Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field
Abstract Given any $$\gamma {>}0$$ and for $$\eta {=}\{\eta _v\}_{v\in {\mathbb {Z}}^2}$$ denoting a sample of the two-dimensional discrete Gaussian free field on $${\mathbb {Z}}^2$$ pinned at the origin, we consider the random walk on $${\mathbb {Z}}^2$$ among random conductances where the condu...
Ausführliche Beschreibung
Autor*in: |
Biskup, Marek [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Anmerkung: |
© Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Communications in mathematical physics - Springer Berlin Heidelberg, 1965, 373(2019), 1 vom: 26. Nov., Seite 45-106 |
---|---|
Übergeordnetes Werk: |
volume:373 ; year:2019 ; number:1 ; day:26 ; month:11 ; pages:45-106 |
Links: |
---|
DOI / URN: |
10.1007/s00220-019-03589-z |
---|
Katalog-ID: |
OLC2038921970 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2038921970 | ||
003 | DE-627 | ||
005 | 20230323203235.0 | ||
007 | tu | ||
008 | 200819s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00220-019-03589-z |2 doi | |
035 | |a (DE-627)OLC2038921970 | ||
035 | |a (DE-He213)s00220-019-03589-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 510 |q VZ |
100 | 1 | |a Biskup, Marek |e verfasserin |0 (orcid)0000-0001-5560-6518 |4 aut | |
245 | 1 | 0 | |a Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag GmbH Germany, part of Springer Nature 2019 | ||
520 | |a Abstract Given any $$\gamma {>}0$$ and for $$\eta {=}\{\eta _v\}_{v\in {\mathbb {Z}}^2}$$ denoting a sample of the two-dimensional discrete Gaussian free field on $${\mathbb {Z}}^2$$ pinned at the origin, we consider the random walk on $${\mathbb {Z}}^2$$ among random conductances where the conductance of edge (u, v) is given by $$\mathrm {e}^{\gamma (\eta _u + \eta _v)}$$. We show that, for almost every $$\eta $$, this random walk is recurrent and that, with probability tending to 1 as $$T\rightarrow \infty $$, the return probability at time 2T decays as $$T^{-1+o(1)}$$. In addition, we prove a version of subdiffusive behavior by showing that the expected exit time from a ball of radius N scales as $$N^{\psi (\gamma )+o(1)}$$ with $$\psi (\gamma )>2$$ for all $$\gamma >0$$. Our results rely on delicate control of the effective resistance for this random network. In particular, we show that the effective resistance between two vertices at Euclidean distance N behaves as $$N^{o(1)}$$. | ||
700 | 1 | |a Ding, Jian |4 aut | |
700 | 1 | |a Goswami, Subhajit |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Communications in mathematical physics |d Springer Berlin Heidelberg, 1965 |g 373(2019), 1 vom: 26. Nov., Seite 45-106 |w (DE-627)129555002 |w (DE-600)220443-5 |w (DE-576)015011755 |x 0010-3616 |7 nnns |
773 | 1 | 8 | |g volume:373 |g year:2019 |g number:1 |g day:26 |g month:11 |g pages:45-106 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00220-019-03589-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2279 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 373 |j 2019 |e 1 |b 26 |c 11 |h 45-106 |
author_variant |
m b mb j d jd s g sg |
---|---|
matchkey_str |
article:00103616:2019----::eunrbbltadeurneoteadmakrvnywdmn |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s00220-019-03589-z doi (DE-627)OLC2038921970 (DE-He213)s00220-019-03589-z-p DE-627 ger DE-627 rakwb eng 530 510 VZ Biskup, Marek verfasserin (orcid)0000-0001-5560-6518 aut Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Given any $$\gamma {>}0$$ and for $$\eta {=}\{\eta _v\}_{v\in {\mathbb {Z}}^2}$$ denoting a sample of the two-dimensional discrete Gaussian free field on $${\mathbb {Z}}^2$$ pinned at the origin, we consider the random walk on $${\mathbb {Z}}^2$$ among random conductances where the conductance of edge (u, v) is given by $$\mathrm {e}^{\gamma (\eta _u + \eta _v)}$$. We show that, for almost every $$\eta $$, this random walk is recurrent and that, with probability tending to 1 as $$T\rightarrow \infty $$, the return probability at time 2T decays as $$T^{-1+o(1)}$$. In addition, we prove a version of subdiffusive behavior by showing that the expected exit time from a ball of radius N scales as $$N^{\psi (\gamma )+o(1)}$$ with $$\psi (\gamma )>2$$ for all $$\gamma >0$$. Our results rely on delicate control of the effective resistance for this random network. In particular, we show that the effective resistance between two vertices at Euclidean distance N behaves as $$N^{o(1)}$$. Ding, Jian aut Goswami, Subhajit aut Enthalten in Communications in mathematical physics Springer Berlin Heidelberg, 1965 373(2019), 1 vom: 26. Nov., Seite 45-106 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:373 year:2019 number:1 day:26 month:11 pages:45-106 https://doi.org/10.1007/s00220-019-03589-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4277 AR 373 2019 1 26 11 45-106 |
