Recasting the Elliott conjecture
Abstract Let A be a simple, unital, finite, and exact $ C^{*} $-algebra which absorbs the Jiang–Su algebra $${\mathcal{Z}}$$ tensorially. We prove that the Cuntz semigroup of A admits a complete order embedding into an ordered semigroup which is obtained from the Elliott invariant in a functorial ma...
Ausführliche Beschreibung
Autor*in: |
Perera, Francesc [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2007 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag 2007 |
---|
Übergeordnetes Werk: |
Enthalten in: Mathematische Annalen - Springer-Verlag, 1869, 338(2007), 3 vom: 24. Feb., Seite 669-702 |
---|---|
Übergeordnetes Werk: |
volume:338 ; year:2007 ; number:3 ; day:24 ; month:02 ; pages:669-702 |
Links: |
---|
DOI / URN: |
10.1007/s00208-007-0093-3 |
---|
Katalog-ID: |
OLC2039617779 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2039617779 | ||
003 | DE-627 | ||
005 | 20240308175907.0 | ||
007 | tu | ||
008 | 200820s2007 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00208-007-0093-3 |2 doi | |
035 | |a (DE-627)OLC2039617779 | ||
035 | |a (DE-He213)s00208-007-0093-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Perera, Francesc |e verfasserin |4 aut | |
245 | 1 | 0 | |a Recasting the Elliott conjecture |
264 | 1 | |c 2007 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2007 | ||
520 | |a Abstract Let A be a simple, unital, finite, and exact $ C^{*} $-algebra which absorbs the Jiang–Su algebra $${\mathcal{Z}}$$ tensorially. We prove that the Cuntz semigroup of A admits a complete order embedding into an ordered semigroup which is obtained from the Elliott invariant in a functorial manner. We conjecture that this embedding is an isomorphism, and prove the conjecture in several cases. In these same cases—$${\mathcal{Z}}$$ -stable algebras all—we prove that the Elliott conjecture in its strongest form is equivalent to a conjecture which appears much weaker. Outside the class of $${\mathcal{Z}}$$ -stable $ C^{*} $-algebras, this weaker conjecture has no known counterexamples, and it is plausible that none exist. Thus, we reconcile the still intact principle of Elliott’s classification conjecture—that $${\mathrm{K}}$$ -theoretic invariants will classify separable and nuclear $ C^{*} $-algebras—with the recent appearance of counterexamples to its strongest concrete form. | ||
650 | 4 | |a Dimension Function | |
650 | 4 | |a Positive Element | |
650 | 4 | |a Compact Hausdorff Space | |
650 | 4 | |a Stable Rank | |
650 | 4 | |a Real Rank | |
700 | 1 | |a Toms, Andrew S. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Mathematische Annalen |d Springer-Verlag, 1869 |g 338(2007), 3 vom: 24. Feb., Seite 669-702 |w (DE-627)129060151 |w (DE-600)285-9 |w (DE-576)014390825 |x 0025-5831 |7 nnns |
773 | 1 | 8 | |g volume:338 |g year:2007 |g number:3 |g day:24 |g month:02 |g pages:669-702 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00208-007-0093-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-FOR | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2030 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.00 |j Mathematik: Allgemeines |j Mathematik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 338 |j 2007 |e 3 |b 24 |c 02 |h 669-702 |
author_variant |
f p fp a s t as ast |
---|---|
matchkey_str |
article:00255831:2007----::eatntelitc |
hierarchy_sort_str |
2007 |
bklnumber |
31.00 |
publishDate |
2007 |
allfields |
10.1007/s00208-007-0093-3 doi (DE-627)OLC2039617779 (DE-He213)s00208-007-0093-3-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn 31.00 bkl Perera, Francesc verfasserin aut Recasting the Elliott conjecture 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2007 Abstract Let A be a simple, unital, finite, and exact $ C^{*} $-algebra which absorbs the Jiang–Su algebra $${\mathcal{Z}}$$ tensorially. We prove that the Cuntz semigroup of A admits a complete order embedding into an ordered semigroup which is obtained from the Elliott invariant in a functorial manner. We conjecture that this embedding is an isomorphism, and prove the conjecture in several cases. In these same cases—$${\mathcal{Z}}$$ -stable algebras all—we prove that the Elliott conjecture in its strongest form is equivalent to a conjecture which appears much weaker. Outside the class of $${\mathcal{Z}}$$ -stable $ C^{*} $-algebras, this weaker conjecture has no known counterexamples, and it is plausible that none exist. Thus, we reconcile the still intact principle of Elliott’s classification conjecture—that $${\mathrm{K}}$$ -theoretic invariants will classify separable and nuclear $ C^{*} $-algebras—with the recent appearance of counterexamples to its strongest concrete form. Dimension Function Positive Element Compact Hausdorff Space Stable Rank Real Rank Toms, Andrew S. aut Enthalten in Mathematische Annalen Springer-Verlag, 1869 338(2007), 3 vom: 24. Feb., Seite 669-702 (DE-627)129060151 (DE-600)285-9 (DE-576)014390825 0025-5831 nnns volume:338 year:2007 number:3 day:24 month:02 pages:669-702 https://doi.org/10.1007/s00208-007-0093-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 338 2007 3 24 02 669-702 |
