Polarization of Vacuum Fluctuations: Source of the Vacuum Permittivity and Speed of Light
Abstract There are two types of fluctuations in the quantum vacuum: type 1 vacuum fluctuations are on shell and can interact with matter in specific, limited ways that have observable consequences; type 2 vacuum fluctuations are off shell and cannot interact with matter. A photon will polarize a typ...
Ausführliche Beschreibung
Autor*in: |
Mainland, G. B. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Foundations of physics - Springer US, 1970, 50(2020), 5 vom: 27. März, Seite 457-480 |
---|---|
Übergeordnetes Werk: |
volume:50 ; year:2020 ; number:5 ; day:27 ; month:03 ; pages:457-480 |
Links: |
---|
DOI / URN: |
10.1007/s10701-020-00339-3 |
---|
Katalog-ID: |
OLC2039116230 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2039116230 | ||
003 | DE-627 | ||
005 | 20230504132914.0 | ||
007 | tu | ||
008 | 200820s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10701-020-00339-3 |2 doi | |
035 | |a (DE-627)OLC2039116230 | ||
035 | |a (DE-He213)s10701-020-00339-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |a 530 |q VZ |
084 | |a 11 |a 12 |a 5,21 |2 ssgn | ||
100 | 1 | |a Mainland, G. B. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Polarization of Vacuum Fluctuations: Source of the Vacuum Permittivity and Speed of Light |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2020 | ||
520 | |a Abstract There are two types of fluctuations in the quantum vacuum: type 1 vacuum fluctuations are on shell and can interact with matter in specific, limited ways that have observable consequences; type 2 vacuum fluctuations are off shell and cannot interact with matter. A photon will polarize a type 1, bound, charged lepton–antilepton vacuum fluctuation in much the same manner that it would polarize a dielectric, suggesting the method used here for calculating the permittivity $$\epsilon _{0}$$ of the vacuum. In a model that retains only leading terms, $$\epsilon _{0} \cong (6\mu _{0}/\pi )(8e^{2}/\hbar )^{2}= 9.10\times 10^{-12}$$ C/(Vm). The calculated value for $$\epsilon _{0}$$ is 2.7% more than the accepted value. The permittivity of the vacuum, in turn, determines the speed c of light in the vacuum. Since the vacuum is at rest with respect to every inertial frame of reference, c is the same in every inertial reference frame. | ||
650 | 4 | |a Quantum vacuum | |
650 | 4 | |a Vacuum fluctuations | |
650 | 4 | |a Permittivity of the vacuum | |
650 | 4 | |a Speed of light in the vacuum | |
700 | 1 | |a Mulligan, Bernard |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Foundations of physics |d Springer US, 1970 |g 50(2020), 5 vom: 27. März, Seite 457-480 |w (DE-627)130020907 |w (DE-600)421748-2 |w (DE-576)015562387 |x 0015-9018 |7 nnns |
773 | 1 | 8 | |g volume:50 |g year:2020 |g number:5 |g day:27 |g month:03 |g pages:457-480 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10701-020-00339-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-AST | ||
912 | |a SSG-OPC-AST | ||
912 | |a GBV_ILN_22 | ||
951 | |a AR | ||
952 | |d 50 |j 2020 |e 5 |b 27 |c 03 |h 457-480 |
author_variant |
g b m gb gbm b m bm |
---|---|
matchkey_str |
article:00159018:2020----::oaiainfaumlcutosorefhvcuprit |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s10701-020-00339-3 doi (DE-627)OLC2039116230 (DE-He213)s10701-020-00339-3-p DE-627 ger DE-627 rakwb eng 570 530 VZ 11 12 5,21 ssgn Mainland, G. B. verfasserin aut Polarization of Vacuum Fluctuations: Source of the Vacuum Permittivity and Speed of Light 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2020 Abstract There are two types of fluctuations in the quantum vacuum: type 1 vacuum fluctuations are on shell and can interact with matter in specific, limited ways that have observable consequences; type 2 vacuum fluctuations are off shell and cannot interact with matter. A photon will polarize a type 1, bound, charged lepton–antilepton vacuum fluctuation in much the same manner that it would polarize a dielectric, suggesting the method used