Extreme Local Extrema of Two-Dimensional Discrete Gaussian Free Field
Abstract We consider the discrete Gaussian Free Field in a square box in $${\mathbb{Z}^2}$$ of side length N with zero boundary conditions and study the joint law of its properly-centered extreme values (h) and their scaled spatial positions (x) in the limit as $${N \to \infty}$$. Restricting attent...
Ausführliche Beschreibung
Autor*in: |
Biskup, Marek [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Communications in mathematical physics - Springer Berlin Heidelberg, 1965, 345(2016), 1 vom: 29. Jan., Seite 271-304 |
---|---|
Übergeordnetes Werk: |
volume:345 ; year:2016 ; number:1 ; day:29 ; month:01 ; pages:271-304 |
Links: |
---|
DOI / URN: |
10.1007/s00220-015-2565-8 |
---|
Katalog-ID: |
OLC2038913080 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2038913080 | ||
003 | DE-627 | ||
005 | 20230323203053.0 | ||
007 | tu | ||
008 | 200819s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00220-015-2565-8 |2 doi | |
035 | |a (DE-627)OLC2038913080 | ||
035 | |a (DE-He213)s00220-015-2565-8-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 510 |q VZ |
100 | 1 | |a Biskup, Marek |e verfasserin |4 aut | |
245 | 1 | 0 | |a Extreme Local Extrema of Two-Dimensional Discrete Gaussian Free Field |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2016 | ||
520 | |a Abstract We consider the discrete Gaussian Free Field in a square box in $${\mathbb{Z}^2}$$ of side length N with zero boundary conditions and study the joint law of its properly-centered extreme values (h) and their scaled spatial positions (x) in the limit as $${N \to \infty}$$. Restricting attention to extreme local maxima, i.e., the extreme points that are maximal in an rN-neighborhood thereof, we prove that the associated process tends, whenever $${r_N \to \infty}$$ and $${r_N/N \to 0}$$, to a Poisson point process with intensity measure $${Z{(\rm dx)}{\rm e}^{-\alpha h} {\rm d}h}$$, where $${\alpha:= 2/\sqrt{g}}$$ with g: = 2/π and where Z(dx) is a random Borel measure on [0, 1]2. In particular, this yields an integral representation of the law of the absolute maximum, similar to that found in the context of Branching Brownian Motion. We give evidence that the random measure Z is a version of the derivative martingale associated with the continuum Gaussian Free Field. | ||
650 | 4 | |a Brownian Motion | |
650 | 4 | |a Extreme Point | |
650 | 4 | |a Point Process | |
650 | 4 | |a Random Measure | |
650 | 4 | |a Gibbs Measure | |
700 | 1 | |a Louidor, Oren |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Communications in mathematical physics |d Springer Berlin Heidelberg, 1965 |g 345(2016), 1 vom: 29. Jan., Seite 271-304 |w (DE-627)129555002 |w (DE-600)220443-5 |w (DE-576)015011755 |x 0010-3616 |7 nnns |
773 | 1 | 8 | |g volume:345 |g year:2016 |g number:1 |g day:29 |g month:01 |g pages:271-304 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00220-015-2565-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2279 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4318 | ||
951 | |a AR | ||
952 | |d 345 |j 2016 |e 1 |b 29 |c 01 |h 271-304 |
author_variant |
m b mb o l ol |
---|---|
matchkey_str |
article:00103616:2016----::xrmlclxrmotoiesoadsrtg |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1007/s00220-015-2565-8 doi (DE-627)OLC2038913080 (DE-He213)s00220-015-2565-8-p DE-627 ger DE-627 rakwb eng 530 510 VZ Biskup, Marek verfasserin aut Extreme Local Extrema of Two-Dimensional Discrete Gaussian Free Field 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2016 Abstract We consider the discrete Gaussian Free Field in a square box in $${\mathbb{Z}^2}$$ of side length N with zero boundary conditions and study the joint law of its properly-centered extreme values (h) and their scaled spatial positions (x) in the limit as $${N \to \infty}$$. Restricting attention to extreme local maxima, i.e., the extreme points that are maximal in an rN-neighborhood thereof, we prove that the associated process tends, whenever $${r_N \to \infty}$$ and $${r_N/N \to 0}$$, to a Poisson point process with intensity measure $${Z{(\rm dx)}{\rm e}^{-\alpha h} {\rm d}h}$$, where $${\alpha:= 2/\sqrt{g}}$$ with g: = 2/π and where Z(dx) is a random Borel measure on [0, 1]2. In particular, this yields an integral representation of the law of the absolute maximum, similar to that found in the context of Branching Brownian Motion. We give evidence that the random measure Z is a version of the derivative martingale associated with the continuum Gaussian Free Field. Brownian Motion Extreme Point Point Process Random Measure Gibbs Measure Louidor, Oren aut Enthalten in Communications in mathematical physics Springer Berlin Heidelberg, 1965 345(2016), 1 vom: 29. Jan., Seite 271-304 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:345 year:2016 number:1 day:29 month:01 pages:271-304 https://doi.org/10.1007/s00220-015-2565-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4318 AR 345 2016 1 29 01 271-304 |
