The -conjecture and equivariant eC-invariants
Abstract. Let X be a smooth closed oriented non-spin 4-manifold with even intersection form kE8⊕nH (n≥1). The -conjecture states that n is greater than or equal to |k|. In this paper we give a proof of the -conjecture. The strategy of this paper is to use the finite dimensional approximation of the...
Ausführliche Beschreibung
Autor*in: |
Kim, Jin-Hong [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2004 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2004 |
---|
Übergeordnetes Werk: |
Enthalten in: Mathematische Annalen - Springer-Verlag, 1869, 329(2004), 1 vom: 17. Feb., Seite 31-47 |
---|---|
Übergeordnetes Werk: |
volume:329 ; year:2004 ; number:1 ; day:17 ; month:02 ; pages:31-47 |
Links: |
---|
DOI / URN: |
10.1007/s00208-004-0509-2 |
---|
Katalog-ID: |
OLC2039614265 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2039614265 | ||
003 | DE-627 | ||
005 | 20240308175858.0 | ||
007 | tu | ||
008 | 200820s2004 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00208-004-0509-2 |2 doi | |
035 | |a (DE-627)OLC2039614265 | ||
035 | |a (DE-He213)s00208-004-0509-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Kim, Jin-Hong |e verfasserin |4 aut | |
245 | 1 | 0 | |a The -conjecture and equivariant eC-invariants |
264 | 1 | |c 2004 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2004 | ||
520 | |a Abstract. Let X be a smooth closed oriented non-spin 4-manifold with even intersection form kE8⊕nH (n≥1). The -conjecture states that n is greater than or equal to |k|. In this paper we give a proof of the -conjecture. The strategy of this paper is to use the finite dimensional approximation of the map induced from the Seiberg-Witten equations and equivariant eC-invariants as in the paper of M. Furuta and Y. Kametani. | ||
650 | 4 | |a Intersection Form | |
650 | 4 | |a Dimensional Approximation | |
650 | 4 | |a Finite Dimensional Approximation | |
650 | 4 | |a Conjecture State | |
773 | 0 | 8 | |i Enthalten in |t Mathematische Annalen |d Springer-Verlag, 1869 |g 329(2004), 1 vom: 17. Feb., Seite 31-47 |w (DE-627)129060151 |w (DE-600)285-9 |w (DE-576)014390825 |x 0025-5831 |7 nnns |
773 | 1 | 8 | |g volume:329 |g year:2004 |g number:1 |g day:17 |g month:02 |g pages:31-47 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00208-004-0509-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-FOR | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2030 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.00 |j Mathematik: Allgemeines |j Mathematik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 329 |j 2004 |e 1 |b 17 |c 02 |h 31-47 |
author_variant |
j h k jhk |
---|---|
matchkey_str |
article:00255831:2004----::hcnetradqiain |
hierarchy_sort_str |
2004 |
bklnumber |
31.00 |
publishDate |
2004 |
allfields |
10.1007/s00208-004-0509-2 doi (DE-627)OLC2039614265 (DE-He213)s00208-004-0509-2-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn 31.00 bkl Kim, Jin-Hong verfasserin aut The -conjecture and equivariant eC-invariants 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2004 Abstract. Let X be a smooth closed oriented non-spin 4-manifold with even intersection form kE8⊕nH (n≥1). The -conjecture states that n is greater than or equal to |k|. In this paper we give a proof of the -conjecture. The strategy of this paper is to use the finite dimensional approximation of the map induced from the Seiberg-Witten equations and equivariant eC-invariants as in the paper of M. Furuta and Y. Kametani. Intersection Form Dimensional Approximation Finite Dimensional Approximation Conjecture State Enthalten in Mathematische Annalen Springer-Verlag, 1869 329(2004), 1 vom: 17. Feb., Seite 31-47 (DE-627)129060151 (DE-600)285-9 (DE-576)014390825 0025-5831 nnns volume:329 year:2004 number:1 day:17 month:02 pages:31-47 https://doi.org/10.1007/s00208-004-0509-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 329 2004 1 17 02 31-47 |
spelling |