spelling |
10.1007/s00208-007-0093-3 doi (DE-627)OLC2039617779 (DE-He213)s00208-007-0093-3-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn 31.00 bkl Perera, Francesc verfasserin aut Recasting the Elliott conjecture 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2007 Abstract Let A be a simple, unital, finite, and exact $ C^{*} $-algebra which absorbs the Jiang–Su algebra $${\mathcal{Z}}$$ tensorially. We prove that the Cuntz semigroup of A admits a complete order embedding into an ordered semigroup which is obtained from the Elliott invariant in a functorial manner. We conjecture that this embedding is an isomorphism, and prove the conjecture in several cases. In these same cases—$${\mathcal{Z}}$$ -stable algebras all—we prove that the Elliott conjecture in its strongest form is equivalent to a conjecture which appears much weaker. Outside the class of $${\mathcal{Z}}$$ -stable $ C^{*} $-algebras, this weaker conjecture has no known counterexamples, and it is plausible that none exist. Thus, we reconcile the still intact principle of Elliott’s classification conjecture—that $${\mathrm{K}}$$ -theoretic invariants will classify separable and nuclear $ C^{*} $-algebras—with the recent appearance of counterexamples to its strongest concrete form. Dimension Function Positive Element Compact Hausdorff Space Stable Rank Real Rank Toms, Andrew S. aut Enthalten in Mathematische Annalen Springer-Verlag, 1869 338(2007), 3 vom: 24. Feb., Seite 669-702 (DE-627)129060151 (DE-600)285-9 (DE-576)014390825 0025-5831 nnns volume:338 year:2007 number:3 day:24 month:02 pages:669-702 https://doi.org/10.1007/s00208-007-0093-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 338 2007 3 24 02 669-702 |
allfields_unstemmed |
10.1007/s00208-007-0093-3 doi (DE-627)OLC2039617779 (DE-He213)s00208-007-0093-3-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn 31.00 bkl Perera, Francesc verfasserin aut Recasting the Elliott conjecture 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2007 Abstract Let A be a simple, unital, finite, and exact $ C^{*} $-algebra which absorbs the Jiang–Su algebra $${\mathcal{Z}}$$ tensorially. We prove that the Cuntz semigroup of A admits a complete order embedding into an ordered semigroup which is obtained from the Elliott invariant in a functorial manner. We conjecture that this embedding is an isomorphism, and prove the conjecture in several cases. In these same cases—$${\mathcal{Z}}$$ -stable algebras all—we prove that the Elliott conjecture in its strongest form is equivalent to a conjecture which appears much weaker. Outside the class of $${\mathcal{Z}}$$ -stable $ C^{*} $-algebras, this weaker conjecture has no known counterexamples, and it is plausible that none exist. Thus, we reconcile the still intact principle of Elliott’s classification conjecture—that $${\mathrm{K}}$$ -theoretic invariants will classify separable and nuclear $ C^{*} $-algebras—with the recent appearance of counterexamples to its strongest concrete form. Dimension Function Positive Element Compact Hausdorff Space Stable Rank Real Rank Toms, Andrew S. aut Enthalten in Mathematische Annalen Springer-Verlag, 1869 338(2007), 3 vom: 24. Feb., Seite 669-702 (DE-627)129060151 (DE-600)285-9 (DE-576)014390825 0025-5831 nnns volume:338 year:2007 number:3 day:24 month:02 pages:669-702 https://doi.org/10.1007/s00208-007-0093-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 338 2007 3 24 02 669-702 |
allfieldsGer |
10.1007/s00208-007-0093-3 doi (DE-627)OLC2039617779 (DE-He213)s00208-007-0093-3-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn 31.00 bkl Perera, Francesc verfasserin aut Recasting the Elliott conjecture 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2007 Abstract Let A be a simple, unital, finite, and exact $ C^{*} $-algebra which absorbs the Jiang–Su algebra $${\mathcal{Z}}$$ tensorially. We prove that the Cuntz semigroup of A admits a complete order embedding into an ordered semigroup which is obtained from the Elliott invariant in a functorial manner. We conjecture that this embedding is an isomorphism, and prove the conjecture in several cases. In these same cases—$${\mathcal{Z}}$$ -stable algebras all—we prove that the Elliott conjecture in its strongest form is equivalent to a conjecture which appears much weaker. Outside the class of $${\mathcal{Z}}$$ -stable $ C^{*} $-algebras, this weaker conjecture has no known counterexamples, and it is plausible