spelling |
10.1007/s00220-015-2565-8 doi (DE-627)OLC2038913080 (DE-He213)s00220-015-2565-8-p DE-627 ger DE-627 rakwb eng 530 510 VZ Biskup, Marek verfasserin aut Extreme Local Extrema of Two-Dimensional Discrete Gaussian Free Field 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2016 Abstract We consider the discrete Gaussian Free Field in a square box in $${\mathbb{Z}^2}$$ of side length N with zero boundary conditions and study the joint law of its properly-centered extreme values (h) and their scaled spatial positions (x) in the limit as $${N \to \infty}$$. Restricting attention to extreme local maxima, i.e., the extreme points that are maximal in an rN-neighborhood thereof, we prove that the associated process tends, whenever $${r_N \to \infty}$$ and $${r_N/N \to 0}$$, to a Poisson point process with intensity measure $${Z{(\rm dx)}{\rm e}^{-\alpha h} {\rm d}h}$$, where $${\alpha:= 2/\sqrt{g}}$$ with g: = 2/π and where Z(dx) is a random Borel measure on [0, 1]2. In particular, this yields an integral representation of the law of the absolute maximum, similar to that found in the context of Branching Brownian Motion. We give evidence that the random measure Z is a version of the derivative martingale associated with the continuum Gaussian Free Field. Brownian Motion Extreme Point Point Process Random Measure Gibbs Measure Louidor, Oren aut Enthalten in Communications in mathematical physics Springer Berlin Heidelberg, 1965 345(2016), 1 vom: 29. Jan., Seite 271-304 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:345 year:2016 number:1 day:29 month:01 pages:271-304 https://doi.org/10.1007/s00220-015-2565-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4318 AR 345 2016 1 29 01 271-304 |
allfields_unstemmed |
10.1007/s00220-015-2565-8 doi (DE-627)OLC2038913080 (DE-He213)s00220-015-2565-8-p DE-627 ger DE-627 rakwb eng 530 510 VZ Biskup, Marek verfasserin aut Extreme Local Extrema of Two-Dimensional Discrete Gaussian Free Field 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2016 Abstract We consider the discrete Gaussian Free Field in a square box in $${\mathbb{Z}^2}$$ of side length N with zero boundary conditions and study the joint law of its properly-centered extreme values (h) and their scaled spatial positions (x) in the limit as $${N \to \infty}$$. Restricting attention to extreme local maxima, i.e., the extreme points that are maximal in an rN-neighborhood thereof, we prove that the associated process tends, whenever $${r_N \to \infty}$$ and $${r_N/N \to 0}$$, to a Poisson point process with intensity measure $${Z{(\rm dx)}{\rm e}^{-\alpha h} {\rm d}h}$$, where $${\alpha:= 2/\sqrt{g}}$$ with g: = 2/π and where Z(dx) is a random Borel measure on [0, 1]2. In particular, this yields an integral representation of the law of the absolute maximum, similar to that found in the context of Branching Brownian Motion. We give evidence that the random measure Z is a version of the derivative martingale associated with the continuum Gaussian Free Field. Brownian Motion Extreme Point Point Process Random Measure Gibbs Measure Louidor, Oren aut Enthalten in Communications in mathematical physics Springer Berlin Heidelberg, 1965 345(2016), 1 vom: 29. Jan., Seite 271-304 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:345 year:2016 number:1 day:29 month:01 pages:271-304 https://doi.org/10.1007/s00220-015-2565-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4318 AR 345 2016 1 29 01 271-304 |
allfieldsGer |
10.1007/s00220-015-2565-8 doi (DE-627)OLC2038913080 (DE-He213)s00220-015-2565-8-p DE-627 ger DE-627 rakwb eng 530 510 VZ Biskup, Marek verfasserin aut Extreme Local Extrema of Two-Dimensional Discrete Gaussian Free Field 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2016 Abstract We consider the discrete Gaussian Free Field in a square box in $${\mathbb{Z}^2}$$ of side length N with zero boundary conditions and study the joint law of its properly-centered extreme values (h) and their scaled spatial positions (x) in the limit as $${N \to \infty}$$. Restricting attention to extreme local maxima, i.e., the extreme points that are maximal in an rN-neighborhood thereof, we prove that the associated process tends, whenever $${r_N \to \infty}$$ and $${r_N/N \to 0}$$, to a Poisson point process with intensity measure $${Z{(\rm dx)}{\rm e}^{-\alpha h} {\rm d}h}$$, where $${\alpha:= 2/\sqrt{g}}$$ with g: = 2/π and where Z(dx) is a random Borel measure on [0, 1]2. In particular, this yields an integral representation of the law of the absolute maximum, similar to that found in the context of Branching Brownian Motion. We give evidence that the random measure Z is a version of the derivative martingale associated with the continuum Gaussian Free Field. Brownian Motion Extreme Point Point Process Random Measure Gibbs Measure Louidor, Oren aut Enthalten in Communications in mathematical physics Springer Berlin Heidelberg, 1965 345(2016), 1 vom: 29. Jan., Seite 271-304 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:345 year:2016 number:1 day:29 month:01 pages:271-304 https://doi.org/10.1007/s00220-015-2565-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4318 AR 345 2016 1 29 01 271-304 |
