Horospheres and Convex Bodies in n-Dimensional Hyperbolic Space
Abstract In n-dimensional Euclidean space, the measure of hyperplanes intersecting a convex domain is proportional to the (n−2)-mean curvature integral of its boundary. This question was considered by Santaló in hyperbolic space. In non-Euclidean geometry the totally geodesic hypersurfaces are not a...
Ausführliche Beschreibung
Autor*in: |
Gallego, E. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2004 |
---|
Anmerkung: |
© Kluwer Academic Publishers 2004 |
---|
Übergeordnetes Werk: |
Enthalten in: Geometriae dedicata - Kluwer Academic Publishers, 1972, 103(2004), 1 vom: Feb., Seite 103-114 |
---|---|
Übergeordnetes Werk: |
volume:103 ; year:2004 ; number:1 ; month:02 ; pages:103-114 |
Links: |
---|
DOI / URN: |
10.1023/B:GEOM.0000013945.66390.ca |
---|
Katalog-ID: |
OLC2039052755 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2039052755 | ||
003 | DE-627 | ||
005 | 20230503063508.0 | ||
007 | tu | ||
008 | 200819s2004 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1023/B:GEOM.0000013945.66390.ca |2 doi | |
035 | |a (DE-627)OLC2039052755 | ||
035 | |a (DE-He213)B:GEOM.0000013945.66390.ca-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Gallego, E. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Horospheres and Convex Bodies in n-Dimensional Hyperbolic Space |
264 | 1 | |c 2004 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Kluwer Academic Publishers 2004 | ||
520 | |a Abstract In n-dimensional Euclidean space, the measure of hyperplanes intersecting a convex domain is proportional to the (n−2)-mean curvature integral of its boundary. This question was considered by Santaló in hyperbolic space. In non-Euclidean geometry the totally geodesic hypersurfaces are not always the best analogue to linear hyperplanes. In some situations horospheres play the role of Euclidean hyperplanes. In dimensions n=2 and 3, Santaló proved that the measure of horospheres intersecting a convex domain is also proportional to the (n−2)-mean curvature integral of its boundary. In this paper we show that this analogy does not generalize to higher dimensions. We express the measure of horospheres intersecting a convex body as a linear combination of the mean curvature integrals of its boundary. | ||
700 | 1 | |a Naveira, A. M. |4 aut | |
700 | 1 | |a Solanes, G. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Geometriae dedicata |d Kluwer Academic Publishers, 1972 |g 103(2004), 1 vom: Feb., Seite 103-114 |w (DE-627)129385301 |w (DE-600)183909-3 |w (DE-576)014772213 |x 0046-5755 |7 nnns |
773 | 1 | 8 | |g volume:103 |g year:2004 |g number:1 |g month:02 |g pages:103-114 |
856 | 4 | 1 | |u https://doi.org/10.1023/B:GEOM.0000013945.66390.ca |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4116 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4316 | ||
951 | |a AR | ||
952 | |d 103 |j 2004 |e 1 |c 02 |h 103-114 |
author_variant |
e g eg a m n am amn g s gs |
---|---|
matchkey_str |
article:00465755:2004----::oopeeadovxoisndmnin |
hierarchy_sort_str |
2004 |
publishDate |
2004 |
allfields |
10.1023/B:GEOM.0000013945.66390.ca doi (DE-627)OLC2039052755 (DE-He213)B:GEOM.0000013945.66390.ca-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Gallego, E. verfasserin aut Horospheres and Convex Bodies in n-Dimensional Hyperbolic Space 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2004 Abstract In n-dimensional Euclidean space, the measure of hyperplanes intersecting a convex domain is proportional to the (n−2)-mean curvature integral of its boundary. This question was considered by Santaló in hyperbolic space. In non-Euclidean geometry the totally geodesic hypersurfaces are not always the best analogue to linear hyperplanes. In some situations horospheres play the role of Euclidean hyperplanes. In dimensions n=2 and 3, Santaló proved that the measure of horospheres intersecting a convex domain is also proportional to the (n−2)-mean curvature integral of its boundary. In this paper we show that this analogy does not generalize to higher dimensions. We express the measure of horospheres intersecting a convex body as a linear combination of the mean curvature integrals of its boundary. Naveira, A. M. aut Solanes, G. aut Enthalten in Geometriae dedicata Kluwer Academic Publishers, 1972 103(2004), 1 vom: Feb., Seite 103-114 (DE-627)129385301 (DE-600)183909-3 (DE-576)014772213 0046-5755 nnns volume:103 year:2004 number:1 month:02 pages:103-114 https://doi.org/10.1023/B:GEOM.0000013945.66390.ca lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2088 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4316 AR 103 2004 1 02 103-114 |