that none exist. Thus, we reconcile the still intact principle of Elliott’s classification conjecture—that $${\mathrm{K}}$$ -theoretic invariants will classify separable and nuclear $ C^{*} $-algebras—with the recent appearance of counterexamples to its strongest concrete form. Dimension Function Positive Element Compact Hausdorff Space Stable Rank Real Rank Toms, Andrew S. aut Enthalten in Mathematische Annalen Springer-Verlag, 1869 338(2007), 3 vom: 24. Feb., Seite 669-702 (DE-627)129060151 (DE-600)285-9 (DE-576)014390825 0025-5831 nnns volume:338 year:2007 number:3 day:24 month:02 pages:669-702 https://doi.org/10.1007/s00208-007-0093-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 338 2007 3 24 02 669-702 |
allfieldsSound |
10.1007/s00208-007-0093-3 doi (DE-627)OLC2039617779 (DE-He213)s00208-007-0093-3-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn 31.00 bkl Perera, Francesc verfasserin aut Recasting the Elliott conjecture 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2007 Abstract Let A be a simple, unital, finite, and exact $ C^{*} $-algebra which absorbs the Jiang–Su algebra $${\mathcal{Z}}$$ tensorially. We prove that the Cuntz semigroup of A admits a complete order embedding into an ordered semigroup which is obtained from the Elliott invariant in a functorial manner. We conjecture that this embedding is an isomorphism, and prove the conjecture in several cases. In these same cases—$${\mathcal{Z}}$$ -stable algebras all—we prove that the Elliott conjecture in its strongest form is equivalent to a conjecture which appears much weaker. Outside the class of $${\mathcal{Z}}$$ -stable $ C^{*} $-algebras, this weaker conjecture has no known counterexamples, and it is plausible that none exist. Thus, we reconcile the still intact principle of Elliott’s classification conjecture—that $${\mathrm{K}}$$ -theoretic invariants will classify separable and nuclear $ C^{*} $-algebras—with the recent appearance of counterexamples to its strongest concrete form. Dimension Function Positive Element Compact Hausdorff Space Stable Rank Real Rank Toms, Andrew S. aut Enthalten in Mathematische Annalen Springer-Verlag, 1869 338(2007), 3 vom: 24. Feb., Seite 669-702 (DE-627)129060151 (DE-600)285-9 (DE-576)014390825 0025-5831 nnns volume:338 year:2007 number:3 day:24 month:02 pages:669-702 https://doi.org/10.1007/s00208-007-0093-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 338 2007 3 24 02 669-702 |
language |
English |
source |
Enthalten in Mathematische Annalen 338(2007), 3 vom: 24. Feb., Seite 669-702 volume:338 year:2007 number:3 day:24 month:02 pages:669-702 |
sourceStr |
Enthalten in Mathematische Annalen 338(2007), 3 vom: 24. Feb., Seite 669-702 volume:338 year:2007 number:3 day:24 month:02 pages:669-702 |
format_phy_str_mv |
Article |
bklname |
Mathematik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Dimension Function Positive Element Compact Hausdorff Space Stable Rank Real Rank |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Mathematische Annalen |
authorswithroles_txt_mv |
Perera, Francesc @@aut@@ Toms, Andrew S. @@aut@@ |
publishDateDaySort_date |
2007-02-24T00:00:00Z |
hierarchy_top_id |
129060151 |
dewey-sort |
3510 |
id |
OLC2039617779 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2039617779</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240308175907.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00208-007-0093-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2039617779</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00208-007-0093-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Perera, Francesc</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Recasting the Elliott conjecture</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Let A be a simple, unital, finite, and exact $ C^{*} $-algebra which absorbs the Jiang–Su algebra $${\mathcal{Z}}$$ tensorially. We prove that the Cuntz semigroup of A admits a complete order embedding into an ordered semigroup which is obtained from the Elliott invariant in a functorial manner. We conjecture that this embedding is an isomorphism, and prove the conjecture in several cases. In these same cases—$${\mathcal{Z}}$$ -stable algebras all—we prove that the Elliott conjecture in its strongest form is equivalent to a conjecture which appears much weaker. Outside the class of $${\mathcal{Z}}$$ -stable $ C^{*} $-algebras, this weaker conjecture has no known counterexamples, and it is plausible that none exist. Thus, we reconcile the still intact principle of Elliott’s classification conjecture—that $${\mathrm{K}}$$ -theoretic invariants will classify separable and nuclear $ C^{*} $-algebras—with the recent appearance of counterexamples to its strongest concrete form.