allfieldsSound |
10.1007/s00220-015-2565-8 doi (DE-627)OLC2038913080 (DE-He213)s00220-015-2565-8-p DE-627 ger DE-627 rakwb eng 530 510 VZ Biskup, Marek verfasserin aut Extreme Local Extrema of Two-Dimensional Discrete Gaussian Free Field 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2016 Abstract We consider the discrete Gaussian Free Field in a square box in $${\mathbb{Z}^2}$$ of side length N with zero boundary conditions and study the joint law of its properly-centered extreme values (h) and their scaled spatial positions (x) in the limit as $${N \to \infty}$$. Restricting attention to extreme local maxima, i.e., the extreme points that are maximal in an rN-neighborhood thereof, we prove that the associated process tends, whenever $${r_N \to \infty}$$ and $${r_N/N \to 0}$$, to a Poisson point process with intensity measure $${Z{(\rm dx)}{\rm e}^{-\alpha h} {\rm d}h}$$, where $${\alpha:= 2/\sqrt{g}}$$ with g: = 2/π and where Z(dx) is a random Borel measure on [0, 1]2. In particular, this yields an integral representation of the law of the absolute maximum, similar to that found in the context of Branching Brownian Motion. We give evidence that the random measure Z is a version of the derivative martingale associated with the continuum Gaussian Free Field. Brownian Motion Extreme Point Point Process Random Measure Gibbs Measure Louidor, Oren aut Enthalten in Communications in mathematical physics Springer Berlin Heidelberg, 1965 345(2016), 1 vom: 29. Jan., Seite 271-304 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:345 year:2016 number:1 day:29 month:01 pages:271-304 https://doi.org/10.1007/s00220-015-2565-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4318 AR 345 2016 1 29 01 271-304 |
language |
English |
source |
Enthalten in Communications in mathematical physics 345(2016), 1 vom: 29. Jan., Seite 271-304 volume:345 year:2016 number:1 day:29 month:01 pages:271-304 |
sourceStr |
Enthalten in Communications in mathematical physics 345(2016), 1 vom: 29. Jan., Seite 271-304 volume:345 year:2016 number:1 day:29 month:01 pages:271-304 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Brownian Motion Extreme Point Point Process Random Measure Gibbs Measure |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Communications in mathematical physics |
authorswithroles_txt_mv |
Biskup, Marek @@aut@@ Louidor, Oren @@aut@@ |
publishDateDaySort_date |
2016-01-29T00:00:00Z |
hierarchy_top_id |
129555002 |
dewey-sort |
3530 |
id |
OLC2038913080 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2038913080</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323203053.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00220-015-2565-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2038913080</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00220-015-2565-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Biskup, Marek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Extreme Local Extrema of Two-Dimensional Discrete Gaussian Free Field</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider the discrete Gaussian Free Field in a square box in $${\mathbb{Z}^2}$$ of side length N with zero boundary conditions and study the joint law of its properly-centered extreme values (h) and their scaled spatial positions (x) in the limit as $${N \to \infty}$$. Restricting attention to extreme local maxima, i.e., the extreme points that are maximal in an rN-neighborhood thereof, we prove that the associated process tends, whenever $${r_N \to \infty}$$ and $${r_N/N \to 0}$$, to a Poisson point process with intensity measure $${Z{(\rm dx)}{\rm e}^{-\alpha h} {\rm d}h}$$, where $${\alpha:= 2/\sqrt{g}}$$ with g: = 2/π and where Z(dx) is a random Borel measure on [0, 1]2. In particular, this yields an integral representation of the law of the absolute maximum, similar to that found in the context of Branching Brownian Motion. We give evidence that the random measure Z is a version of the derivative martingale associated with the continuum Gaussian Free Field.