spelling |
10.1023/B:GEOM.0000013945.66390.ca doi (DE-627)OLC2039052755 (DE-He213)B:GEOM.0000013945.66390.ca-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Gallego, E. verfasserin aut Horospheres and Convex Bodies in n-Dimensional Hyperbolic Space 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2004 Abstract In n-dimensional Euclidean space, the measure of hyperplanes intersecting a convex domain is proportional to the (n−2)-mean curvature integral of its boundary. This question was considered by Santaló in hyperbolic space. In non-Euclidean geometry the totally geodesic hypersurfaces are not always the best analogue to linear hyperplanes. In some situations horospheres play the role of Euclidean hyperplanes. In dimensions n=2 and 3, Santaló proved that the measure of horospheres intersecting a convex domain is also proportional to the (n−2)-mean curvature integral of its boundary. In this paper we show that this analogy does not generalize to higher dimensions. We express the measure of horospheres intersecting a convex body as a linear combination of the mean curvature integrals of its boundary. Naveira, A. M. aut Solanes, G. aut Enthalten in Geometriae dedicata Kluwer Academic Publishers, 1972 103(2004), 1 vom: Feb., Seite 103-114 (DE-627)129385301 (DE-600)183909-3 (DE-576)014772213 0046-5755 nnns volume:103 year:2004 number:1 month:02 pages:103-114 https://doi.org/10.1023/B:GEOM.0000013945.66390.ca lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2088 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4316 AR 103 2004 1 02 103-114 |
allfields_unstemmed |
10.1023/B:GEOM.0000013945.66390.ca doi (DE-627)OLC2039052755 (DE-He213)B:GEOM.0000013945.66390.ca-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Gallego, E. verfasserin aut Horospheres and Convex Bodies in n-Dimensional Hyperbolic Space 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2004 Abstract In n-dimensional Euclidean space, the measure of hyperplanes intersecting a convex domain is proportional to the (n−2)-mean curvature integral of its boundary. This question was considered by Santaló in hyperbolic space. In non-Euclidean geometry the totally geodesic hypersurfaces are not always the best analogue to linear hyperplanes. In some situations horospheres play the role of Euclidean hyperplanes. In dimensions n=2 and 3, Santaló proved that the measure of horospheres intersecting a convex domain is also proportional to the (n−2)-mean curvature integral of its boundary. In this paper we show that this analogy does not generalize to higher dimensions. We express the measure of horospheres intersecting a convex body as a linear combination of the mean curvature integrals of its boundary. Naveira, A. M. aut Solanes, G. aut Enthalten in Geometriae dedicata Kluwer Academic Publishers, 1972 103(2004), 1 vom: Feb., Seite 103-114 (DE-627)129385301 (DE-600)183909-3 (DE-576)014772213 0046-5755 nnns volume:103 year:2004 number:1 month:02 pages:103-114 https://doi.org/10.1023/B:GEOM.0000013945.66390.ca lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2088 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4316 AR 103 2004 1 02 103-114 |
allfieldsGer |
10.1023/B:GEOM.0000013945.66390.ca doi (DE-627)OLC2039052755 (DE-He213)B:GEOM.0000013945.66390.ca-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Gallego, E. verfasserin aut Horospheres and Convex Bodies in n-Dimensional Hyperbolic Space 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2004 Abstract In n-dimensional Euclidean space, the measure of hyperplanes intersecting a convex domain is proportional to the (n−2)-mean curvature integral of its boundary. This question was considered by Santaló in hyperbolic space. In non-Euclidean geometry the totally geodesic hypersurfaces are not always the best analogue to linear hyperplanes. In some situations horospheres play the role of Euclidean hyperplanes. In dimensions n=2 