here for calculating the permittivity $$\epsilon _{0}$$ of the vacuum. In a model that retains only leading terms, $$\epsilon _{0} \cong (6\mu _{0}/\pi )(8e^{2}/\hbar )^{2}= 9.10\times 10^{-12}$$ C/(Vm). The calculated value for $$\epsilon _{0}$$ is 2.7% more than the accepted value. The permittivity of the vacuum, in turn, determines the speed c of light in the vacuum. Since the vacuum is at rest with respect to every inertial frame of reference, c is the same in every inertial reference frame. Quantum vacuum Vacuum fluctuations Permittivity of the vacuum Speed of light in the vacuum Mulligan, Bernard aut Enthalten in Foundations of physics Springer US, 1970 50(2020), 5 vom: 27. März, Seite 457-480 (DE-627)130020907 (DE-600)421748-2 (DE-576)015562387 0015-9018 nnns volume:50 year:2020 number:5 day:27 month:03 pages:457-480 https://doi.org/10.1007/s10701-020-00339-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_22 AR 50 2020 5 27 03 457-480 |
spelling |
10.1007/s10701-020-00339-3 doi (DE-627)OLC2039116230 (DE-He213)s10701-020-00339-3-p DE-627 ger DE-627 rakwb eng 570 530 VZ 11 12 5,21 ssgn Mainland, G. B. verfasserin aut Polarization of Vacuum Fluctuations: Source of the Vacuum Permittivity and Speed of Light 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2020 Abstract There are two types of fluctuations in the quantum vacuum: type 1 vacuum fluctuations are on shell and can interact with matter in specific, limited ways that have observable consequences; type 2 vacuum fluctuations are off shell and cannot interact with matter. A photon will polarize a type 1, bound, charged lepton–antilepton vacuum fluctuation in much the same manner that it would polarize a dielectric, suggesting the method used here for calculating the permittivity $$\epsilon _{0}$$ of the vacuum. In a model that retains only leading terms, $$\epsilon _{0} \cong (6\mu _{0}/\pi )(8e^{2}/\hbar )^{2}= 9.10\times 10^{-12}$$ C/(Vm). The calculated value for $$\epsilon _{0}$$ is 2.7% more than the accepted value. The permittivity of the vacuum, in turn, determines the speed c of light in the vacuum. Since the vacuum is at rest with respect to every inertial frame of reference, c is the same in every inertial reference frame. Quantum vacuum Vacuum fluctuations Permittivity of the vacuum Speed of light in the vacuum Mulligan, Bernard aut Enthalten in Foundations of physics Springer US, 1970 50(2020), 5 vom: 27. März, Seite 457-480 (DE-627)130020907 (DE-600)421748-2 (DE-576)015562387 0015-9018 nnns volume:50 year:2020 number:5 day:27 month:03 pages:457-480 https://doi.org/10.1007/s10701-020-00339-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_22 AR 50 2020 5 27 03 457-480 |
allfields_unstemmed |
10.1007/s10701-020-00339-3 doi (DE-627)OLC2039116230 (DE-He213)s10701-020-00339-3-p DE-627 ger DE-627 rakwb eng 570 530 VZ 11 12 5,21 ssgn Mainland, G. B. verfasserin aut Polarization of Vacuum Fluctuations: Source of the Vacuum Permittivity and Speed of Light 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2020 Abstract There are two types of fluctuations in the quantum vacuum: type 1 vacuum fluctuations are on shell and can interact with matter in specific, limited ways that have observable consequences; type 2 vacuum fluctuations are off shell and cannot interact with matter. A photon will polarize a type 1, bound, charged lepton–antilepton vacuum fluctuation in much the same manner that it would polarize a dielectric, suggesting the method used here for calculating the permittivity $$\epsilon _{0}$$ of the vacuum. In a model that retains only leading terms, $$\epsilon _{0} \cong (6\mu _{0}/\pi )(8e^{2}/\hbar )^{2}= 9.10\times 10^{-12}$$ C/(Vm). The calculated value for $$\epsilon _{0}$$ is 2.7% more than the accepted value. The permittivity of the vacuum, in turn, determines the speed c of light in the vacuum. Since the vacuum is at rest with respect to every inertial frame of reference, c is the same in every inertial reference frame. Quantum vacuum Vacuum fluctuations Permittivity of the vacuum Speed of light in the vacuum Mulligan, Bernard aut Enthalten in Foundations of physics Springer US, 1970 50(2020), 5 vom: 27. März, Seite 457-480 (DE-627)130020907 (DE-600)421748-2 (DE-576)015562387 0015-9018 nnns volume:50 year:2020 number:5 day:27 month:03 pages:457-480 https://doi.org/10.1007/s10701-020-00339-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_22 AR 50 2020 5 27 03 457-480 |
