Counting generalized Jenkins–Strebel differentials
Abstract We study the combinatorial geometry of “lattice” Jenkins–Strebel differentials with simple zeroes and simple poles on $$\mathbb{C }\!\mathrm{P }^1$$ and of the corresponding counting functions. Developing the results of Kontsevich (Commun Math Phys 147:1–23, 1992) we evaluate the leading te...
Ausführliche Beschreibung
Autor*in: |
Athreya, Jayadev S. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media Dordrecht 2013 |
---|
Übergeordnetes Werk: |
Enthalten in: Geometriae dedicata - Springer Netherlands, 1972, 170(2013), 1 vom: 18. Juni, Seite 195-217 |
---|---|
Übergeordnetes Werk: |
volume:170 ; year:2013 ; number:1 ; day:18 ; month:06 ; pages:195-217 |
Links: |
---|
DOI / URN: |
10.1007/s10711-013-9877-7 |
---|
Katalog-ID: |
OLC2039062599 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2039062599 | ||
003 | DE-627 | ||
005 | 20230503063556.0 | ||
007 | tu | ||
008 | 200819s2013 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10711-013-9877-7 |2 doi | |
035 | |a (DE-627)OLC2039062599 | ||
035 | |a (DE-He213)s10711-013-9877-7-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Athreya, Jayadev S. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Counting generalized Jenkins–Strebel differentials |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media Dordrecht 2013 | ||
520 | |a Abstract We study the combinatorial geometry of “lattice” Jenkins–Strebel differentials with simple zeroes and simple poles on $$\mathbb{C }\!\mathrm{P }^1$$ and of the corresponding counting functions. Developing the results of Kontsevich (Commun Math Phys 147:1–23, 1992) we evaluate the leading term of the symmetric polynomial counting the number of such “lattice” Jenkins–Strebel differentials having all zeroes on a single singular layer. This allows us to express the number of general “lattice” Jenkins–Strebel differentials as an appropriate weighted sum over decorated trees. The problem of counting Jenkins–Strebel differentials is equivalent to the problem of counting pillowcase covers, which serve as integer points in appropriate local coordinates on strata of moduli spaces of meromorphic quadratic differentials. This allows us to relate our counting problem to calculations of volumes of these strata . A very explicit expression for the volume of any stratum of meromorphic quadratic differentials recently obtained by the authors (Athreya et al. 2012) leads to an interesting combinatorial identity for our sums over trees. | ||
650 | 4 | |a Jenkins–Strebel differential | |
650 | 4 | |a Pillowcase covers | |
650 | 4 | |a Meromorphic quadratic differential | |
700 | 1 | |a Eskin, Alex |4 aut | |
700 | 1 | |a Zorich, Anton |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Geometriae dedicata |d Springer Netherlands, 1972 |g 170(2013), 1 vom: 18. Juni, Seite 195-217 |w (DE-627)129385301 |w (DE-600)183909-3 |w (DE-576)014772213 |x 0046-5755 |7 nnns |
773 | 1 | 8 | |g volume:170 |g year:2013 |g number:1 |g day:18 |g month:06 |g pages:195-217 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10711-013-9877-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4126 | ||
951 | |a AR | ||
952 | |d 170 |j 2013 |e 1 |b 18 |c 06 |h 195-217 |
author_variant |
j s a js jsa a e ae a z az |
---|---|
matchkey_str |
article:00465755:2013----::onigeeaiejnistee |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1007/s10711-013-9877-7 doi (DE-627)OLC2039062599 (DE-He213)s10711-013-9877-7-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Athreya, Jayadev S. verfasserin aut Counting generalized Jenkins–Strebel differentials 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2013 Abstract We study the combinatorial geometry of “lattice” Jenkins–Strebel differentials with simple zeroes and simple poles on $$\mathbb{C }\!\mathrm{P }^1$$ and of the corresponding counting functions. Developing the results of Kontsevich (Commun Math Phys 147:1–23, 1992) we evaluate the leading term of the symmetric polynomial counting the number of such “lattice” Jenkins–Strebel differentials having all zeroes on a single singular layer. This allows us to express the number of general “lattice” Jenkins–Strebel differentials as an appropriate weighted sum over decorated trees. The problem of counting Jenkins–Strebel differentials is equivalent to the problem of counting pillowcase covers, which serve as integer points in appropriate local coordinates on strata of moduli spaces of meromorphic quadratic differentials. This allows us to relate our counting problem to calculations of volumes of these strata . A very explicit expression for the volume of any stratum of meromorphic quadratic differentials recently obtained by the authors (Athreya et al. 2012) leads to an interesting combinatorial identity for our sums over trees. Jenkins–Strebel differential Pillowcase covers Meromorphic quadratic differential Eskin, Alex aut Zorich, Anton aut Enthalten in Geometriae dedicata Springer Netherlands, 1972 170(2013), 1 vom: 18. Juni, Seite 195-217 (DE-627)129385301 (DE-600)183909-3 (DE-576)014772213 0046-5755 nnns volume:170 year:2013 number:1 day:18 month:06 pages:195-217 https://doi.org/10.1007/s10711-013-9877-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2088 GBV_ILN_4126 AR 170 2013 1 18 06 195-217 |