and 3, Santaló proved that the measure of horospheres intersecting a convex domain is also proportional to the (n−2)-mean curvature integral of its boundary. In this paper we show that this analogy does not generalize to higher dimensions. We express the measure of horospheres intersecting a convex body as a linear combination of the mean curvature integrals of its boundary. Naveira, A. M. aut Solanes, G. aut Enthalten in Geometriae dedicata Kluwer Academic Publishers, 1972 103(2004), 1 vom: Feb., Seite 103-114 (DE-627)129385301 (DE-600)183909-3 (DE-576)014772213 0046-5755 nnns volume:103 year:2004 number:1 month:02 pages:103-114 https://doi.org/10.1023/B:GEOM.0000013945.66390.ca lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2088 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4316 AR 103 2004 1 02 103-114 |
allfieldsSound |
10.1023/B:GEOM.0000013945.66390.ca doi (DE-627)OLC2039052755 (DE-He213)B:GEOM.0000013945.66390.ca-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Gallego, E. verfasserin aut Horospheres and Convex Bodies in n-Dimensional Hyperbolic Space 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2004 Abstract In n-dimensional Euclidean space, the measure of hyperplanes intersecting a convex domain is proportional to the (n−2)-mean curvature integral of its boundary. This question was considered by Santaló in hyperbolic space. In non-Euclidean geometry the totally geodesic hypersurfaces are not always the best analogue to linear hyperplanes. In some situations horospheres play the role of Euclidean hyperplanes. In dimensions n=2 and 3, Santaló proved that the measure of horospheres intersecting a convex domain is also proportional to the (n−2)-mean curvature integral of its boundary. In this paper we show that this analogy does not generalize to higher dimensions. We express the measure of horospheres intersecting a convex body as a linear combination of the mean curvature integrals of its boundary. Naveira, A. M. aut Solanes, G. aut Enthalten in Geometriae dedicata Kluwer Academic Publishers, 1972 103(2004), 1 vom: Feb., Seite 103-114 (DE-627)129385301 (DE-600)183909-3 (DE-576)014772213 0046-5755 nnns volume:103 year:2004 number:1 month:02 pages:103-114 https://doi.org/10.1023/B:GEOM.0000013945.66390.ca lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2088 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4316 AR 103 2004 1 02 103-114 |
language |
English |
source |
Enthalten in Geometriae dedicata 103(2004), 1 vom: Feb., Seite 103-114 volume:103 year:2004 number:1 month:02 pages:103-114 |
sourceStr |
Enthalten in Geometriae dedicata 103(2004), 1 vom: Feb., Seite 103-114 volume:103 year:2004 number:1 month:02 pages:103-114 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Geometriae dedicata |
authorswithroles_txt_mv |
Gallego, E. @@aut@@ Naveira, A. M. @@aut@@ Solanes, G. @@aut@@ |
publishDateDaySort_date |
2004-02-01T00:00:00Z |
hierarchy_top_id |
129385301 |
dewey-sort |
3510 |
id |
OLC2039052755 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2039052755</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503063508.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2004 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/B:GEOM.0000013945.66390.ca</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2039052755</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)B:GEOM.0000013945.66390.ca-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gallego, E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Horospheres and Convex Bodies in n-Dimensional Hyperbolic Space</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2004</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 2004</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In n-dimensional Euclidean space, the measure of hyperplanes intersecting a convex domain is proportional to the (n−2)-mean curvature integral of its boundary. This question was considered by Santaló in hyperbolic space. In non-Euclidean geometry the totally geodesic hypersurfaces are not always the best analogue to linear hyperplanes. In some situations horospheres play the role of Euclidean hyperplanes. In dimensions n=2 and 3, Santaló proved that the measure of horospheres intersecting a convex domain is also proportional to the (n−2)-mean curvature integral of its boundary. In this paper we show that this analogy does not generalize to higher dimensions. We express the measure of horospheres intersecting a convex body as a linear combination of the mean curvature integrals of its boundary.