allfieldsGer |
10.1007/s10701-020-00339-3 doi (DE-627)OLC2039116230 (DE-He213)s10701-020-00339-3-p DE-627 ger DE-627 rakwb eng 570 530 VZ 11 12 5,21 ssgn Mainland, G. B. verfasserin aut Polarization of Vacuum Fluctuations: Source of the Vacuum Permittivity and Speed of Light 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2020 Abstract There are two types of fluctuations in the quantum vacuum: type 1 vacuum fluctuations are on shell and can interact with matter in specific, limited ways that have observable consequences; type 2 vacuum fluctuations are off shell and cannot interact with matter. A photon will polarize a type 1, bound, charged lepton–antilepton vacuum fluctuation in much the same manner that it would polarize a dielectric, suggesting the method used here for calculating the permittivity $$\epsilon _{0}$$ of the vacuum. In a model that retains only leading terms, $$\epsilon _{0} \cong (6\mu _{0}/\pi )(8e^{2}/\hbar )^{2}= 9.10\times 10^{-12}$$ C/(Vm). The calculated value for $$\epsilon _{0}$$ is 2.7% more than the accepted value. The permittivity of the vacuum, in turn, determines the speed c of light in the vacuum. Since the vacuum is at rest with respect to every inertial frame of reference, c is the same in every inertial reference frame. Quantum vacuum Vacuum fluctuations Permittivity of the vacuum Speed of light in the vacuum Mulligan, Bernard aut Enthalten in Foundations of physics Springer US, 1970 50(2020), 5 vom: 27. März, Seite 457-480 (DE-627)130020907 (DE-600)421748-2 (DE-576)015562387 0015-9018 nnns volume:50 year:2020 number:5 day:27 month:03 pages:457-480 https://doi.org/10.1007/s10701-020-00339-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_22 AR 50 2020 5 27 03 457-480 |
allfieldsSound |
10.1007/s10701-020-00339-3 doi (DE-627)OLC2039116230 (DE-He213)s10701-020-00339-3-p DE-627 ger DE-627 rakwb eng 570 530 VZ 11 12 5,21 ssgn Mainland, G. B. verfasserin aut Polarization of Vacuum Fluctuations: Source of the Vacuum Permittivity and Speed of Light 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2020 Abstract There are two types of fluctuations in the quantum vacuum: type 1 vacuum fluctuations are on shell and can interact with matter in specific, limited ways that have observable consequences; type 2 vacuum fluctuations are off shell and cannot interact with matter. A photon will polarize a type 1, bound, charged lepton–antilepton vacuum fluctuation in much the same manner that it would polarize a dielectric, suggesting the method used here for calculating the permittivity $$\epsilon _{0}$$ of the vacuum. In a model that retains only leading terms, $$\epsilon _{0} \cong (6\mu _{0}/\pi )(8e^{2}/\hbar )^{2}= 9.10\times 10^{-12}$$ C/(Vm). The calculated value for $$\epsilon _{0}$$ is 2.7% more than the accepted value. The permittivity of the vacuum, in turn, determines the speed c of light in the vacuum. Since the vacuum is at rest with respect to every inertial frame of reference, c is the same in every inertial reference frame. Quantum vacuum Vacuum fluctuations Permittivity of the vacuum Speed of light in the vacuum Mulligan, Bernard aut Enthalten in Foundations of physics Springer US, 1970 50(2020), 5 vom: 27. März, Seite 457-480 (DE-627)130020907 (DE-600)421748-2 (DE-576)015562387 0015-9018 nnns volume:50 year:2020 number:5 day:27 month:03 pages:457-480 https://doi.org/10.1007/s10701-020-00339-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_22 AR 50 2020 5 27 03 457-480 |
language |
English |
source |
Enthalten in Foundations of physics 50(2020), 5 vom: 27. März, Seite 457-480 volume:50 year:2020 number:5 day:27 month:03 pages:457-480 |
sourceStr |