10.1007/s00208-004-0509-2 doi (DE-627)OLC2039614265 (DE-He213)s00208-004-0509-2-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn 31.00 bkl Kim, Jin-Hong verfasserin aut The -conjecture and equivariant eC-invariants 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2004 Abstract. Let X be a smooth closed oriented non-spin 4-manifold with even intersection form kE8⊕nH (n≥1). The -conjecture states that n is greater than or equal to |k|. In this paper we give a proof of the -conjecture. The strategy of this paper is to use the finite dimensional approximation of the map induced from the Seiberg-Witten equations and equivariant eC-invariants as in the paper of M. Furuta and Y. Kametani. Intersection Form Dimensional Approximation Finite Dimensional Approximation Conjecture State Enthalten in Mathematische Annalen Springer-Verlag, 1869 329(2004), 1 vom: 17. Feb., Seite 31-47 (DE-627)129060151 (DE-600)285-9 (DE-576)014390825 0025-5831 nnns volume:329 year:2004 number:1 day:17 month:02 pages:31-47 https://doi.org/10.1007/s00208-004-0509-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 329 2004 1 17 02 31-47 |
allfields_unstemmed |
10.1007/s00208-004-0509-2 doi (DE-627)OLC2039614265 (DE-He213)s00208-004-0509-2-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn 31.00 bkl Kim, Jin-Hong verfasserin aut The -conjecture and equivariant eC-invariants 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2004 Abstract. Let X be a smooth closed oriented non-spin 4-manifold with even intersection form kE8⊕nH (n≥1). The -conjecture states that n is greater than or equal to |k|. In this paper we give a proof of the -conjecture. The strategy of this paper is to use the finite dimensional approximation of the map induced from the Seiberg-Witten equations and equivariant eC-invariants as in the paper of M. Furuta and Y. Kametani. Intersection Form Dimensional Approximation Finite Dimensional Approximation Conjecture State Enthalten in Mathematische Annalen Springer-Verlag, 1869 329(2004), 1 vom: 17. Feb., Seite 31-47 (DE-627)129060151 (DE-600)285-9 (DE-576)014390825 0025-5831 nnns volume:329 year:2004 number:1 day:17 month:02 pages:31-47 https://doi.org/10.1007/s00208-004-0509-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 329 2004 1 17 02 31-47 |
allfieldsGer |
10.1007/s00208-004-0509-2 doi (DE-627)OLC2039614265 (DE-He213)s00208-004-0509-2-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn 31.00 bkl Kim, Jin-Hong verfasserin aut The -conjecture and equivariant eC-invariants 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2004 Abstract. Let X be a smooth closed oriented non-spin 4-manifold with even intersection form kE8⊕nH (n≥1). The -conjecture states that n is greater than or equal to |k|. In this paper we give a proof of the -conjecture. The strategy of this paper is to use the finite dimensional approximation of the map induced from the Seiberg-Witten equations and equivariant eC-invariants as in the paper of M. Furuta and Y. Kametani. Intersection Form Dimensional Approximation Finite Dimensional Approximation Conjecture State Enthalten in Mathematische Annalen Springer-Verlag, 1869 329(2004), 1 vom: 17. Feb., Seite 31-47 (DE-627)129060151 (DE-600)285-9 (DE-576)014390825 0025-5831 nnns volume:329 year:2004 number:1 day:17 month:02 pages:31-47 https://doi.org/10.1007/s00208-004-0509-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 329 2004 1 17 02 31-47 |
allfieldsSound |
10.1007/s00208-004-0509-2 doi (DE-627)OLC2039614265 (DE-He213)s00208-004-0509-2-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn 31.00 bkl Kim, Jin-Hong verfasserin aut The -conjecture and equivariant eC-invariants 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2004 Abstract. Let X be a smooth closed oriented non-spin 4-manifold with even intersection form kE8⊕nH (n≥1). The -conjecture states that n is greater than or equal to |k|. In this paper we give a proof of the -conjecture. The strategy of this paper is to use the finite dimensional approximation of the map induced from the Seiberg-Witten equations and equivariant eC-invariants as in the paper of M. Furuta and Y. Kametani. Intersection Form Dimensional Approximation Finite Dimensional Approximation Conjecture State Enthalten in Mathematische Annalen Springer-Verlag, 1869 329(2004), 1 vom: 17. Feb., Seite 31-47 (DE-627)129060151 (DE-600)285-9 (DE-576)014390825 0025-5831 nnns volume:329 year:2004 number:1 day:17 month:02 pages:31-47 https://doi.org/10.1007/s00208-004-0509-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 329 2004 1 17 02 31-47 |
language |
English |
source |
Enthalten in Mathematische Annalen 329(2004), 1 vom: 17. Feb., Seite 31-47 volume:329 year:2004 number:1 day:17 month:02 pages:31-47 |
sourceStr |
Enthalten in Mathematische Annalen 329(2004), 1 vom: 17. Feb., Seite 31-47 volume:329 year:2004 number:1 day:17 month:02 pages:31-47 |
format_phy_str_mv |
Article |
bklname |