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brownian Motion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extreme Point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Point Process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random Measure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gibbs Measure</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Louidor, Oren</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in mathematical physics</subfield><subfield code="d">Springer Berlin Heidelberg, 1965</subfield><subfield code="g">345(2016), 1 vom: 29. Jan., Seite 271-304</subfield><subfield code="w">(DE-627)129555002</subfield><subfield code="w">(DE-600)220443-5</subfield><subfield code="w">(DE-576)015011755</subfield><subfield code="x">0010-3616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:345</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">day:29</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:271-304</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00220-015-2565-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">345</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="b">29</subfield><subfield code="c">01</subfield><subfield code="h">271-304</subfield></datafield></record></collection>
|
author |
Biskup, Marek |
spellingShingle |
Biskup, Marek ddc 530 misc Brownian Motion misc Extreme Point misc Point Process misc Random Measure misc Gibbs Measure Extreme Local Extrema of Two-Dimensional Discrete Gaussian Free Field |
authorStr |
Biskup, Marek |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129555002 |
format |
Article |
dewey-ones |
530 - Physics 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0010-3616 |
topic_title |
530 510 VZ Extreme Local Extrema of Two-Dimensional Discrete Gaussian Free Field Brownian Motion Extreme Point Point Process Random Measure Gibbs Measure |
topic |
ddc 530 misc Brownian Motion misc Extreme Point misc Point Process misc Random Measure misc Gibbs Measure |
topic_unstemmed |
ddc 530 misc Brownian Motion misc Extreme Point misc Point Process misc Random Measure misc Gibbs Measure |
topic_browse |
ddc 530 misc Brownian Motion misc Extreme Point misc Point Process misc Random Measure misc Gibbs Measure |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Communications in mathematical physics |
hierarchy_parent_id |
129555002 |
dewey-tens |
530 - Physics 510 - Mathematics |
hierarchy_top_title |
Communications in mathematical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 |
title |
Extreme Local Extrema of Two-Dimensional Discrete Gaussian Free Field |
ctrlnum |
(DE-627)OLC2038913080 (DE-He213)s00220-015-2565-8-p |
title_full |
Extreme Local Extrema of Two-Dimensional Discrete Gaussian Free Field |
author_sort |
Biskup, Marek |
journal |
Communications in mathematical physics |
journalStr |
Communications in mathematical physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
271 |
author_browse |
Biskup, Marek Louidor, Oren |
container_volume |
345 |
class |
530 510 VZ |
format_se |
Aufsätze |
author-letter |
Biskup, Marek |
doi_str_mv |
10.1007/s00220-015-2565-8 |
dewey-full |
530 510 |
title_sort |
extreme local extrema of two-dimensional discrete gaussian free field |
title_auth |
Extreme Local Extrema of Two-Dimensional Discrete Gaussian Free Field |
abstract |
Abstract We consider the discrete Gaussian Free Field in a square box in $${\mathbb{Z}^2}$$ of side length N with zero boundary conditions and study the joint law of its properly-centered extreme values (h) and their scaled spatial positions (x) in the limit as $${N \to \infty}$$. Restricting attention to extreme local maxima, i.e., the extreme points that are maximal in an rN-neighborhood thereof, we prove that the associated process tends, whenever $${r_N \to \infty}$$ and $${r_N/N \to 0}$$, to a Poisson point process with intensity measure $${Z{(\rm dx)}{\rm e}^{-\alpha h} {\rm d}h}$$, where $${\alpha:= 2/\sqrt{g}}$$ with g: = 2/π and where Z(dx) is a random Borel measure on [0, 1]2. In particular, this yields an integral representation of the law of the absolute maximum, similar to that found in the context of Branching Brownian Motion. We give evidence that the random measure Z is a version of the derivative martingale associated with the continuum Gaussian Free Field. © The Author(s) 2016 |
abstractGer |
Abstract We consider the discrete Gaussian Free Field in a square box in $${\mathbb{Z}^2}$$ of side length N with zero boundary conditions and study the joint law of its properly-centered extreme values (h) and their scaled spatial positions (x) in the limit as $${N \to \infty}$$. Restricting attention to extreme local maxima, i.e., the extreme points that are maximal in an rN-neighborhood thereof, we prove that the associated process tends, whenever $${r_N \to \infty}$$ and $${r_N/N \to 0}$$, to a Poisson point process with intensity measure $${Z{(\rm dx)}{\rm e}^{-\alpha h} {\rm d}h}$$, where $${\alpha:= 2/\sqrt{g}}$$ with g: = 2/π and where Z(dx) is a random Borel measure on [0, 1]2. In particular, this yields an integral representation of the law of the absolute maximum, similar to that found in the context of Branching Brownian Motion. We give evidence that the random measure Z is a version of the derivative martingale associated with the continuum Gaussian Free Field. © The Author(s) 2016 |