Enthalten in Foundations of physics 50(2020), 5 vom: 27. März, Seite 457-480 volume:50 year:2020 number:5 day:27 month:03 pages:457-480 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Quantum vacuum Vacuum fluctuations Permittivity of the vacuum Speed of light in the vacuum |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Foundations of physics |
authorswithroles_txt_mv |
Mainland, G. B. @@aut@@ Mulligan, Bernard @@aut@@ |
publishDateDaySort_date |
2020-03-27T00:00:00Z |
hierarchy_top_id |
130020907 |
dewey-sort |
3570 |
id |
OLC2039116230 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2039116230</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504132914.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10701-020-00339-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2039116230</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10701-020-00339-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="a">12</subfield><subfield code="a">5,21</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mainland, G. B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Polarization of Vacuum Fluctuations: Source of the Vacuum Permittivity and Speed of Light</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract There are two types of fluctuations in the quantum vacuum: type 1 vacuum fluctuations are on shell and can interact with matter in specific, limited ways that have observable consequences; type 2 vacuum fluctuations are off shell and cannot interact with matter. A photon will polarize a type 1, bound, charged lepton–antilepton vacuum fluctuation in much the same manner that it would polarize a dielectric, suggesting the method used here for calculating the permittivity $$\epsilon _{0}$$ of the vacuum. In a model that retains only leading terms, $$\epsilon _{0} \cong (6\mu _{0}/\pi )(8e^{2}/\hbar )^{2}= 9.10\times 10^{-12}$$ C/(Vm). The calculated value for $$\epsilon _{0}$$ is 2.7% more than the accepted value. The permittivity of the vacuum, in turn, determines the speed c of light in the vacuum. Since the vacuum is at rest with respect to every inertial frame of reference, c is the same in every inertial reference frame.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum vacuum</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vacuum fluctuations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Permittivity of the vacuum</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Speed of light in the vacuum</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mulligan, Bernard</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Foundations of physics</subfield><subfield code="d">Springer US, 1970</subfield><subfield code="g">50(2020), 5 vom: 27. März, Seite 457-480</subfield><subfield code="w">(DE-627)130020907</subfield><subfield code="w">(DE-600)421748-2</subfield><subfield code="w">(DE-576)015562387</subfield><subfield code="x">0015-9018</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:50</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:5</subfield><subfield code="g">day:27</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:457-480</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10701-020-00339-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">50</subfield><subfield code="j">2020</subfield><subfield code="e">5</subfield><subfield code="b">27</subfield><subfield code="c">03</subfield><subfield code="h">457-480</subfield></datafield></record></collection>
|
author |
Mainland, G. B. |
spellingShingle |
Mainland, G. B. ddc 570 ssgn 11 misc Quantum vacuum misc Vacuum fluctuations misc Permittivity of the vacuum misc Speed of light in the vacuum Polarization of Vacuum Fluctuations: Source of the Vacuum Permittivity and Speed of Light |
authorStr |
Mainland, G. B. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130020907 |
format |
Article |
dewey-ones |
570 - Life sciences; biology 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0015-9018 |
topic_title |
