A heuristic algorithm for the strip packing problem
Abstract The two-dimensional strip packing problem is to pack a given set of rectangles into a strip with a given width and infinite height so as to minimize the required height of the packing. From the computational point of view, the strip packing problem is an NP-hard problem. With the B*-tree re...
Ausführliche Beschreibung
Autor*in: |
Chen, Jianli [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2012 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of heuristics - Springer US, 1995, 18(2012), 4 vom: 30. Mai, Seite 677-697 |
---|---|
Übergeordnetes Werk: |
volume:18 ; year:2012 ; number:4 ; day:30 ; month:05 ; pages:677-697 |
Links: |
---|
DOI / URN: |
10.1007/s10732-012-9203-9 |
---|
Katalog-ID: |
OLC2039387897 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2039387897 | ||
003 | DE-627 | ||
005 | 20230503070056.0 | ||
007 | tu | ||
008 | 200819s2012 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10732-012-9203-9 |2 doi | |
035 | |a (DE-627)OLC2039387897 | ||
035 | |a (DE-He213)s10732-012-9203-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 3,2 |a 24 |2 ssgn | ||
100 | 1 | |a Chen, Jianli |e verfasserin |4 aut | |
245 | 1 | 0 | |a A heuristic algorithm for the strip packing problem |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2012 | ||
520 | |a Abstract The two-dimensional strip packing problem is to pack a given set of rectangles into a strip with a given width and infinite height so as to minimize the required height of the packing. From the computational point of view, the strip packing problem is an NP-hard problem. With the B*-tree representation, this paper first presents a heuristic packing strategy which evaluates the positions used by the rectangles. Then an effective local search method is introduced to improve the results and a heuristic algorithm (HA) is further developed to find a desirable solution. Computational results on randomly generated instances and popular test instances show that the proposed method is efficient for the strip packing problem. | ||
650 | 4 | |a Strip packing problem | |
650 | 4 | |a B*-tree | |
650 | 4 | |a Local search | |
650 | 4 | |a Heuristic algorithm | |
700 | 1 | |a Zhu, Wenxing |4 aut | |
700 | 1 | |a Peng, Zheng |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of heuristics |d Springer US, 1995 |g 18(2012), 4 vom: 30. Mai, Seite 677-697 |w (DE-627)215140281 |w (DE-600)1333974-6 |w (DE-576)063244721 |x 1381-1231 |7 nnns |
773 | 1 | 8 | |g volume:18 |g year:2012 |g number:4 |g day:30 |g month:05 |g pages:677-697 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10732-012-9203-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-WIW | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_26 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4029 | ||
951 | |a AR | ||
952 | |d 18 |j 2012 |e 4 |b 30 |c 05 |h 677-697 |
author_variant |
j c jc w z wz z p zp |
---|---|
matchkey_str |
article:13811231:2012----::huitcloihfrhsrpa |
hierarchy_sort_str |
2012 |
publishDate |
2012 |
allfields |
10.1007/s10732-012-9203-9 doi (DE-627)OLC2039387897 (DE-He213)s10732-012-9203-9-p DE-627 ger DE-627 rakwb eng 510 VZ 3,2 24 ssgn Chen, Jianli verfasserin aut A heuristic algorithm for the strip packing problem 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2012 Abstract The two-dimensional strip packing problem is to pack a given set of rectangles into a strip with a given width and infinite height so as to minimize the required height of the packing. From the computational point of view, the strip packing problem is an NP-hard problem. With the B*-tree representation, this paper first presents a heuristic packing strategy which evaluates the positions used by the rectangles. Then an effective local search method is introduced to improve the results and a heuristic algorithm (HA) is further developed to find a desirable solution. Computational results on randomly generated instances and popular test instances show that the proposed method is efficient for the strip packing problem. Strip packing problem B*-tree Local search Heuristic algorithm Zhu, Wenxing aut Peng, Zheng aut Enthalten in Journal of heuristics Springer US, 1995 18(2012), 4 vom: 30. Mai, Seite 677-697 (DE-627)215140281 (DE-600)1333974-6 (DE-576)063244721 1381-1231 nnns volume:18 year:2012 number:4 day:30 month:05 pages:677-697 https://doi.org/10.1007/s10732-012-9203-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_26 GBV_ILN_70 GBV_ILN_2108 GBV_ILN_4012 GBV_ILN_4029 AR 18 2012 4 30 05 677-697 |
spelling |