spelling |
10.1007/s00220-019-03589-z doi (DE-627)OLC2038921970 (DE-He213)s00220-019-03589-z-p DE-627 ger DE-627 rakwb eng 530 510 VZ Biskup, Marek verfasserin (orcid)0000-0001-5560-6518 aut Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Given any $$\gamma {>}0$$ and for $$\eta {=}\{\eta _v\}_{v\in {\mathbb {Z}}^2}$$ denoting a sample of the two-dimensional discrete Gaussian free field on $${\mathbb {Z}}^2$$ pinned at the origin, we consider the random walk on $${\mathbb {Z}}^2$$ among random conductances where the conductance of edge (u, v) is given by $$\mathrm {e}^{\gamma (\eta _u + \eta _v)}$$. We show that, for almost every $$\eta $$, this random walk is recurrent and that, with probability tending to 1 as $$T\rightarrow \infty $$, the return probability at time 2T decays as $$T^{-1+o(1)}$$. In addition, we prove a version of subdiffusive behavior by showing that the expected exit time from a ball of radius N scales as $$N^{\psi (\gamma )+o(1)}$$ with $$\psi (\gamma )>2$$ for all $$\gamma >0$$. Our results rely on delicate control of the effective resistance for this random network. In particular, we show that the effective resistance between two vertices at Euclidean distance N behaves as $$N^{o(1)}$$. Ding, Jian aut Goswami, Subhajit aut Enthalten in Communications in mathematical physics Springer Berlin Heidelberg, 1965 373(2019), 1 vom: 26. Nov., Seite 45-106 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:373 year:2019 number:1 day:26 month:11 pages:45-106 https://doi.org/10.1007/s00220-019-03589-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4277 AR 373 2019 1 26 11 45-106 |
allfields_unstemmed |
10.1007/s00220-019-03589-z doi (DE-627)OLC2038921970 (DE-He213)s00220-019-03589-z-p DE-627 ger DE-627 rakwb eng 530 510 VZ Biskup, Marek verfasserin (orcid)0000-0001-5560-6518 aut Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Given any $$\gamma {>}0$$ and for $$\eta {=}\{\eta _v\}_{v\in {\mathbb {Z}}^2}$$ denoting a sample of the two-dimensional discrete Gaussian free field on $${\mathbb {Z}}^2$$ pinned at the origin, we consider the random walk on $${\mathbb {Z}}^2$$ among random conductances where the conductance of edge (u, v) is given by $$\mathrm {e}^{\gamma (\eta _u + \eta _v)}$$. We show that, for almost every $$\eta $$, this random walk is recurrent and that, with probability tending to 1 as $$T\rightarrow \infty $$, the return probability at time 2T decays as $$T^{-1+o(1)}$$. In addition, we prove a version of subdiffusive behavior by showing that the expected exit time from a ball of radius N scales as $$N^{\psi (\gamma )+o(1)}$$ with $$\psi (\gamma )>2$$ for all $$\gamma >0$$. Our results rely on delicate control of the effective resistance for this random network. In particular, we show that the effective resistance between two vertices at Euclidean distance N behaves as $$N^{o(1)}$$. Ding, Jian aut Goswami, Subhajit aut Enthalten in Communications in mathematical physics Springer Berlin Heidelberg, 1965 373(2019), 1 vom: 26. Nov., Seite 45-106 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:373 year:2019 number:1 day:26 month:11 pages:45-106 https://doi.org/10.1007/s00220-019-03589-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4277 AR 373 2019 1 26 11 45-106 |
allfieldsGer |
10.1007/s00220-019-03589-z doi (DE-627)OLC2038921970 (DE-He213)s00220-019-03589-z-p DE-627 ger DE-627 rakwb eng 530 510 VZ Biskup, Marek verfasserin (orcid)0000-0001-5560-6518 aut Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Given any $$\gamma {>}0$$ and for $$\eta {=}\{\eta _v\}_{v\in {\mathbb {Z}}^2}$$ denoting a sample of the two-dimensional discrete Gaussian free field on $${\mathbb {Z}}^2$$ pinned at the origin, we consider the random walk on $${\mathbb {Z}}^2$$ among random conductances where the conductance of edge (u, v) is given by $$\mathrm {e}^{\gamma (\eta _u + \eta _v)}$$. We show that, for almost every $$\eta $$, this random walk is recurrent and that, with probability tending to 1 as $$T\rightarrow \infty $$, the return probability at time 2T decays as $$T^{-1+o(1)}$$. In addition, we prove a version of subdiffusive behavior