570 530 VZ 11 12 5,21 ssgn Polarization of Vacuum Fluctuations: Source of the Vacuum Permittivity and Speed of Light Quantum vacuum Vacuum fluctuations Permittivity of the vacuum Speed of light in the vacuum |
topic |
ddc 570 ssgn 11 misc Quantum vacuum misc Vacuum fluctuations misc Permittivity of the vacuum misc Speed of light in the vacuum |
topic_unstemmed |
ddc 570 ssgn 11 misc Quantum vacuum misc Vacuum fluctuations misc Permittivity of the vacuum misc Speed of light in the vacuum |
topic_browse |
ddc 570 ssgn 11 misc Quantum vacuum misc Vacuum fluctuations misc Permittivity of the vacuum misc Speed of light in the vacuum |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Foundations of physics |
hierarchy_parent_id |
130020907 |
dewey-tens |
570 - Life sciences; biology 530 - Physics |
hierarchy_top_title |
Foundations of physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130020907 (DE-600)421748-2 (DE-576)015562387 |
title |
Polarization of Vacuum Fluctuations: Source of the Vacuum Permittivity and Speed of Light |
ctrlnum |
(DE-627)OLC2039116230 (DE-He213)s10701-020-00339-3-p |
title_full |
Polarization of Vacuum Fluctuations: Source of the Vacuum Permittivity and Speed of Light |
author_sort |
Mainland, G. B. |
journal |
Foundations of physics |
journalStr |
Foundations of physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
457 |
author_browse |
Mainland, G. B. Mulligan, Bernard |
container_volume |
50 |
class |
570 530 VZ 11 12 5,21 ssgn |
format_se |
Aufsätze |
author-letter |
Mainland, G. B. |
doi_str_mv |
10.1007/s10701-020-00339-3 |
dewey-full |
570 530 |
title_sort |
polarization of vacuum fluctuations: source of the vacuum permittivity and speed of light |
title_auth |
Polarization of Vacuum Fluctuations: Source of the Vacuum Permittivity and Speed of Light |
abstract |
Abstract There are two types of fluctuations in the quantum vacuum: type 1 vacuum fluctuations are on shell and can interact with matter in specific, limited ways that have observable consequences; type 2 vacuum fluctuations are off shell and cannot interact with matter. A photon will polarize a type 1, bound, charged lepton–antilepton vacuum fluctuation in much the same manner that it would polarize a dielectric, suggesting the method used here for calculating the permittivity $$\epsilon _{0}$$ of the vacuum. In a model that retains only leading terms, $$\epsilon _{0} \cong (6\mu _{0}/\pi )(8e^{2}/\hbar )^{2}= 9.10\times 10^{-12}$$ C/(Vm). The calculated value for $$\epsilon _{0}$$ is 2.7% more than the accepted value. The permittivity of the vacuum, in turn, determines the speed c of light in the vacuum. Since the vacuum is at rest with respect to every inertial frame of reference, c is the same in every inertial reference frame. © The Author(s) 2020 |
abstractGer |
Abstract There are two types of fluctuations in the quantum vacuum: type 1 vacuum fluctuations are on shell and can interact with matter in specific, limited ways that have observable consequences; type 2 vacuum fluctuations are off shell and cannot interact with matter. A photon will polarize a type 1, bound, charged lepton–antilepton vacuum fluctuation in much the same manner that it would polarize a dielectric, suggesting the method used here for calculating the permittivity $$\epsilon _{0}$$ of the vacuum. In a model that retains only leading terms, $$\epsilon _{0} \cong (6\mu _{0}/\pi )(8e^{2}/\hbar )^{2}= 9.10\times 10^{-12}$$ C/(Vm). The calculated value for $$\epsilon _{0}$$ is 2.7% more than the accepted value. The permittivity of the vacuum, in turn, determines the speed c of light in the vacuum. Since the vacuum is at rest with respect to every inertial frame of reference, c is the same in every inertial reference frame. © The Author(s) 2020 |
abstract_unstemmed |