spelling |
10.1007/s10711-013-9877-7 doi (DE-627)OLC2039062599 (DE-He213)s10711-013-9877-7-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Athreya, Jayadev S. verfasserin aut Counting generalized Jenkins–Strebel differentials 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2013 Abstract We study the combinatorial geometry of “lattice” Jenkins–Strebel differentials with simple zeroes and simple poles on $$\mathbb{C }\!\mathrm{P }^1$$ and of the corresponding counting functions. Developing the results of Kontsevich (Commun Math Phys 147:1–23, 1992) we evaluate the leading term of the symmetric polynomial counting the number of such “lattice” Jenkins–Strebel differentials having all zeroes on a single singular layer. This allows us to express the number of general “lattice” Jenkins–Strebel differentials as an appropriate weighted sum over decorated trees. The problem of counting Jenkins–Strebel differentials is equivalent to the problem of counting pillowcase covers, which serve as integer points in appropriate local coordinates on strata of moduli spaces of meromorphic quadratic differentials. This allows us to relate our counting problem to calculations of volumes of these strata . A very explicit expression for the volume of any stratum of meromorphic quadratic differentials recently obtained by the authors (Athreya et al. 2012) leads to an interesting combinatorial identity for our sums over trees. Jenkins–Strebel differential Pillowcase covers Meromorphic quadratic differential Eskin, Alex aut Zorich, Anton aut Enthalten in Geometriae dedicata Springer Netherlands, 1972 170(2013), 1 vom: 18. Juni, Seite 195-217 (DE-627)129385301 (DE-600)183909-3 (DE-576)014772213 0046-5755 nnns volume:170 year:2013 number:1 day:18 month:06 pages:195-217 https://doi.org/10.1007/s10711-013-9877-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2088 GBV_ILN_4126 AR 170 2013 1 18 06 195-217 |
allfields_unstemmed |
10.1007/s10711-013-9877-7 doi (DE-627)OLC2039062599 (DE-He213)s10711-013-9877-7-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Athreya, Jayadev S. verfasserin aut Counting generalized Jenkins–Strebel differentials 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2013 Abstract We study the combinatorial geometry of “lattice” Jenkins–Strebel differentials with simple zeroes and simple poles on $$\mathbb{C }\!\mathrm{P }^1$$ and of the corresponding counting functions. Developing the results of Kontsevich (Commun Math Phys 147:1–23, 1992) we evaluate the leading term of the symmetric polynomial counting the number of such “lattice” Jenkins–Strebel differentials having all zeroes on a single singular layer. This allows us to express the number of general “lattice” Jenkins–Strebel differentials as an appropriate weighted sum over decorated trees. The problem of counting Jenkins–Strebel differentials is equivalent to the problem of counting pillowcase covers, which serve as integer points in appropriate local coordinates on strata of moduli spaces of meromorphic quadratic differentials. This allows us to relate our counting problem to calculations of volumes of these strata . A very explicit expression for the volume of any stratum of meromorphic quadratic differentials recently obtained by the authors (Athreya et al. 2012) leads to an interesting combinatorial identity for our sums over trees. Jenkins–Strebel differential Pillowcase covers Meromorphic quadratic differential Eskin, Alex aut Zorich, Anton aut Enthalten in Geometriae dedicata Springer Netherlands, 1972 170(2013), 1 vom: 18. Juni, Seite 195-217 (DE-627)129385301 (DE-600)183909-3 (DE-576)014772213 0046-5755 nnns volume:170 year:2013 number:1 day:18 month:06 pages:195-217 https://doi.org/10.1007/s10711-013-9877-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2088 GBV_ILN_4126 AR 170 2013 1 18 06 195-217 |
allfieldsGer |
10.1007/s10711-013-9877-7 doi (DE-627)OLC2039062599 (DE-He213)s10711-013-9877-7-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Athreya, Jayadev S. verfasserin aut Counting generalized Jenkins–Strebel differentials 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2013 Abstract We study the combinatorial geometry of “lattice” Jenkins–Strebel differentials with simple zeroes and simple poles on $$\mathbb{C }\!\mathrm{P }^1$$ and of the corresponding counting functions. Developing the results of Kontsevich (Commun Math Phys 147:1–23, 1992) we evaluate the leading term of the symmetric polynomial counting the number of such “lattice” Jenkins–Strebel differentials having all zeroes on a single singular layer. This allows us to express the number of general “lattice” Jenkins–Strebel differentials as an appropriate weighted sum over decorated trees. The problem of counting Jenkins–Strebel differentials is equivalent to the problem of counting pillowcase covers, which serve as integer points in appropriate local coordinates on strata of moduli spaces of meromorphic quadratic differentials. This allows us to relate our counting problem to calculations of volumes of these strata . A very explicit expression for the volume of any stratum of meromorphic quadratic differentials recently obtained by the authors (Athreya et al. 2012) leads to an interesting combinatorial identity for our sums over trees. Jenkins–Strebel differential Pillowcase covers Meromorphic quadratic differential Eskin, Alex aut Zorich, Anton aut Enthalten in Geometriae dedicata Springer Netherlands, 1972 170(2013), 1 vom: 18. Juni, Seite 195-217 (DE-627)129385301 (DE-600)183909-3 (DE-576)014772213 0046-5755 nnns volume:170 year:2013 number:1 day:18 month:06 pages:195-217 https://doi.org/10.1007/s10711-013-9877-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2088 GBV_ILN_4126 AR 170 2013 1 18 06 195-217 |
