The influence of aluminum oxide on the heat resistance of the coatings based on the zirconium boride–silicon composite
Abstract The process of the formation of coatings based on zirconium boride, silicon, and aluminum oxide on graphite by the thermal treatment of the mixtures of the initial components in air has been studied. During the chemical reactions, a vitreous melt encapsulating the particles of zirconium bor...
Ausführliche Beschreibung
Autor*in: |
Ban’kovskaya, I. B. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Pleiades Publishing, Ltd. 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Glass physics and chemistry - Pleiades Publishing, 1993, 42(2016), 1 vom: Jan., Seite 59-63 |
---|---|
Übergeordnetes Werk: |
volume:42 ; year:2016 ; number:1 ; month:01 ; pages:59-63 |
Links: |
---|
DOI / URN: |
10.1134/S108765961601003X |
---|
Katalog-ID: |
OLC2039277692 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2039277692 | ||
003 | DE-627 | ||
005 | 20230516072707.0 | ||
007 | tu | ||
008 | 200819s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1134/S108765961601003X |2 doi | |
035 | |a (DE-627)OLC2039277692 | ||
035 | |a (DE-He213)S108765961601003X-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 330 |q VZ |
100 | 1 | |a Ban’kovskaya, I. B. |e verfasserin |4 aut | |
245 | 1 | 0 | |a The influence of aluminum oxide on the heat resistance of the coatings based on the zirconium boride–silicon composite |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Pleiades Publishing, Ltd. 2016 | ||
520 | |a Abstract The process of the formation of coatings based on zirconium boride, silicon, and aluminum oxide on graphite by the thermal treatment of the mixtures of the initial components in air has been studied. During the chemical reactions, a vitreous melt encapsulating the particles of zirconium boride and silicon is formed, which provides high heat resistance of the material. The effect of the composition, temperature, and mode of heating on the kinetics of oxidation of graphite samples with the coatings during their thermal treatment at 1400°C has been studied via the methods of thermogravimetric, thermal, and X-ray phase (XPA) analyses. The compositions of the coatings that effectively protect graphite from oxidation in air at temperatures of up to 1400°C have been proposed based on the results of the study. | ||
650 | 4 | |a zirconium boride | |
650 | 4 | |a silicon | |
650 | 4 | |a aluminum oxide | |
650 | 4 | |a vitreous melt | |
650 | 4 | |a graphite | |
650 | 4 | |a protection from oxidation | |
700 | 1 | |a Sazonova, M. V. |4 aut | |
700 | 1 | |a Kolovertnov, D. V. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Glass physics and chemistry |d Pleiades Publishing, 1993 |g 42(2016), 1 vom: Jan., Seite 59-63 |w (DE-627)182171957 |w (DE-600)1182895-X |w (DE-576)9182171955 |x 1087-6596 |7 nnns |
773 | 1 | 8 | |g volume:42 |g year:2016 |g number:1 |g month:01 |g pages:59-63 |
856 | 4 | 1 | |u https://doi.org/10.1134/S108765961601003X |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 42 |j 2016 |e 1 |c 01 |h 59-63 |
author_variant |
i b b ib ibb m v s mv mvs d v k dv dvk |
---|---|
matchkey_str |
article:10876596:2016----::hifuneflmnmxdoteeteitnefhcaigbsdnhzro |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1134/S108765961601003X doi (DE-627)OLC2039277692 (DE-He213)S108765961601003X-p DE-627 ger DE-627 rakwb eng 330 VZ Ban’kovskaya, I. B. verfasserin aut The influence of aluminum oxide on the heat resistance of the coatings based on the zirconium boride–silicon composite 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2016 Abstract The process of the formation of coatings based on zirconium boride, silicon, and aluminum oxide on graphite by the thermal treatment of the mixtures of the initial components in air has been studied. During the chemical reactions, a vitreous melt encapsulating the particles of zirconium boride and silicon is formed, which provides high heat resistance of the material. The effect of the composition, temperature, and mode of heating on the kinetics of oxidation of graphite samples with the coatings during their thermal treatment at 1400°C has been studied via the methods of thermogravimetric, thermal, and X-ray phase (XPA) analyses. The compositions of the coatings that effectively protect graphite from oxidation in air at temperatures of up to 1400°C have been proposed based on the results of the study. zirconium boride silicon aluminum oxide vitreous melt graphite protection from oxidation Sazonova, M. V. aut Kolovertnov, D. V. aut Enthalten in Glass physics and chemistry Pleiades Publishing, 1993 42(2016), 1 vom: Jan., Seite 59-63 (DE-627)182171957 (DE-600)1182895-X (DE-576)9182171955 1087-6596 nnns volume:42 year:2016 number:1 month:01 pages:59-63 https://doi.org/10.1134/S108765961601003X lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 42 2016 1 01 59-63 |