by showing that the expected exit time from a ball of radius N scales as $$N^{\psi (\gamma )+o(1)}$$ with $$\psi (\gamma )>2$$ for all $$\gamma >0$$. Our results rely on delicate control of the effective resistance for this random network. In particular, we show that the effective resistance between two vertices at Euclidean distance N behaves as $$N^{o(1)}$$. Ding, Jian aut Goswami, Subhajit aut Enthalten in Communications in mathematical physics Springer Berlin Heidelberg, 1965 373(2019), 1 vom: 26. Nov., Seite 45-106 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:373 year:2019 number:1 day:26 month:11 pages:45-106 https://doi.org/10.1007/s00220-019-03589-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4277 AR 373 2019 1 26 11 45-106 |
allfieldsSound |
10.1007/s00220-019-03589-z doi (DE-627)OLC2038921970 (DE-He213)s00220-019-03589-z-p DE-627 ger DE-627 rakwb eng 530 510 VZ Biskup, Marek verfasserin (orcid)0000-0001-5560-6518 aut Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Given any $$\gamma {>}0$$ and for $$\eta {=}\{\eta _v\}_{v\in {\mathbb {Z}}^2}$$ denoting a sample of the two-dimensional discrete Gaussian free field on $${\mathbb {Z}}^2$$ pinned at the origin, we consider the random walk on $${\mathbb {Z}}^2$$ among random conductances where the conductance of edge (u, v) is given by $$\mathrm {e}^{\gamma (\eta _u + \eta _v)}$$. We show that, for almost every $$\eta $$, this random walk is recurrent and that, with probability tending to 1 as $$T\rightarrow \infty $$, the return probability at time 2T decays as $$T^{-1+o(1)}$$. In addition, we prove a version of subdiffusive behavior by showing that the expected exit time from a ball of radius N scales as $$N^{\psi (\gamma )+o(1)}$$ with $$\psi (\gamma )>2$$ for all $$\gamma >0$$. Our results rely on delicate control of the effective resistance for this random network. In particular, we show that the effective resistance between two vertices at Euclidean distance N behaves as $$N^{o(1)}$$. Ding, Jian aut Goswami, Subhajit aut Enthalten in Communications in mathematical physics Springer Berlin Heidelberg, 1965 373(2019), 1 vom: 26. Nov., Seite 45-106 (DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 0010-3616 nnns volume:373 year:2019 number:1 day:26 month:11 pages:45-106 https://doi.org/10.1007/s00220-019-03589-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4277 AR 373 2019 1 26 11 45-106 |
language |
English |
source |
Enthalten in Communications in mathematical physics 373(2019), 1 vom: 26. Nov., Seite 45-106 volume:373 year:2019 number:1 day:26 month:11 pages:45-106 |
sourceStr |
Enthalten in Communications in mathematical physics 373(2019), 1 vom: 26. Nov., Seite 45-106 volume:373 year:2019 number:1 day:26 month:11 pages:45-106 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Communications in mathematical physics |
authorswithroles_txt_mv |
Biskup, Marek @@aut@@ Ding, Jian @@aut@@ Goswami, Subhajit @@aut@@ |
publishDateDaySort_date |
2019-11-26T00:00:00Z |
hierarchy_top_id |
129555002 |
dewey-sort |
3530 |
id |
OLC2038921970 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2038921970</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323203235.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00220-019-03589-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2038921970</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00220-019-03589-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Biskup, Marek</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5560-6518</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Given any $$\gamma {>}0$$ and for $$\eta {=}\{\eta _v\}_{v\in {\mathbb {Z}}^2}$$ denoting a sample of the two-dimensional discrete Gaussian free field on $${\mathbb {Z}}^2$$ pinned at the origin, we consider the random walk on $${\mathbb {Z}}^2$$ among random conductances where the conductance of edge (u, v) is given by $$\mathrm {e}^{\gamma (\eta _u + \eta _v)}$$. We show that, for almost every $$\eta $$, this random walk is recurrent and that, with probability tending to 1 as $$T\rightarrow \infty $$, the return probability at time 2T decays as $$T^{-1+o(1)}$$. In addition, we prove a version of subdiffusive behavior by showing that the expected exit time from a ball of radius N scales as $$N^{\psi (\gamma )+o(1)}$$ with $$\psi (\gamma )>2$$ for all $$\gamma >0$$. Our results rely on delicate control of the effective resistance for this random network. In particular, we show that the effective resistance between two vertices at Euclidean distance N behaves as $$N^{o(1)}$$.