10.1007/s10732-012-9203-9 doi (DE-627)OLC2039387897 (DE-He213)s10732-012-9203-9-p DE-627 ger DE-627 rakwb eng 510 VZ 3,2 24 ssgn Chen, Jianli verfasserin aut A heuristic algorithm for the strip packing problem 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2012 Abstract The two-dimensional strip packing problem is to pack a given set of rectangles into a strip with a given width and infinite height so as to minimize the required height of the packing. From the computational point of view, the strip packing problem is an NP-hard problem. With the B*-tree representation, this paper first presents a heuristic packing strategy which evaluates the positions used by the rectangles. Then an effective local search method is introduced to improve the results and a heuristic algorithm (HA) is further developed to find a desirable solution. Computational results on randomly generated instances and popular test instances show that the proposed method is efficient for the strip packing problem. Strip packing problem B*-tree Local search Heuristic algorithm Zhu, Wenxing aut Peng, Zheng aut Enthalten in Journal of heuristics Springer US, 1995 18(2012), 4 vom: 30. Mai, Seite 677-697 (DE-627)215140281 (DE-600)1333974-6 (DE-576)063244721 1381-1231 nnns volume:18 year:2012 number:4 day:30 month:05 pages:677-697 https://doi.org/10.1007/s10732-012-9203-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_26 GBV_ILN_70 GBV_ILN_2108 GBV_ILN_4012 GBV_ILN_4029 AR 18 2012 4 30 05 677-697 |
allfields_unstemmed |
10.1007/s10732-012-9203-9 doi (DE-627)OLC2039387897 (DE-He213)s10732-012-9203-9-p DE-627 ger DE-627 rakwb eng 510 VZ 3,2 24 ssgn Chen, Jianli verfasserin aut A heuristic algorithm for the strip packing problem 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2012 Abstract The two-dimensional strip packing problem is to pack a given set of rectangles into a strip with a given width and infinite height so as to minimize the required height of the packing. From the computational point of view, the strip packing problem is an NP-hard problem. With the B*-tree representation, this paper first presents a heuristic packing strategy which evaluates the positions used by the rectangles. Then an effective local search method is introduced to improve the results and a heuristic algorithm (HA) is further developed to find a desirable solution. Computational results on randomly generated instances and popular test instances show that the proposed method is efficient for the strip packing problem. Strip packing problem B*-tree Local search Heuristic algorithm Zhu, Wenxing aut Peng, Zheng aut Enthalten in Journal of heuristics Springer US, 1995 18(2012), 4 vom: 30. Mai, Seite 677-697 (DE-627)215140281 (DE-600)1333974-6 (DE-576)063244721 1381-1231 nnns volume:18 year:2012 number:4 day:30 month:05 pages:677-697 https://doi.org/10.1007/s10732-012-9203-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_26 GBV_ILN_70 GBV_ILN_2108 GBV_ILN_4012 GBV_ILN_4029 AR 18 2012 4 30 05 677-697 |
allfieldsGer |
10.1007/s10732-012-9203-9 doi (DE-627)OLC2039387897 (DE-He213)s10732-012-9203-9-p DE-627 ger DE-627 rakwb eng 510 VZ 3,2 24 ssgn Chen, Jianli verfasserin aut A heuristic algorithm for the strip packing problem 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2012 Abstract The two-dimensional strip packing problem is to pack a given set of rectangles into a strip with a given width and infinite height so as to minimize the required height of the packing. From the computational point of view, the strip packing problem is an NP-hard problem. With the B*-tree representation, this paper first presents a heuristic packing strategy which evaluates the positions used by the rectangles. Then an effective local search method is introduced to improve the results and a heuristic algorithm (HA) is further developed to find a desirable solution. Computational results on randomly generated instances and popular test instances show that the proposed method is efficient for the strip packing problem. Strip packing problem B*-tree Local search Heuristic algorithm Zhu, Wenxing aut Peng, Zheng aut Enthalten in Journal of heuristics Springer US, 1995 18(2012), 4 vom: 30. Mai, Seite 677-697 (DE-627)215140281 (DE-600)1333974-6 (DE-576)063244721 1381-1231 nnns volume:18 year:2012 number:4 day:30 month:05 pages:677-697 https://doi.org/10.1007/s10732-012-9203-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_26 GBV_ILN_70 GBV_ILN_2108 GBV_ILN_4012 GBV_ILN_4029 AR 18 2012 4 30 05 677-697 |
allfieldsSound |
10.1007/s10732-012-9203-9 doi (DE-627)OLC2039387897 (DE-He213)s10732-012-9203-9-p DE-627 ger DE-627 rakwb eng 510 VZ 3,2 24 ssgn Chen, Jianli verfasserin aut A heuristic algorithm for the strip packing problem 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2012 Abstract The two-dimensional strip packing problem is to pack a given set of rectangles into a strip with a given width and infinite height so as to minimize the required height of the packing. From the computational point of view, the strip packing problem is an NP-hard problem. With the B*-tree representation, this paper first presents a heuristic packing strategy which evaluates the positions used by the rectangles. Then an effective local search method is introduced to improve the results and a heuristic algorithm (HA) is further developed to find a desirable solution. Computational results on randomly generated instances and popular test instances show that the proposed method is efficient for the strip packing problem. Strip packing problem B*-tree Local search Heuristic algorithm Zhu, Wenxing aut Peng, Zheng aut Enthalten in Journal of heuristics Springer US, 1995 18(2012), 4 vom: 30. Mai, Seite 677-697 (DE-627)215140281 (DE-600)1333974-6 (DE-576)063244721 1381-1231 nnns volume:18 year:2012 number:4 day:30 month:05 pages:677-697 https://doi.org/10.1007/s10732-012-9203-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_26 GBV_ILN_70 GBV_ILN_2108 GBV_ILN_4012 GBV_ILN_4029 AR 18 2012 4 30 05 677-697 |