spelling |
10.1134/S108765961601003X doi (DE-627)OLC2039277692 (DE-He213)S108765961601003X-p DE-627 ger DE-627 rakwb eng 330 VZ Ban’kovskaya, I. B. verfasserin aut The influence of aluminum oxide on the heat resistance of the coatings based on the zirconium boride–silicon composite 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2016 Abstract The process of the formation of coatings based on zirconium boride, silicon, and aluminum oxide on graphite by the thermal treatment of the mixtures of the initial components in air has been studied. During the chemical reactions, a vitreous melt encapsulating the particles of zirconium boride and silicon is formed, which provides high heat resistance of the material. The effect of the composition, temperature, and mode of heating on the kinetics of oxidation of graphite samples with the coatings during their thermal treatment at 1400°C has been studied via the methods of thermogravimetric, thermal, and X-ray phase (XPA) analyses. The compositions of the coatings that effectively protect graphite from oxidation in air at temperatures of up to 1400°C have been proposed based on the results of the study. zirconium boride silicon aluminum oxide vitreous melt graphite protection from oxidation Sazonova, M. V. aut Kolovertnov, D. V. aut Enthalten in Glass physics and chemistry Pleiades Publishing, 1993 42(2016), 1 vom: Jan., Seite 59-63 (DE-627)182171957 (DE-600)1182895-X (DE-576)9182171955 1087-6596 nnns volume:42 year:2016 number:1 month:01 pages:59-63 https://doi.org/10.1134/S108765961601003X lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 42 2016 1 01 59-63 |
allfields_unstemmed |
10.1134/S108765961601003X doi (DE-627)OLC2039277692 (DE-He213)S108765961601003X-p DE-627 ger DE-627 rakwb eng 330 VZ Ban’kovskaya, I. B. verfasserin aut The influence of aluminum oxide on the heat resistance of the coatings based on the zirconium boride–silicon composite 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2016 Abstract The process of the formation of coatings based on zirconium boride, silicon, and aluminum oxide on graphite by the thermal treatment of the mixtures of the initial components in air has been studied. During the chemical reactions, a vitreous melt encapsulating the particles of zirconium boride and silicon is formed, which provides high heat resistance of the material. The effect of the composition, temperature, and mode of heating on the kinetics of oxidation of graphite samples with the coatings during their thermal treatment at 1400°C has been studied via the methods of thermogravimetric, thermal, and X-ray phase (XPA) analyses. The compositions of the coatings that effectively protect graphite from oxidation in air at temperatures of up to 1400°C have been proposed based on the results of the study. zirconium boride silicon aluminum oxide vitreous melt graphite protection from oxidation Sazonova, M. V. aut Kolovertnov, D. V. aut Enthalten in Glass physics and chemistry Pleiades Publishing, 1993 42(2016), 1 vom: Jan., Seite 59-63 (DE-627)182171957 (DE-600)1182895-X (DE-576)9182171955 1087-6596 nnns volume:42 year:2016 number:1 month:01 pages:59-63 https://doi.org/10.1134/S108765961601003X lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 42 2016 1 01 59-63 |
allfieldsGer |
10.1134/S108765961601003X doi (DE-627)OLC2039277692 (DE-He213)S108765961601003X-p DE-627 ger DE-627 rakwb eng 330 VZ Ban’kovskaya, I. B. verfasserin aut The influence of aluminum oxide on the heat resistance of the coatings based on the zirconium boride–silicon composite 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2016 Abstract The process of the formation of coatings based on zirconium boride, silicon, and aluminum oxide on graphite by the thermal treatment of the mixtures of the initial components in air has been studied. During the chemical reactions, a vitreous melt encapsulating the particles of zirconium boride and silicon is formed, which provides high heat resistance of the material. The effect of the composition, temperature, and mode of heating on the kinetics of oxidation of graphite samples with the coatings during their thermal treatment at 1400°C has been studied via the methods of thermogravimetric, thermal, and X-ray phase (XPA) analyses. The compositions of the coatings that effectively protect graphite from oxidation in air at temperatures of up to 1400°C have been proposed based on the results of the study. zirconium boride silicon aluminum oxide vitreous melt graphite protection from oxidation Sazonova, M. V. aut Kolovertnov, D. V. aut Enthalten in Glass physics and chemistry Pleiades Publishing, 1993 42(2016), 1 vom: Jan., Seite 59-63 (DE-627)182171957 (DE-600)1182895-X (DE-576)9182171955 1087-6596 nnns volume:42 year:2016 number:1 month:01 pages:59-63 https://doi.org/10.1134/S108765961601003X lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 42 2016 1 01 59-63 |