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ding, Jian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goswami, Subhajit</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in mathematical physics</subfield><subfield code="d">Springer Berlin Heidelberg, 1965</subfield><subfield code="g">373(2019), 1 vom: 26. Nov., Seite 45-106</subfield><subfield code="w">(DE-627)129555002</subfield><subfield code="w">(DE-600)220443-5</subfield><subfield code="w">(DE-576)015011755</subfield><subfield code="x">0010-3616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:373</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:26</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:45-106</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00220-019-03589-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">373</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">26</subfield><subfield code="c">11</subfield><subfield code="h">45-106</subfield></datafield></record></collection>
|
author |
Biskup, Marek |
spellingShingle |
Biskup, Marek ddc 530 Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field |
authorStr |
Biskup, Marek |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129555002 |
format |
Article |
dewey-ones |
530 - Physics 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0010-3616 |
topic_title |
530 510 VZ Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field |
topic |
ddc 530 |
topic_unstemmed |
ddc 530 |
topic_browse |
ddc 530 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Communications in mathematical physics |
hierarchy_parent_id |
129555002 |
dewey-tens |
530 - Physics 510 - Mathematics |
hierarchy_top_title |
Communications in mathematical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129555002 (DE-600)220443-5 (DE-576)015011755 |
title |
Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field |
ctrlnum |
(DE-627)OLC2038921970 (DE-He213)s00220-019-03589-z-p |
title_full |
Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field |
author_sort |
Biskup, Marek |
journal |
Communications in mathematical physics |
journalStr |
Communications in mathematical physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
45 |
author_browse |
Biskup, Marek Ding, Jian Goswami, Subhajit |
container_volume |
373 |
class |
530 510 VZ |
format_se |
Aufsätze |
author-letter |
Biskup, Marek |
doi_str_mv |
10.1007/s00220-019-03589-z |
normlink |
(ORCID)0000-0001-5560-6518 |
normlink_prefix_str_mv |
(orcid)0000-0001-5560-6518 |
dewey-full |
530 510 |
title_sort |
return probability and recurrence for the random walk driven by two-dimensional gaussian free field |
title_auth |
Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field |
abstract |
Abstract Given any $$\gamma {>}0$$ and for $$\eta {=}\{\eta _v\}_{v\in {\mathbb {Z}}^2}$$ denoting a sample of the two-dimensional discrete Gaussian free field on $${\mathbb {Z}}^2$$ pinned at the origin, we consider the random walk on $${\mathbb {Z}}^2$$ among random conductances where the conductance of edge (u, v) is given by $$\mathrm {e}^{\gamma (\eta _u + \eta _v)}$$. We show that, for almost every $$\eta $$, this random walk is recurrent and that, with probability tending to 1 as $$T\rightarrow \infty $$, the return probability at time 2T decays as $$T^{-1+o(1)}$$. In addition, we prove a version of subdiffusive behavior by showing that the expected exit time from a ball of radius N scales as $$N^{\psi (\gamma )+o(1)}$$ with $$\psi (\gamma )>2$$ for all $$\gamma >0$$. Our results rely on delicate control of the effective resistance for this random network. In particular, we show that the effective resistance between two vertices at Euclidean distance N behaves as $$N^{o(1)}$$. © Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
abstractGer |
Abstract Given any $$\gamma {>}0$$ and for $$\eta {=}\{\eta _v\}_{v\in {\mathbb {Z}}^2}$$ denoting a sample of the two-dimensional discrete Gaussian free field on $${\mathbb {Z}}^2$$ pinned at the origin, we consider the random walk on $${\mathbb {Z}}^2$$ among random conductances where the conductance of edge (u, v) is given by $$\mathrm {e}^{\gamma (\eta _u + \eta _v)}$$. We show that, for almost every $$\eta $$, this random walk is recurrent and that, with probability tending to 1 as $$T\rightarrow \infty $$, the return probability at time 2T decays as $$T^{-1+o(1)}$$. In addition, we prove a version of subdiffusive behavior by showing that the expected exit time from a ball of radius N scales as $$N^{\psi (\gamma )+o(1)}$$ with $$\psi (\gamma )>2$$ for all $$\gamma >0$$. Our results rely on delicate control of the effective resistance for this random network. In particular, we show that the effective resistance between two vertices at Euclidean distance N behaves as $$N^{o(1)}$$. © Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