Mathematik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Intersection Form Dimensional Approximation Finite Dimensional Approximation Conjecture State |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Mathematische Annalen |
authorswithroles_txt_mv |
Kim, Jin-Hong @@aut@@ |
publishDateDaySort_date |
2004-02-17T00:00:00Z |
hierarchy_top_id |
129060151 |
dewey-sort |
3510 |
id |
OLC2039614265 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2039614265</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240308175858.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2004 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00208-004-0509-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2039614265</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00208-004-0509-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kim, Jin-Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The -conjecture and equivariant eC-invariants</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2004</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2004</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. Let X be a smooth closed oriented non-spin 4-manifold with even intersection form kE8⊕nH (n≥1). The -conjecture states that n is greater than or equal to |k|. In this paper we give a proof of the -conjecture. The strategy of this paper is to use the finite dimensional approximation of the map induced from the Seiberg-Witten equations and equivariant eC-invariants as in the paper of M. Furuta and Y. Kametani.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intersection Form</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dimensional Approximation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite Dimensional Approximation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conjecture State</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematische Annalen</subfield><subfield code="d">Springer-Verlag, 1869</subfield><subfield code="g">329(2004), 1 vom: 17. Feb., Seite 31-47</subfield><subfield code="w">(DE-627)129060151</subfield><subfield code="w">(DE-600)285-9</subfield><subfield code="w">(DE-576)014390825</subfield><subfield code="x">0025-5831</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:329</subfield><subfield code="g">year:2004</subfield><subfield code="g">number:1</subfield><subfield code="g">day:17</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:31-47</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00208-004-0509-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">329</subfield><subfield code="j">2004</subfield><subfield code="e">1</subfield><subfield code="b">17</subfield><subfield code="c">02</subfield><subfield code="h">31-47</subfield></datafield></record></collection>
|
author |
Kim, Jin-Hong |
spellingShingle |
Kim, Jin-Hong ddc 510 ssgn 17,1 bkl 31.00 misc Intersection Form misc Dimensional Approximation misc Finite Dimensional Approximation misc Conjecture State The -conjecture and equivariant eC-invariants |
authorStr |
Kim, Jin-Hong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129060151 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0025-5831 |
topic_title |
510 VZ 17,1 ssgn 31.00 bkl The -conjecture and equivariant eC-invariants Intersection Form Dimensional Approximation Finite Dimensional Approximation Conjecture State |
topic |
ddc 510 ssgn 17,1 bkl 31.00 misc Intersection Form misc Dimensional Approximation misc Finite Dimensional Approximation misc Conjecture State |
topic_unstemmed |
ddc 510 ssgn 17,1 bkl 31.00 misc Intersection Form misc Dimensional Approximation misc Finite Dimensional Approximation misc Conjecture State |
topic_browse |
ddc 510 ssgn 17,1 bkl 31.00 misc Intersection Form misc Dimensional Approximation misc Finite Dimensional Approximation misc Conjecture State |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Mathematische Annalen |
hierarchy_parent_id |
129060151 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Mathematische Annalen |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129060151 (DE-600)285-9 (DE-576)014390825 |
title |
The -conjecture and equivariant eC-invariants |
ctrlnum |
(DE-627)OLC2039614265 (DE-He213)s00208-004-0509-2-p |
title_full |
The -conjecture and equivariant eC-invariants |
author_sort |
Kim, Jin-Hong |
journal |
Mathematische Annalen |
journalStr |
Mathematische Annalen |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2004 |
contenttype_str_mv |
txt |
container_start_page |
31 |
author_browse |
Kim, Jin-Hong |
container_volume |