allfieldsSound |
10.1134/S108765961601003X doi (DE-627)OLC2039277692 (DE-He213)S108765961601003X-p DE-627 ger DE-627 rakwb eng 330 VZ Ban’kovskaya, I. B. verfasserin aut The influence of aluminum oxide on the heat resistance of the coatings based on the zirconium boride–silicon composite 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2016 Abstract The process of the formation of coatings based on zirconium boride, silicon, and aluminum oxide on graphite by the thermal treatment of the mixtures of the initial components in air has been studied. During the chemical reactions, a vitreous melt encapsulating the particles of zirconium boride and silicon is formed, which provides high heat resistance of the material. The effect of the composition, temperature, and mode of heating on the kinetics of oxidation of graphite samples with the coatings during their thermal treatment at 1400°C has been studied via the methods of thermogravimetric, thermal, and X-ray phase (XPA) analyses. The compositions of the coatings that effectively protect graphite from oxidation in air at temperatures of up to 1400°C have been proposed based on the results of the study. zirconium boride silicon aluminum oxide vitreous melt graphite protection from oxidation Sazonova, M. V. aut Kolovertnov, D. V. aut Enthalten in Glass physics and chemistry Pleiades Publishing, 1993 42(2016), 1 vom: Jan., Seite 59-63 (DE-627)182171957 (DE-600)1182895-X (DE-576)9182171955 1087-6596 nnns volume:42 year:2016 number:1 month:01 pages:59-63 https://doi.org/10.1134/S108765961601003X lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 42 2016 1 01 59-63 |
language |
English |
source |
Enthalten in Glass physics and chemistry 42(2016), 1 vom: Jan., Seite 59-63 volume:42 year:2016 number:1 month:01 pages:59-63 |
sourceStr |
Enthalten in Glass physics and chemistry 42(2016), 1 vom: Jan., Seite 59-63 volume:42 year:2016 number:1 month:01 pages:59-63 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
zirconium boride silicon aluminum oxide vitreous melt graphite protection from oxidation |
dewey-raw |
330 |
isfreeaccess_bool |
false |
container_title |
Glass physics and chemistry |
authorswithroles_txt_mv |
Ban’kovskaya, I. B. @@aut@@ Sazonova, M. V. @@aut@@ Kolovertnov, D. V. @@aut@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
182171957 |
dewey-sort |
3330 |
id |
OLC2039277692 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2039277692</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230516072707.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S108765961601003X</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2039277692</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S108765961601003X-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ban’kovskaya, I. B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The influence of aluminum oxide on the heat resistance of the coatings based on the zirconium boride–silicon composite</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The process of the formation of coatings based on zirconium boride, silicon, and aluminum oxide on graphite by the thermal treatment of the mixtures of the initial components in air has been studied. During the chemical reactions, a vitreous melt encapsulating the particles of zirconium boride and silicon is formed, which provides high heat resistance of the material. The effect of the composition, temperature, and mode of heating on the kinetics of oxidation of graphite samples with the coatings during their thermal treatment at 1400°C has been studied via the methods of thermogravimetric, thermal, and X-ray phase (XPA) analyses. The compositions of the coatings that effectively protect graphite from oxidation in air at temperatures of up to 1400°C have been proposed based on the results of the study.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">zirconium boride</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">silicon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aluminum oxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vitreous melt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">graphite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">protection from oxidation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sazonova, M. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kolovertnov, D. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Glass physics and chemistry</subfield><subfield code="d">Pleiades Publishing, 1993</subfield><subfield code="g">42(2016), 1 vom: Jan., Seite 59-63</subfield><subfield code="w">(DE-627)182171957</subfield><subfield code="w">(DE-600)1182895-X</subfield><subfield code="w">(DE-576)9182171955</subfield><subfield code="x">1087-6596</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:42</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:59-63</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S108765961601003X</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">42</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="c">01</subfield><subfield code="h">59-63</subfield></datafield></record></collection>
|
author |
Ban’kovskaya, I. B. |
spellingShingle |
Ban’kovskaya, I. B. ddc 330 misc zirconium boride misc silicon misc aluminum oxide misc vitreous melt misc graphite misc protection from oxidation The influence of aluminum oxide on the heat resistance of the coatings based on the zirconium boride–silicon composite |
authorStr |
Ban’kovskaya, I. B. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)182171957 |
format |
Article |
dewey-ones |
330 - Economics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1087-6596 |
topic_title |
330 VZ The influence of aluminum oxide on the heat resistance of the coatings based on the zirconium boride–silicon composite zirconium boride silicon aluminum oxide vitreous melt graphite protection from oxidation |
topic |
ddc 330 misc zirconium boride misc silicon misc aluminum oxide misc vitreous melt misc graphite misc protection from oxidation |
topic_unstemmed |
ddc 330 misc zirconium boride misc silicon misc aluminum oxide misc vitreous melt misc graphite misc protection from oxidation |
topic_browse |
ddc 330 misc zirconium boride misc silicon misc aluminum oxide misc vitreous melt misc graphite misc protection from oxidation |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Glass physics and chemistry |
hierarchy_parent_id |
182171957 |
dewey-tens |
330 - Economics |
hierarchy_top_title |
Glass physics and chemistry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)182171957 (DE-600)1182895-X (DE-576)9182171955 |
title |
The influence of aluminum oxide on the heat resistance of the coatings based on the zirconium boride–silicon composite |
ctrlnum |
(DE-627)OLC2039277692 (DE-He213)S108765961601003X-p |
title_full |
The influence of aluminum oxide on the heat resistance of the coatings based on the zirconium boride–silicon composite |
author_sort |
Ban’kovskaya, I. B. |
journal |
Glass physics and chemistry |
journalStr |
Glass physics and chemistry |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
59 |
author_browse |
Ban’kovskaya, I. B. Sazonova, M. V. Kolovertnov, D. V. |
container_volume |
42 |
class |
330 VZ |
format_se |
Aufsätze |
author-letter |
Ban’kovskaya, I. B. |
doi_str_mv |
10.1134/S108765961601003X |
dewey-full |
330 |
title_sort |
the influence of aluminum oxide on the heat resistance of the coatings based on the zirconium boride–silicon composite |
title_auth |
The influence of aluminum oxide on the heat resistance of the coatings based on the zirconium boride–silicon composite |
abstract |
Abstract The process of the formation of coatings based on zirconium boride, silicon, and aluminum oxide on graphite by the thermal treatment of the mixtures of the initial components in air has been studied. During the chemical reactions, a vitreous melt encapsulating the particles of zirconium boride and silicon is formed, which provides high heat resistance of the material. The effect of the composition, temperature, and mode of heating on the kinetics of oxidation of graphite samples with the coatings during their thermal treatment at 1400°C has been studied via the methods of thermogravimetric, thermal, and X-ray phase (XPA) analyses. The compositions of the coatings that effectively protect graphite from oxidation in air at temperatures of up to 1400°C have been proposed based on the results of the study. © Pleiades Publishing, Ltd. 2016 |
abstractGer |