abstract_unstemmed |
Abstract Given any $$\gamma {>}0$$ and for $$\eta {=}\{\eta _v\}_{v\in {\mathbb {Z}}^2}$$ denoting a sample of the two-dimensional discrete Gaussian free field on $${\mathbb {Z}}^2$$ pinned at the origin, we consider the random walk on $${\mathbb {Z}}^2$$ among random conductances where the conductance of edge (u, v) is given by $$\mathrm {e}^{\gamma (\eta _u + \eta _v)}$$. We show that, for almost every $$\eta $$, this random walk is recurrent and that, with probability tending to 1 as $$T\rightarrow \infty $$, the return probability at time 2T decays as $$T^{-1+o(1)}$$. In addition, we prove a version of subdiffusive behavior by showing that the expected exit time from a ball of radius N scales as $$N^{\psi (\gamma )+o(1)}$$ with $$\psi (\gamma )>2$$ for all $$\gamma >0$$. Our results rely on delicate control of the effective resistance for this random network. In particular, we show that the effective resistance between two vertices at Euclidean distance N behaves as $$N^{o(1)}$$. © Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2279 GBV_ILN_2409 GBV_ILN_4277 |
container_issue |
1 |
title_short |
Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field |
url |
https://doi.org/10.1007/s00220-019-03589-z |
remote_bool |
false |
author2 |
Ding, Jian Goswami, Subhajit |
author2Str |
Ding, Jian Goswami, Subhajit |
ppnlink |
129555002 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00220-019-03589-z |
up_date |
2024-07-03T20:52:33.634Z |
_version_ |
1803592614424870912 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2038921970</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323203235.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00220-019-03589-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2038921970</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00220-019-03589-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Biskup, Marek</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5560-6518</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Given any $$\gamma {>}0$$ and for $$\eta {=}\{\eta _v\}_{v\in {\mathbb {Z}}^2}$$ denoting a sample of the two-dimensional discrete Gaussian free field on $${\mathbb {Z}}^2$$ pinned at the origin, we consider the random walk on $${\mathbb {Z}}^2$$ among random conductances where the conductance of edge (u, v) is given by $$\mathrm {e}^{\gamma (\eta _u + \eta _v)}$$. We show that, for almost every $$\eta $$, this random walk is recurrent and that, with probability tending to 1 as $$T\rightarrow \infty $$, the return probability at time 2T decays as $$T^{-1+o(1)}$$. In addition, we prove a version of subdiffusive behavior by showing that the expected exit time from a ball of radius N scales as $$N^{\psi (\gamma )+o(1)}$$ with $$\psi (\gamma )>2$$ for all $$\gamma >0$$. Our results rely on delicate control of the effective resistance for this random network. In particular, we show that the effective resistance between two vertices at Euclidean distance N behaves as $$N^{o(1)}$$.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ding, Jian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goswami, Subhajit</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in mathematical physics</subfield><subfield code="d">Springer Berlin Heidelberg, 1965</subfield><subfield code="g">373(2019), 1 vom: 26. Nov., Seite 45-106</subfield><subfield code="w">(DE-627)129555002</subfield><subfield code="w">(DE-600)220443-5</subfield><subfield code="w">(DE-576)015011755</subfield><subfield code="x">0010-3616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:373</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:26</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:45-106</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00220-019-03589-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">373</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">26</subfield><subfield code="c">11</subfield><subfield code="h">45-106</subfield></datafield></record></collection>
|
score |
7.4009514 |