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Naveira, A. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Solanes, G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geometriae dedicata</subfield><subfield code="d">Kluwer Academic Publishers, 1972</subfield><subfield code="g">103(2004), 1 vom: Feb., Seite 103-114</subfield><subfield code="w">(DE-627)129385301</subfield><subfield code="w">(DE-600)183909-3</subfield><subfield code="w">(DE-576)014772213</subfield><subfield code="x">0046-5755</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:103</subfield><subfield code="g">year:2004</subfield><subfield code="g">number:1</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:103-114</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/B:GEOM.0000013945.66390.ca</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">103</subfield><subfield code="j">2004</subfield><subfield code="e">1</subfield><subfield code="c">02</subfield><subfield code="h">103-114</subfield></datafield></record></collection>
|
author |
Gallego, E. |
spellingShingle |
Gallego, E. ddc 510 ssgn 17,1 Horospheres and Convex Bodies in n-Dimensional Hyperbolic Space |
authorStr |
Gallego, E. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129385301 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0046-5755 |
topic_title |
510 VZ 17,1 ssgn Horospheres and Convex Bodies in n-Dimensional Hyperbolic Space |
topic |
ddc 510 ssgn 17,1 |
topic_unstemmed |
ddc 510 ssgn 17,1 |
topic_browse |
ddc 510 ssgn 17,1 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Geometriae dedicata |
hierarchy_parent_id |
129385301 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Geometriae dedicata |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129385301 (DE-600)183909-3 (DE-576)014772213 |
title |
Horospheres and Convex Bodies in n-Dimensional Hyperbolic Space |
ctrlnum |
(DE-627)OLC2039052755 (DE-He213)B:GEOM.0000013945.66390.ca-p |
title_full |
Horospheres and Convex Bodies in n-Dimensional Hyperbolic Space |
author_sort |
Gallego, E. |
journal |
Geometriae dedicata |
journalStr |
Geometriae dedicata |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2004 |
contenttype_str_mv |
txt |
container_start_page |
103 |
author_browse |
Gallego, E. Naveira, A. M. Solanes, G. |
container_volume |
103 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Gallego, E. |
doi_str_mv |
10.1023/B:GEOM.0000013945.66390.ca |
dewey-full |
510 |
title_sort |
horospheres and convex bodies in n-dimensional hyperbolic space |
title_auth |
Horospheres and Convex Bodies in n-Dimensional Hyperbolic Space |
abstract |
Abstract In n-dimensional Euclidean space, the measure of hyperplanes intersecting a convex domain is proportional to the (n−2)-mean curvature integral of its boundary. This question was considered by Santaló in hyperbolic space. In non-Euclidean geometry the totally geodesic hypersurfaces are not always the best analogue to linear hyperplanes. In some situations horospheres play the role of Euclidean hyperplanes. In dimensions n=2 and 3, Santaló proved that the measure of horospheres intersecting a convex domain is also proportional to the (n−2)-mean curvature integral of its boundary. In this paper we show that this analogy does not generalize to higher dimensions. We express the measure of horospheres intersecting a convex body as a linear combination of the mean curvature integrals of its boundary. © Kluwer Academic Publishers 2004 |
abstractGer |
Abstract In n-dimensional Euclidean space, the measure of hyperplanes intersecting a convex domain is proportional to the (n−2)-mean curvature integral of its boundary. This question was considered by Santaló in hyperbolic space. In non-Euclidean geometry the totally geodesic hypersurfaces are not always the best analogue to linear hyperplanes. In some situations horospheres play the role of Euclidean hyperplanes. In dimensions n=2 and 3, Santaló proved that the measure of horospheres intersecting a convex domain is also proportional to the (n−2)-mean curvature integral of its boundary. In this paper we show that this analogy does not generalize to higher dimensions. We express the measure of horospheres intersecting a convex body as a linear combination of the mean curvature integrals of its boundary. © Kluwer Academic Publishers 2004 |
