield><subfield code="w">(DE-576)015011755</subfield><subfield code="x">0010-3616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:344</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">day:16</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:67-115</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00220-016-2623-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">344</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="b">16</subfield><subfield code="c">04</subfield><subfield code="h">67-115</subfield></datafield></record></collection>
|
author |
Cui, Guizhen |
spellingShingle |
Cui, Guizhen ddc 530 misc Jordan Curve misc Jordan Domain misc Sierpinski Carpet misc Hyperbolic Component misc Critical Cycle Renormalizations and Wandering Jordan Curves of Rational Maps |
authorStr |
Cui, Guizhen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129555002 |
format |
Article |
dewey-ones |
530 - Physics 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0010-3616 |
topic_title |
530 510 VZ Renormalizations and Wandering Jordan Curves of Rational Maps Jordan Curve Jordan Domain Sierpinski Carpet Hyperbolic Component Critical Cycle |
topic |
ddc 530 misc Jordan Curve misc Jordan Domain misc Sierpinski Carpet misc Hyperbolic Component misc Critical Cycle |
topic_unstemmed |
ddc 530 misc Jordan Curve misc Jordan Domain misc Sierpinski Carpet misc Hyperbolic Component misc Critical Cycle |
topic_browse |
ddc 530 misc Jordan Curve misc Jordan Domain misc Sierpinski Carpet misc Hyperbolic Component misc Critical Cycle |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Communications in mathematical physics |
hierarchy_parent_id |
129555002 |
dewey-tens |
530 - Physics 510 - Mathematics |
hierarchy_top_title |
Communications in mathematical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 |
title |
Renormalizations and Wandering Jordan Curves of Rational Maps |
ctrlnum |
(DE-627)OLC2038912823 (DE-He213)s00220-016-2623-x-p |
title_full |
Renormalizations and Wandering Jordan Curves of Rational Maps |
author_sort |
Cui, Guizhen |
journal |
Communications in mathematical physics |
journalStr |
Communications in mathematical physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
67 |
author_browse |
Cui, Guizhen Peng, Wenjuan Tan, Lei |
container_volume |
344 |
class |
530 510 VZ |
format_se |
Aufsätze |
author-letter |
Cui, Guizhen |
doi_str_mv |
10.1007/s00220-016-2623-x |
dewey-full |
530 510 |
title_sort |
renormalizations and wandering jordan curves of rational maps |
title_auth |
Renormalizations and Wandering Jordan Curves of Rational Maps |
abstract |
Abstract We realize a dynamical decomposition for a post-critically finite rational map which admits a combinatorial decomposition. We split the Riemann sphere into two completely invariant subsets. One is a subset of the Julia set consisting of uncountably many Jordan curve components. Most of them are wandering. The other consists of components that are pullbacks of finitely many renormalizations, together with possibly uncountably many points. The quotient action on the decomposed pieces is encoded by a dendrite dynamical system. We also introduce a surgery procedure to produce post-critically finite rational maps with wandering Jordan curves and prescribed renormalizations. © Springer-Verlag Berlin Heidelberg 2016 |
abstractGer |
Abstract We realize a dynamical decomposition for a post-critically finite rational map which admits a combinatorial decomposition. We split the Riemann sphere into two completely invariant subsets. One is a subset of the Julia set consisting of uncountably many Jordan curve components. Most of them are wandering. The other consists of components that are pullbacks of finitely many renormalizations, together with possibly uncountably many points. The quotient action on the decomposed pieces is encoded by a dendrite dynamical system. We also introduce a surgery procedure to produce post-critically finite rational maps with wandering Jordan curves and prescribed renormalizations. © Springer-Verlag Berlin Heidelberg 2016 |
abstract_unstemmed |
Abstract We realize a dynamical decomposition for a post-critically finite rational map which admits a combinatorial decomposition. We split the Riemann sphere into two completely invariant subsets. One is a subset of the Julia set consisting of uncountably many Jordan curve components. Most of them are wandering. The other consists of components that are pullbacks of finitely many renormalizations, together with possibly uncountably many points. The quotient action on the decomposed pieces is encoded by a dendrite dynamical system. We also introduce a surgery procedure to produce post-critically finite rational maps with wandering Jordan curves and prescribed renormalizations. © Springer-Verlag Berlin Heidelberg 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4318 |
container_issue |
1 |
title_short |
Renormalizations and Wandering Jordan Curves of Rational Maps |
url |
https://doi.org/10.1007/s00220-016-2623-x |
remote_bool |
false |
author2 |
Peng, Wenjuan Tan, Lei |
author2Str |
Peng, Wenjuan Tan, Lei |
ppnlink |
129555002 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00220-016-2623-x |
up_date |
2024-07-03T20:50:11.664Z |
_version_ |
1803592465562730496 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2038912823</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323203050.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00220-016-2623-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2038912823</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00220-016-2623-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cui, Guizhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Renormalizations and Wandering Jordan Curves of Rational Maps</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We realize a dynamical decomposition for a post-critically finite rational map which admits a combinatorial decomposition. We split the Riemann sphere into two completely invariant subsets. One is a subset of the Julia set consisting of uncountably many Jordan curve components. Most of them are wandering. The other consists of components that are pullbacks of finitely many renormalizations, together with possibly uncountably many points. The quotient action on the decomposed pieces is encoded by a dendrite dynamical system. We also introduce a surgery procedure to produce post-critically finite rational maps with wandering Jordan curves and prescribed renormalizations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jordan Curve</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jordan Domain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sierpinski Carpet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hyperbolic Component</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Critical Cycle</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Wenjuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tan, Lei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in mathematical physics</subfield><subfield code="d">Springer Berlin Heidelberg, 1965</subfield><subfield code="g">344(2016), 1 vom: 16. Apr., Seite 67-115</subfield><subfield code="w">(DE-627)129555002</subfield><subfield code="w">(DE-600)220443-5</subfield><subfield code="w">(DE-576)015011755</subfield><subfield code="x">0010-3616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:344</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">day:16</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:67-115</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00220-016-2623-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">344</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="b">16</subfield><subfield code="c">04</subfield><subfield code="h">67-115</subfield></datafield></record></collection>
|
score |
7.4018974 |