Abstract The process of the formation of coatings based on zirconium boride, silicon, and aluminum oxide on graphite by the thermal treatment of the mixtures of the initial components in air has been studied. During the chemical reactions, a vitreous melt encapsulating the particles of zirconium boride and silicon is formed, which provides high heat resistance of the material. The effect of the composition, temperature, and mode of heating on the kinetics of oxidation of graphite samples with the coatings during their thermal treatment at 1400°C has been studied via the methods of thermogravimetric, thermal, and X-ray phase (XPA) analyses. The compositions of the coatings that effectively protect graphite from oxidation in air at temperatures of up to 1400°C have been proposed based on the results of the study. © Pleiades Publishing, Ltd. 2016 |
abstract_unstemmed |
Abstract The process of the formation of coatings based on zirconium boride, silicon, and aluminum oxide on graphite by the thermal treatment of the mixtures of the initial components in air has been studied. During the chemical reactions, a vitreous melt encapsulating the particles of zirconium boride and silicon is formed, which provides high heat resistance of the material. The effect of the composition, temperature, and mode of heating on the kinetics of oxidation of graphite samples with the coatings during their thermal treatment at 1400°C has been studied via the methods of thermogravimetric, thermal, and X-ray phase (XPA) analyses. The compositions of the coatings that effectively protect graphite from oxidation in air at temperatures of up to 1400°C have been proposed based on the results of the study. © Pleiades Publishing, Ltd. 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 |
container_issue |
1 |
title_short |
The influence of aluminum oxide on the heat resistance of the coatings based on the zirconium boride–silicon composite |
url |
https://doi.org/10.1134/S108765961601003X |
remote_bool |
false |
author2 |
Sazonova, M. V. Kolovertnov, D. V. |
author2Str |
Sazonova, M. V. Kolovertnov, D. V. |
ppnlink |
182171957 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S108765961601003X |
up_date |
2024-07-03T22:08:56.754Z |
_version_ |
1803597420172410880 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2039277692</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230516072707.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S108765961601003X</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2039277692</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S108765961601003X-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ban’kovskaya, I. B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The influence of aluminum oxide on the heat resistance of the coatings based on the zirconium boride–silicon composite</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The process of the formation of coatings based on zirconium boride, silicon, and aluminum oxide on graphite by the thermal treatment of the mixtures of the initial components in air has been studied. During the chemical reactions, a vitreous melt encapsulating the particles of zirconium boride and silicon is formed, which provides high heat resistance of the material. The effect of the composition, temperature, and mode of heating on the kinetics of oxidation of graphite samples with the coatings during their thermal treatment at 1400°C has been studied via the methods of thermogravimetric, thermal, and X-ray phase (XPA) analyses. The compositions of the coatings that effectively protect graphite from oxidation in air at temperatures of up to 1400°C have been proposed based on the results of the study.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">zirconium boride</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">silicon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aluminum oxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vitreous melt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">graphite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">protection from oxidation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sazonova, M. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kolovertnov, D. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Glass physics and chemistry</subfield><subfield code="d">Pleiades Publishing, 1993</subfield><subfield code="g">42(2016), 1 vom: Jan., Seite 59-63</subfield><subfield code="w">(DE-627)182171957</subfield><subfield code="w">(DE-600)1182895-X</subfield><subfield code="w">(DE-576)9182171955</subfield><subfield code="x">1087-6596</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:42</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:59-63</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S108765961601003X</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">42</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="c">01</subfield><subfield code="h">59-63</subfield></datafield></record></collection>
|
score |
7.4010057 |