abstract_unstemmed |
Abstract In n-dimensional Euclidean space, the measure of hyperplanes intersecting a convex domain is proportional to the (n−2)-mean curvature integral of its boundary. This question was considered by Santaló in hyperbolic space. In non-Euclidean geometry the totally geodesic hypersurfaces are not always the best analogue to linear hyperplanes. In some situations horospheres play the role of Euclidean hyperplanes. In dimensions n=2 and 3, Santaló proved that the measure of horospheres intersecting a convex domain is also proportional to the (n−2)-mean curvature integral of its boundary. In this paper we show that this analogy does not generalize to higher dimensions. We express the measure of horospheres intersecting a convex body as a linear combination of the mean curvature integrals of its boundary. © Kluwer Academic Publishers 2004 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2088 GBV_ILN_4116 GBV_ILN_4126 GBV_ILN_4316 |
container_issue |
1 |
title_short |
Horospheres and Convex Bodies in n-Dimensional Hyperbolic Space |
url |
https://doi.org/10.1023/B:GEOM.0000013945.66390.ca |
remote_bool |
false |
author2 |
Naveira, A. M. Solanes, G. |
author2Str |
Naveira, A. M. Solanes, G. |
ppnlink |
129385301 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1023/B:GEOM.0000013945.66390.ca |
up_date |
2024-07-03T21:22:57.696Z |
_version_ |
1803594527091458048 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2039052755</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503063508.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2004 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/B:GEOM.0000013945.66390.ca</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2039052755</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)B:GEOM.0000013945.66390.ca-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gallego, E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Horospheres and Convex Bodies in n-Dimensional Hyperbolic Space</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2004</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 2004</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In n-dimensional Euclidean space, the measure of hyperplanes intersecting a convex domain is proportional to the (n−2)-mean curvature integral of its boundary. This question was considered by Santaló in hyperbolic space. In non-Euclidean geometry the totally geodesic hypersurfaces are not always the best analogue to linear hyperplanes. In some situations horospheres play the role of Euclidean hyperplanes. In dimensions n=2 and 3, Santaló proved that the measure of horospheres intersecting a convex domain is also proportional to the (n−2)-mean curvature integral of its boundary. In this paper we show that this analogy does not generalize to higher dimensions. We express the measure of horospheres intersecting a convex body as a linear combination of the mean curvature integrals of its boundary.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Naveira, A. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Solanes, G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geometriae dedicata</subfield><subfield code="d">Kluwer Academic Publishers, 1972</subfield><subfield code="g">103(2004), 1 vom: Feb., Seite 103-114</subfield><subfield code="w">(DE-627)129385301</subfield><subfield code="w">(DE-600)183909-3</subfield><subfield code="w">(DE-576)014772213</subfield><subfield code="x">0046-5755</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:103</subfield><subfield code="g">year:2004</subfield><subfield code="g">number:1</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:103-114</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/B:GEOM.0000013945.66390.ca</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">103</subfield><subfield code="j">2004</subfield><subfield code="e">1</subfield><subfield code="c">02</subfield><subfield code="h">103-114</subfield></datafield></record></collection>
|
score |
7.403078 |