Abstract There are two types of fluctuations in the quantum vacuum: type 1 vacuum fluctuations are on shell and can interact with matter in specific, limited ways that have observable consequences; type 2 vacuum fluctuations are off shell and cannot interact with matter. A photon will polarize a type 1, bound, charged lepton–antilepton vacuum fluctuation in much the same manner that it would polarize a dielectric, suggesting the method used here for calculating the permittivity $$\epsilon _{0}$$ of the vacuum. In a model that retains only leading terms, $$\epsilon _{0} \cong (6\mu _{0}/\pi )(8e^{2}/\hbar )^{2}= 9.10\times 10^{-12}$$ C/(Vm). The calculated value for $$\epsilon _{0}$$ is 2.7% more than the accepted value. The permittivity of the vacuum, in turn, determines the speed c of light in the vacuum. Since the vacuum is at rest with respect to every inertial frame of reference, c is the same in every inertial reference frame. © The Author(s) 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_22 |
container_issue |
5 |
title_short |
Polarization of Vacuum Fluctuations: Source of the Vacuum Permittivity and Speed of Light |
url |
https://doi.org/10.1007/s10701-020-00339-3 |
remote_bool |
false |
author2 |
Mulligan, Bernard |
author2Str |
Mulligan, Bernard |
ppnlink |
130020907 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10701-020-00339-3 |
up_date |
2024-07-03T21:36:25.646Z |
_version_ |
1803595374288437248 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2039116230</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504132914.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10701-020-00339-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2039116230</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10701-020-00339-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="a">12</subfield><subfield code="a">5,21</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mainland, G. B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Polarization of Vacuum Fluctuations: Source of the Vacuum Permittivity and Speed of Light</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract There are two types of fluctuations in the quantum vacuum: type 1 vacuum fluctuations are on shell and can interact with matter in specific, limited ways that have observable consequences; type 2 vacuum fluctuations are off shell and cannot interact with matter. A photon will polarize a type 1, bound, charged lepton–antilepton vacuum fluctuation in much the same manner that it would polarize a dielectric, suggesting the method used here for calculating the permittivity $$\epsilon _{0}$$ of the vacuum. In a model that retains only leading terms, $$\epsilon _{0} \cong (6\mu _{0}/\pi )(8e^{2}/\hbar )^{2}= 9.10\times 10^{-12}$$ C/(Vm). The calculated value for $$\epsilon _{0}$$ is 2.7% more than the accepted value. The permittivity of the vacuum, in turn, determines the speed c of light in the vacuum. Since the vacuum is at rest with respect to every inertial frame of reference, c is the same in every inertial reference frame.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum vacuum</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vacuum fluctuations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Permittivity of the vacuum</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Speed of light in the vacuum</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mulligan, Bernard</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Foundations of physics</subfield><subfield code="d">Springer US, 1970</subfield><subfield code="g">50(2020), 5 vom: 27. März, Seite 457-480</subfield><subfield code="w">(DE-627)130020907</subfield><subfield code="w">(DE-600)421748-2</subfield><subfield code="w">(DE-576)015562387</subfield><subfield code="x">0015-9018</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:50</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:5</subfield><subfield code="g">day:27</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:457-480</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10701-020-00339-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">50</subfield><subfield code="j">2020</subfield><subfield code="e">5</subfield><subfield code="b">27</subfield><subfield code="c">03</subfield><subfield code="h">457-480</subfield></datafield></record></collection>
|
score |
7.3998127 |