allfieldsSound |
10.1007/s10711-013-9877-7 doi (DE-627)OLC2039062599 (DE-He213)s10711-013-9877-7-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Athreya, Jayadev S. verfasserin aut Counting generalized Jenkins–Strebel differentials 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2013 Abstract We study the combinatorial geometry of “lattice” Jenkins–Strebel differentials with simple zeroes and simple poles on $$\mathbb{C }\!\mathrm{P }^1$$ and of the corresponding counting functions. Developing the results of Kontsevich (Commun Math Phys 147:1–23, 1992) we evaluate the leading term of the symmetric polynomial counting the number of such “lattice” Jenkins–Strebel differentials having all zeroes on a single singular layer. This allows us to express the number of general “lattice” Jenkins–Strebel differentials as an appropriate weighted sum over decorated trees. The problem of counting Jenkins–Strebel differentials is equivalent to the problem of counting pillowcase covers, which serve as integer points in appropriate local coordinates on strata of moduli spaces of meromorphic quadratic differentials. This allows us to relate our counting problem to calculations of volumes of these strata . A very explicit expression for the volume of any stratum of meromorphic quadratic differentials recently obtained by the authors (Athreya et al. 2012) leads to an interesting combinatorial identity for our sums over trees. Jenkins–Strebel differential Pillowcase covers Meromorphic quadratic differential Eskin, Alex aut Zorich, Anton aut Enthalten in Geometriae dedicata Springer Netherlands, 1972 170(2013), 1 vom: 18. Juni, Seite 195-217 (DE-627)129385301 (DE-600)183909-3 (DE-576)014772213 0046-5755 nnns volume:170 year:2013 number:1 day:18 month:06 pages:195-217 https://doi.org/10.1007/s10711-013-9877-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2088 GBV_ILN_4126 AR 170 2013 1 18 06 195-217 |
language |
English |
source |
Enthalten in Geometriae dedicata 170(2013), 1 vom: 18. Juni, Seite 195-217 volume:170 year:2013 number:1 day:18 month:06 pages:195-217 |
sourceStr |
Enthalten in Geometriae dedicata 170(2013), 1 vom: 18. Juni, Seite 195-217 volume:170 year:2013 number:1 day:18 month:06 pages:195-217 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Jenkins–Strebel differential Pillowcase covers Meromorphic quadratic differential |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Geometriae dedicata |
authorswithroles_txt_mv |
Athreya, Jayadev S. @@aut@@ Eskin, Alex @@aut@@ Zorich, Anton @@aut@@ |
publishDateDaySort_date |
2013-06-18T00:00:00Z |
hierarchy_top_id |
129385301 |
dewey-sort |
3510 |
id |
OLC2039062599 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2039062599</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503063556.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10711-013-9877-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2039062599</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10711-013-9877-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Athreya, Jayadev S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Counting generalized Jenkins–Strebel differentials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media Dordrecht 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We study the combinatorial geometry of “lattice” Jenkins–Strebel differentials with simple zeroes and simple poles on $$\mathbb{C }\!\mathrm{P }^1$$ and of the corresponding counting functions. Developing the results of Kontsevich (Commun Math Phys 147:1–23, 1992) we evaluate the leading term of the symmetric polynomial counting the number of such “lattice” Jenkins–Strebel differentials having all zeroes on a single singular layer. This allows us to express the number of general “lattice” Jenkins–Strebel differentials as an appropriate weighted sum over decorated trees. The problem of counting Jenkins–Strebel differentials is equivalent to the problem of counting pillowcase covers, which serve as integer points in appropriate local coordinates on strata of moduli spaces of meromorphic quadratic differentials. This allows us to relate our counting problem to calculations of volumes of these strata . A very explicit expression for the volume of any stratum of meromorphic quadratic differentials recently obtained by the authors (Athreya et al. 2012) leads to an interesting combinatorial identity for our sums over trees.