language |
English |
source |
Enthalten in Journal of heuristics 18(2012), 4 vom: 30. Mai, Seite 677-697 volume:18 year:2012 number:4 day:30 month:05 pages:677-697 |
sourceStr |
Enthalten in Journal of heuristics 18(2012), 4 vom: 30. Mai, Seite 677-697 volume:18 year:2012 number:4 day:30 month:05 pages:677-697 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Strip packing problem B*-tree Local search Heuristic algorithm |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of heuristics |
authorswithroles_txt_mv |
Chen, Jianli @@aut@@ Zhu, Wenxing @@aut@@ Peng, Zheng @@aut@@ |
publishDateDaySort_date |
2012-05-30T00:00:00Z |
hierarchy_top_id |
215140281 |
dewey-sort |
3510 |
id |
OLC2039387897 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2039387897</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503070056.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10732-012-9203-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2039387897</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10732-012-9203-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">3,2</subfield><subfield code="a">24</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Jianli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A heuristic algorithm for the strip packing problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The two-dimensional strip packing problem is to pack a given set of rectangles into a strip with a given width and infinite height so as to minimize the required height of the packing. From the computational point of view, the strip packing problem is an NP-hard problem. With the B*-tree representation, this paper first presents a heuristic packing strategy which evaluates the positions used by the rectangles. Then an effective local search method is introduced to improve the results and a heuristic algorithm (HA) is further developed to find a desirable solution. Computational results on randomly generated instances and popular test instances show that the proposed method is efficient for the strip packing problem.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strip packing problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">B*-tree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local search</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heuristic algorithm</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Wenxing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Zheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of heuristics</subfield><subfield code="d">Springer US, 1995</subfield><subfield code="g">18(2012), 4 vom: 30. Mai, Seite 677-697</subfield><subfield code="w">(DE-627)215140281</subfield><subfield code="w">(DE-600)1333974-6</subfield><subfield code="w">(DE-576)063244721</subfield><subfield code="x">1381-1231</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:4</subfield><subfield code="g">day:30</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:677-697</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10732-012-9203-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2012</subfield><subfield code="e">4</subfield><subfield code="b">30</subfield><subfield code="c">05</subfield><subfield code="h">677-697</subfield></datafield></record></collection>
|
author |
Chen, Jianli |
spellingShingle |
Chen, Jianli ddc 510 ssgn 3,2 misc Strip packing problem misc B*-tree misc Local search misc Heuristic algorithm A heuristic algorithm for the strip packing problem |
authorStr |
Chen, Jianli |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)215140281 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1381-1231 |
topic_title |
510 VZ 3,2 24 ssgn A heuristic algorithm for the strip packing problem Strip packing problem B*-tree Local search Heuristic algorithm |
topic |
ddc 510 ssgn 3,2 misc Strip packing problem misc B*-tree misc Local search misc Heuristic algorithm |
topic_unstemmed |
ddc 510 ssgn 3,2 misc Strip packing problem misc B*-tree misc Local search misc Heuristic algorithm |
topic_browse |
ddc 510 ssgn 3,2 misc Strip packing problem misc B*-tree misc Local search misc Heuristic algorithm |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of heuristics |
hierarchy_parent_id |
215140281 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of heuristics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)215140281 (DE-600)1333974-6 (DE-576)063244721 |
title |
A heuristic algorithm for the strip packing problem |
ctrlnum |
(DE-627)OLC2039387897 (DE-He213)s10732-012-9203-9-p |
title_full |
A heuristic algorithm for the strip packing problem |
author_sort |
Chen, Jianli |
journal |
Journal of heuristics |
journalStr |
Journal of heuristics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
677 |
author_browse |
Chen, Jianli Zhu, Wenxing Peng, Zheng |
container_volume |
18 |
class |
510 VZ 3,2 24 ssgn |
format_se |
Aufsätze |
author-letter |
Chen, Jianli |
doi_str_mv |
10.1007/s10732-012-9203-9 |
dewey-full |
510 |
title_sort |
a heuristic algorithm for the strip packing problem |
title_auth |
A heuristic algorithm for the strip packing problem |
abstract |