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dimension Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Positive Element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compact Hausdorff Space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stable Rank</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real Rank</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Toms, Andrew S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematische Annalen</subfield><subfield code="d">Springer-Verlag, 1869</subfield><subfield code="g">338(2007), 3 vom: 24. Feb., Seite 669-702</subfield><subfield code="w">(DE-627)129060151</subfield><subfield code="w">(DE-600)285-9</subfield><subfield code="w">(DE-576)014390825</subfield><subfield code="x">0025-5831</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:338</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:3</subfield><subfield code="g">day:24</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:669-702</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00208-007-0093-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">338</subfield><subfield code="j">2007</subfield><subfield code="e">3</subfield><subfield code="b">24</subfield><subfield code="c">02</subfield><subfield code="h">669-702</subfield></datafield></record></collection>
|
author |
Perera, Francesc |
spellingShingle |
Perera, Francesc ddc 510 ssgn 17,1 bkl 31.00 misc Dimension Function misc Positive Element misc Compact Hausdorff Space misc Stable Rank misc Real Rank Recasting the Elliott conjecture |
authorStr |
Perera, Francesc |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129060151 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0025-5831 |
topic_title |
510 VZ 17,1 ssgn 31.00 bkl Recasting the Elliott conjecture Dimension Function Positive Element Compact Hausdorff Space Stable Rank Real Rank |
topic |
ddc 510 ssgn 17,1 bkl 31.00 misc Dimension Function misc Positive Element misc Compact Hausdorff Space misc Stable Rank misc Real Rank |
topic_unstemmed |
ddc 510 ssgn 17,1 bkl 31.00 misc Dimension Function misc Positive Element misc Compact Hausdorff Space misc Stable Rank misc Real Rank |
topic_browse |
ddc 510 ssgn 17,1 bkl 31.00 misc Dimension Function misc Positive Element misc Compact Hausdorff Space misc Stable Rank misc Real Rank |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Mathematische Annalen |
hierarchy_parent_id |
129060151 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Mathematische Annalen |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129060151 (DE-600)285-9 (DE-576)014390825 |
title |
Recasting the Elliott conjecture |
ctrlnum |
(DE-627)OLC2039617779 (DE-He213)s00208-007-0093-3-p |
title_full |
Recasting the Elliott conjecture |
author_sort |
Perera, Francesc |
journal |
Mathematische Annalen |
journalStr |
Mathematische Annalen |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2007 |
contenttype_str_mv |
txt |
container_start_page |
669 |
author_browse |
Perera, Francesc Toms, Andrew S. |
container_volume |
338 |
class |
510 VZ 17,1 ssgn 31.00 bkl |
format_se |
Aufsätze |
author-letter |
Perera, Francesc |
doi_str_mv |
10.1007/s00208-007-0093-3 |
dewey-full |
510 |
title_sort |
recasting the elliott conjecture |
title_auth |
Recasting the Elliott conjecture |
abstract |
Abstract Let A be a simple, unital, finite, and exact $ C^{*} $-algebra which absorbs the Jiang–Su algebra $${\mathcal{Z}}$$ tensorially. We prove that the Cuntz semigroup of A admits a complete order embedding into an ordered semigroup which is obtained from the Elliott invariant in a functorial manner. We conjecture that this embedding is an isomorphism, and prove the conjecture in several cases. In these same cases—$${\mathcal{Z}}$$ -stable algebras all—we prove that the Elliott conjecture in its strongest form is equivalent to a conjecture which appears much weaker. Outside the class of $${\mathcal{Z}}$$ -stable $ C^{*} $-algebras, this weaker conjecture has no known counterexamples, and it is plausible that none exist. Thus, we reconcile the still intact principle of Elliott’s classification conjecture—that $${\mathrm{K}}$$ -theoretic invariants will classify separable and nuclear $ C^{*} $-algebras—with the recent appearance of counterexamples to its strongest concrete form. © Springer-Verlag 2007 |
abstractGer |