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jenkins–Strebel differential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pillowcase covers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Meromorphic quadratic differential</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eskin, Alex</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zorich, Anton</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geometriae dedicata</subfield><subfield code="d">Springer Netherlands, 1972</subfield><subfield code="g">170(2013), 1 vom: 18. Juni, Seite 195-217</subfield><subfield code="w">(DE-627)129385301</subfield><subfield code="w">(DE-600)183909-3</subfield><subfield code="w">(DE-576)014772213</subfield><subfield code="x">0046-5755</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:170</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">day:18</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:195-217</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10711-013-9877-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">170</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="b">18</subfield><subfield code="c">06</subfield><subfield code="h">195-217</subfield></datafield></record></collection>
|
author |
Athreya, Jayadev S. |
spellingShingle |
Athreya, Jayadev S. ddc 510 ssgn 17,1 misc Jenkins–Strebel differential misc Pillowcase covers misc Meromorphic quadratic differential Counting generalized Jenkins–Strebel differentials |
authorStr |
Athreya, Jayadev S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129385301 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0046-5755 |
topic_title |
510 VZ 17,1 ssgn Counting generalized Jenkins–Strebel differentials Jenkins–Strebel differential Pillowcase covers Meromorphic quadratic differential |
topic |
ddc 510 ssgn 17,1 misc Jenkins–Strebel differential misc Pillowcase covers misc Meromorphic quadratic differential |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Jenkins–Strebel differential misc Pillowcase covers misc Meromorphic quadratic differential |
topic_browse |
ddc 510 ssgn 17,1 misc Jenkins–Strebel differential misc Pillowcase covers misc Meromorphic quadratic differential |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Geometriae dedicata |
hierarchy_parent_id |
129385301 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Geometriae dedicata |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129385301 (DE-600)183909-3 (DE-576)014772213 |
title |
Counting generalized Jenkins–Strebel differentials |
ctrlnum |
(DE-627)OLC2039062599 (DE-He213)s10711-013-9877-7-p |
title_full |
Counting generalized Jenkins–Strebel differentials |
author_sort |
Athreya, Jayadev S. |
journal |
Geometriae dedicata |
journalStr |
Geometriae dedicata |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
195 |
author_browse |
Athreya, Jayadev S. Eskin, Alex Zorich, Anton |
container_volume |
170 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Athreya, Jayadev S. |
doi_str_mv |
10.1007/s10711-013-9877-7 |
dewey-full |
510 |
title_sort |
counting generalized jenkins–strebel differentials |
title_auth |
Counting generalized Jenkins–Strebel differentials |
abstract |
Abstract We study the combinatorial geometry of “lattice” Jenkins–Strebel differentials with simple zeroes and simple poles on $$\mathbb{C }\!\mathrm{P }^1$$ and of the corresponding counting functions. Developing the results of Kontsevich (Commun Math Phys 147:1–23, 1992) we evaluate the leading term of the symmetric polynomial counting the number of such “lattice” Jenkins–Strebel differentials having all zeroes on a single singular layer. This allows us to express the number of general “lattice” Jenkins–Strebel differentials as an appropriate weighted sum over decorated trees. The problem of counting Jenkins–Strebel differentials is equivalent to the problem of counting pillowcase covers, which serve as integer points in appropriate local coordinates on strata of moduli spaces of meromorphic quadratic differentials. This allows us to relate our counting problem to calculations of volumes of these strata . A very explicit expression for the volume of any stratum of meromorphic quadratic differentials recently obtained by the authors (Athreya et al. 2012) leads to an interesting combinatorial identity for our sums over trees. © Springer Science+Business Media Dordrecht 2013 |
abstractGer |
Abstract We study the combinatorial geometry of “lattice” Jenkins–Strebel differentials with simple zeroes and simple poles on $$\mathbb{C }\!\mathrm{P }^1$$ and of the corresponding counting functions. Developing the results of Kontsevich (Commun Math Phys 147:1–23, 1992) we evaluate the leading term of the symmetric polynomial counting the number of such “lattice” Jenkins–Strebel differentials having all zeroes on a single singular layer. This allows us to express the number of general “lattice” Jenkins–Strebel differentials as an appropriate weighted sum over decorated trees. The problem of counting Jenkins–Strebel differentials is equivalent to the problem of counting pillowcase covers, which serve as integer points in appropriate local coordinates on strata of moduli spaces of meromorphic quadratic differentials. This allows us to relate our counting problem to calculations of volumes of these strata . A very explicit expression for the volume of any stratum of meromorphic quadratic differentials recently obtained by the authors (Athreya et al. 2012) leads to an interesting combinatorial identity for our sums over trees. © Springer Science+Business Media Dordrecht 2013 |