329 |
class |
510 VZ 17,1 ssgn 31.00 bkl |
format_se |
Aufsätze |
author-letter |
Kim, Jin-Hong |
doi_str_mv |
10.1007/s00208-004-0509-2 |
dewey-full |
510 |
title_sort |
the -conjecture and equivariant ec-invariants |
title_auth |
The -conjecture and equivariant eC-invariants |
abstract |
Abstract. Let X be a smooth closed oriented non-spin 4-manifold with even intersection form kE8⊕nH (n≥1). The -conjecture states that n is greater than or equal to |k|. In this paper we give a proof of the -conjecture. The strategy of this paper is to use the finite dimensional approximation of the map induced from the Seiberg-Witten equations and equivariant eC-invariants as in the paper of M. Furuta and Y. Kametani. © Springer-Verlag Berlin Heidelberg 2004 |
abstractGer |
Abstract. Let X be a smooth closed oriented non-spin 4-manifold with even intersection form kE8⊕nH (n≥1). The -conjecture states that n is greater than or equal to |k|. In this paper we give a proof of the -conjecture. The strategy of this paper is to use the finite dimensional approximation of the map induced from the Seiberg-Witten equations and equivariant eC-invariants as in the paper of M. Furuta and Y. Kametani. © Springer-Verlag Berlin Heidelberg 2004 |
abstract_unstemmed |
Abstract. Let X be a smooth closed oriented non-spin 4-manifold with even intersection form kE8⊕nH (n≥1). The -conjecture states that n is greater than or equal to |k|. In this paper we give a proof of the -conjecture. The strategy of this paper is to use the finite dimensional approximation of the map induced from the Seiberg-Witten equations and equivariant eC-invariants as in the paper of M. Furuta and Y. Kametani. © Springer-Verlag Berlin Heidelberg 2004 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 |
container_issue |
1 |
title_short |
The -conjecture and equivariant eC-invariants |
url |
https://doi.org/10.1007/s00208-004-0509-2 |
remote_bool |
false |
ppnlink |
129060151 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00208-004-0509-2 |
up_date |
2024-07-03T23:26:58.780Z |
_version_ |
1803602329642991616 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2039614265</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240308175858.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2004 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00208-004-0509-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2039614265</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00208-004-0509-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kim, Jin-Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The -conjecture and equivariant eC-invariants</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2004</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2004</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. Let X be a smooth closed oriented non-spin 4-manifold with even intersection form kE8⊕nH (n≥1). The -conjecture states that n is greater than or equal to |k|. In this paper we give a proof of the -conjecture. The strategy of this paper is to use the finite dimensional approximation of the map induced from the Seiberg-Witten equations and equivariant eC-invariants as in the paper of M. Furuta and Y. Kametani.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intersection Form</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dimensional Approximation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite Dimensional Approximation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conjecture State</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematische Annalen</subfield><subfield code="d">Springer-Verlag, 1869</subfield><subfield code="g">329(2004), 1 vom: 17. Feb., Seite 31-47</subfield><subfield code="w">(DE-627)129060151</subfield><subfield code="w">(DE-600)285-9</subfield><subfield code="w">(DE-576)014390825</subfield><subfield code="x">0025-5831</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:329</subfield><subfield code="g">year:2004</subfield><subfield code="g">number:1</subfield><subfield code="g">day:17</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:31-47</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00208-004-0509-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">329</subfield><subfield code="j">2004</subfield><subfield code="e">1</subfield><subfield code="b">17</subfield><subfield code="c">02</subfield><subfield code="h">31-47</subfield></datafield></record></collection>
|
score |
7.399315 |