Abstract Let A be a simple, unital, finite, and exact $ C^{*} $-algebra which absorbs the Jiang–Su algebra $${\mathcal{Z}}$$ tensorially. We prove that the Cuntz semigroup of A admits a complete order embedding into an ordered semigroup which is obtained from the Elliott invariant in a functorial manner. We conjecture that this embedding is an isomorphism, and prove the conjecture in several cases. In these same cases—$${\mathcal{Z}}$$ -stable algebras all—we prove that the Elliott conjecture in its strongest form is equivalent to a conjecture which appears much weaker. Outside the class of $${\mathcal{Z}}$$ -stable $ C^{*} $-algebras, this weaker conjecture has no known counterexamples, and it is plausible that none exist. Thus, we reconcile the still intact principle of Elliott’s classification conjecture—that $${\mathrm{K}}$$ -theoretic invariants will classify separable and nuclear $ C^{*} $-algebras—with the recent appearance of counterexamples to its strongest concrete form. © Springer-Verlag 2007 |
abstract_unstemmed |
Abstract Let A be a simple, unital, finite, and exact $ C^{*} $-algebra which absorbs the Jiang–Su algebra $${\mathcal{Z}}$$ tensorially. We prove that the Cuntz semigroup of A admits a complete order embedding into an ordered semigroup which is obtained from the Elliott invariant in a functorial manner. We conjecture that this embedding is an isomorphism, and prove the conjecture in several cases. In these same cases—$${\mathcal{Z}}$$ -stable algebras all—we prove that the Elliott conjecture in its strongest form is equivalent to a conjecture which appears much weaker. Outside the class of $${\mathcal{Z}}$$ -stable $ C^{*} $-algebras, this weaker conjecture has no known counterexamples, and it is plausible that none exist. Thus, we reconcile the still intact principle of Elliott’s classification conjecture—that $${\mathrm{K}}$$ -theoretic invariants will classify separable and nuclear $ C^{*} $-algebras—with the recent appearance of counterexamples to its strongest concrete form. © Springer-Verlag 2007 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Recasting the Elliott conjecture |
url |
https://doi.org/10.1007/s00208-007-0093-3 |
remote_bool |
false |
author2 |
Toms, Andrew S. |
author2Str |
Toms, Andrew S. |
ppnlink |
129060151 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00208-007-0093-3 |
up_date |
2024-07-03T23:27:47.251Z |
_version_ |
1803602380459081728 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2039617779</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240308175907.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00208-007-0093-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2039617779</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00208-007-0093-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Perera, Francesc</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Recasting the Elliott conjecture</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Let A be a simple, unital, finite, and exact $ C^{*} $-algebra which absorbs the Jiang–Su algebra $${\mathcal{Z}}$$ tensorially. We prove that the Cuntz semigroup of A admits a complete order embedding into an ordered semigroup which is obtained from the Elliott invariant in a functorial manner. We conjecture that this embedding is an isomorphism, and prove the conjecture in several cases. In these same cases—$${\mathcal{Z}}$$ -stable algebras all—we prove that the Elliott conjecture in its strongest form is equivalent to a conjecture which appears much weaker. Outside the class of $${\mathcal{Z}}$$ -stable $ C^{*} $-algebras, this weaker conjecture has no known counterexamples, and it is plausible that none exist. Thus, we reconcile the still intact principle of Elliott’s classification conjecture—that $${\mathrm{K}}$$ -theoretic invariants will classify separable and nuclear $ C^{*} $-algebras—with the recent appearance of counterexamples to its strongest concrete form.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dimension Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Positive Element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compact Hausdorff Space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stable Rank</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real Rank</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Toms, Andrew S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematische Annalen</subfield><subfield code="d">Springer-Verlag, 1869</subfield><subfield code="g">338(2007), 3 vom: 24. Feb., Seite 669-702</subfield><subfield code="w">(DE-627)129060151</subfield><subfield code="w">(DE-600)285-9</subfield><subfield code="w">(DE-576)014390825</subfield><subfield code="x">0025-5831</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:338</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:3</subfield><subfield code="g">day:24</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:669-702</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00208-007-0093-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">338</subfield><subfield code="j">2007</subfield><subfield code="e">3</subfield><subfield code="b">24</subfield><subfield code="c">02</subfield><subfield code="h">669-702</subfield></datafield></record></collection>
|
score |
7.4013395 |