abstract_unstemmed |
Abstract We study the combinatorial geometry of “lattice” Jenkins–Strebel differentials with simple zeroes and simple poles on $$\mathbb{C }\!\mathrm{P }^1$$ and of the corresponding counting functions. Developing the results of Kontsevich (Commun Math Phys 147:1–23, 1992) we evaluate the leading term of the symmetric polynomial counting the number of such “lattice” Jenkins–Strebel differentials having all zeroes on a single singular layer. This allows us to express the number of general “lattice” Jenkins–Strebel differentials as an appropriate weighted sum over decorated trees. The problem of counting Jenkins–Strebel differentials is equivalent to the problem of counting pillowcase covers, which serve as integer points in appropriate local coordinates on strata of moduli spaces of meromorphic quadratic differentials. This allows us to relate our counting problem to calculations of volumes of these strata . A very explicit expression for the volume of any stratum of meromorphic quadratic differentials recently obtained by the authors (Athreya et al. 2012) leads to an interesting combinatorial identity for our sums over trees. © Springer Science+Business Media Dordrecht 2013 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_30 GBV_ILN_40 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2088 GBV_ILN_4126 |
container_issue |
1 |
title_short |
Counting generalized Jenkins–Strebel differentials |
url |
https://doi.org/10.1007/s10711-013-9877-7 |
remote_bool |
false |
author2 |
Eskin, Alex Zorich, Anton |
author2Str |
Eskin, Alex Zorich, Anton |
ppnlink |
129385301 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10711-013-9877-7 |
up_date |
2024-07-03T21:24:57.320Z |
_version_ |
1803594652525264896 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2039062599</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503063556.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10711-013-9877-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2039062599</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10711-013-9877-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Athreya, Jayadev S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Counting generalized Jenkins–Strebel differentials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media Dordrecht 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We study the combinatorial geometry of “lattice” Jenkins–Strebel differentials with simple zeroes and simple poles on $$\mathbb{C }\!\mathrm{P }^1$$ and of the corresponding counting functions. Developing the results of Kontsevich (Commun Math Phys 147:1–23, 1992) we evaluate the leading term of the symmetric polynomial counting the number of such “lattice” Jenkins–Strebel differentials having all zeroes on a single singular layer. This allows us to express the number of general “lattice” Jenkins–Strebel differentials as an appropriate weighted sum over decorated trees. The problem of counting Jenkins–Strebel differentials is equivalent to the problem of counting pillowcase covers, which serve as integer points in appropriate local coordinates on strata of moduli spaces of meromorphic quadratic differentials. This allows us to relate our counting problem to calculations of volumes of these strata . A very explicit expression for the volume of any stratum of meromorphic quadratic differentials recently obtained by the authors (Athreya et al. 2012) leads to an interesting combinatorial identity for our sums over trees.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jenkins–Strebel differential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pillowcase covers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Meromorphic quadratic differential</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eskin, Alex</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zorich, Anton</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geometriae dedicata</subfield><subfield code="d">Springer Netherlands, 1972</subfield><subfield code="g">170(2013), 1 vom: 18. Juni, Seite 195-217</subfield><subfield code="w">(DE-627)129385301</subfield><subfield code="w">(DE-600)183909-3</subfield><subfield code="w">(DE-576)014772213</subfield><subfield code="x">0046-5755</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:170</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">day:18</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:195-217</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10711-013-9877-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">170</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="b">18</subfield><subfield code="c">06</subfield><subfield code="h">195-217</subfield></datafield></record></collection>
|
score |
7.398264 |