Abstract The two-dimensional strip packing problem is to pack a given set of rectangles into a strip with a given width and infinite height so as to minimize the required height of the packing. From the computational point of view, the strip packing problem is an NP-hard problem. With the B*-tree representation, this paper first presents a heuristic packing strategy which evaluates the positions used by the rectangles. Then an effective local search method is introduced to improve the results and a heuristic algorithm (HA) is further developed to find a desirable solution. Computational results on randomly generated instances and popular test instances show that the proposed method is efficient for the strip packing problem. © Springer Science+Business Media, LLC 2012 |
abstractGer |
Abstract The two-dimensional strip packing problem is to pack a given set of rectangles into a strip with a given width and infinite height so as to minimize the required height of the packing. From the computational point of view, the strip packing problem is an NP-hard problem. With the B*-tree representation, this paper first presents a heuristic packing strategy which evaluates the positions used by the rectangles. Then an effective local search method is introduced to improve the results and a heuristic algorithm (HA) is further developed to find a desirable solution. Computational results on randomly generated instances and popular test instances show that the proposed method is efficient for the strip packing problem. © Springer Science+Business Media, LLC 2012 |
abstract_unstemmed |
Abstract The two-dimensional strip packing problem is to pack a given set of rectangles into a strip with a given width and infinite height so as to minimize the required height of the packing. From the computational point of view, the strip packing problem is an NP-hard problem. With the B*-tree representation, this paper first presents a heuristic packing strategy which evaluates the positions used by the rectangles. Then an effective local search method is introduced to improve the results and a heuristic algorithm (HA) is further developed to find a desirable solution. Computational results on randomly generated instances and popular test instances show that the proposed method is efficient for the strip packing problem. © Springer Science+Business Media, LLC 2012 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_26 GBV_ILN_70 GBV_ILN_2108 GBV_ILN_4012 GBV_ILN_4029 |
container_issue |
4 |
title_short |
A heuristic algorithm for the strip packing problem |
url |
https://doi.org/10.1007/s10732-012-9203-9 |
remote_bool |
false |
author2 |
Zhu, Wenxing Peng, Zheng |
author2Str |
Zhu, Wenxing Peng, Zheng |
ppnlink |
215140281 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10732-012-9203-9 |
up_date |
2024-07-03T22:38:34.159Z |
_version_ |
1803599283917684736 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2039387897</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503070056.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10732-012-9203-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2039387897</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10732-012-9203-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">3,2</subfield><subfield code="a">24</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Jianli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A heuristic algorithm for the strip packing problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The two-dimensional strip packing problem is to pack a given set of rectangles into a strip with a given width and infinite height so as to minimize the required height of the packing. From the computational point of view, the strip packing problem is an NP-hard problem. With the B*-tree representation, this paper first presents a heuristic packing strategy which evaluates the positions used by the rectangles. Then an effective local search method is introduced to improve the results and a heuristic algorithm (HA) is further developed to find a desirable solution. Computational results on randomly generated instances and popular test instances show that the proposed method is efficient for the strip packing problem.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strip packing problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">B*-tree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local search</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heuristic algorithm</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Wenxing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Zheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of heuristics</subfield><subfield code="d">Springer US, 1995</subfield><subfield code="g">18(2012), 4 vom: 30. Mai, Seite 677-697</subfield><subfield code="w">(DE-627)215140281</subfield><subfield code="w">(DE-600)1333974-6</subfield><subfield code="w">(DE-576)063244721</subfield><subfield code="x">1381-1231</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:4</subfield><subfield code="g">day:30</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:677-697</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10732-012-9203-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2012</subfield><subfield code="e">4</subfield><subfield code="b">30</subfield><subfield code="c">05</subfield><subfield code="h">677-697</subfield></datafield></record></collection>
|
score |
7.401026 |