abstract_unstemmed |
Abstract We consider the discrete Gaussian Free Field in a square box in $${\mathbb{Z}^2}$$ of side length N with zero boundary conditions and study the joint law of its properly-centered extreme values (h) and their scaled spatial positions (x) in the limit as $${N \to \infty}$$. Restricting attention to extreme local maxima, i.e., the extreme points that are maximal in an rN-neighborhood thereof, we prove that the associated process tends, whenever $${r_N \to \infty}$$ and $${r_N/N \to 0}$$, to a Poisson point process with intensity measure $${Z{(\rm dx)}{\rm e}^{-\alpha h} {\rm d}h}$$, where $${\alpha:= 2/\sqrt{g}}$$ with g: = 2/π and where Z(dx) is a random Borel measure on [0, 1]2. In particular, this yields an integral representation of the law of the absolute maximum, similar to that found in the context of Branching Brownian Motion. We give evidence that the random measure Z is a version of the derivative martingale associated with the continuum Gaussian Free Field. © The Author(s) 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4318 |
container_issue |
1 |
title_short |
Extreme Local Extrema of Two-Dimensional Discrete Gaussian Free Field |
url |
https://doi.org/10.1007/s00220-015-2565-8 |
remote_bool |
false |
author2 |
Louidor, Oren |
author2Str |
Louidor, Oren |
ppnlink |
129555002 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00220-015-2565-8 |
up_date |
2024-07-03T20:50:17.418Z |
_version_ |
1803592471589945345 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2038913080</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323203053.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00220-015-2565-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2038913080</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00220-015-2565-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Biskup, Marek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Extreme Local Extrema of Two-Dimensional Discrete Gaussian Free Field</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider the discrete Gaussian Free Field in a square box in $${\mathbb{Z}^2}$$ of side length N with zero boundary conditions and study the joint law of its properly-centered extreme values (h) and their scaled spatial positions (x) in the limit as $${N \to \infty}$$. Restricting attention to extreme local maxima, i.e., the extreme points that are maximal in an rN-neighborhood thereof, we prove that the associated process tends, whenever $${r_N \to \infty}$$ and $${r_N/N \to 0}$$, to a Poisson point process with intensity measure $${Z{(\rm dx)}{\rm e}^{-\alpha h} {\rm d}h}$$, where $${\alpha:= 2/\sqrt{g}}$$ with g: = 2/π and where Z(dx) is a random Borel measure on [0, 1]2. In particular, this yields an integral representation of the law of the absolute maximum, similar to that found in the context of Branching Brownian Motion. We give evidence that the random measure Z is a version of the derivative martingale associated with the continuum Gaussian Free Field.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brownian Motion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extreme Point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Point Process</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random Measure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gibbs Measure</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Louidor, Oren</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in mathematical physics</subfield><subfield code="d">Springer Berlin Heidelberg, 1965</subfield><subfield code="g">345(2016), 1 vom: 29. Jan., Seite 271-304</subfield><subfield code="w">(DE-627)129555002</subfield><subfield code="w">(DE-600)220443-5</subfield><subfield code="w">(DE-576)015011755</subfield><subfield code="x">0010-3616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:345</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">day:29</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:271-304</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00220-015-2565-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">345</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="b">29</subfield><subfield code="c">01</subfield><subfield code="h">271-304</subfield></datafield></record></collection>
|
score |
7.398796 |