Extensions of arc-analytic functions
Abstract We prove that every arc-analytic semialgebraic function on an arc-symmetric set X in $$\mathbb {R}^n$$ admits an arc-analytic semialgebraic extension to the whole $$\mathbb {R}^n$$.
Autor*in: |
Adamus, Janusz [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Mathematische Annalen - Springer Berlin Heidelberg, 1869, 371(2018), 1-2 vom: 05. Jan., Seite 685-693 |
---|---|
Übergeordnetes Werk: |
volume:371 ; year:2018 ; number:1-2 ; day:05 ; month:01 ; pages:685-693 |
Links: |
---|
DOI / URN: |
10.1007/s00208-017-1639-7 |
---|
Katalog-ID: |
OLC2039631844 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2039631844 | ||
003 | DE-627 | ||
005 | 20240308175937.0 | ||
007 | tu | ||
008 | 200819s2018 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00208-017-1639-7 |2 doi | |
035 | |a (DE-627)OLC2039631844 | ||
035 | |a (DE-He213)s00208-017-1639-7-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Adamus, Janusz |e verfasserin |0 (orcid)0000-0003-3068-1161 |4 aut | |
245 | 1 | 0 | |a Extensions of arc-analytic functions |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag GmbH Germany, part of Springer Nature 2018 | ||
520 | |a Abstract We prove that every arc-analytic semialgebraic function on an arc-symmetric set X in $$\mathbb {R}^n$$ admits an arc-analytic semialgebraic extension to the whole $$\mathbb {R}^n$$. | ||
650 | 4 | |a Arc-analytic functions | |
650 | 4 | |a Semialgebraic geometry | |
650 | 4 | |a Arc-symmetric sets | |
650 | 4 | |a Nash functions | |
700 | 1 | |a Seyedinejad, Hadi |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Mathematische Annalen |d Springer Berlin Heidelberg, 1869 |g 371(2018), 1-2 vom: 05. Jan., Seite 685-693 |w (DE-627)129060151 |w (DE-600)285-9 |w (DE-576)014390825 |x 0025-5831 |7 nnns |
773 | 1 | 8 | |g volume:371 |g year:2018 |g number:1-2 |g day:05 |g month:01 |g pages:685-693 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00208-017-1639-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-FOR | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2030 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4323 | ||
936 | b | k | |a 31.00 |j Mathematik: Allgemeines |j Mathematik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 371 |j 2018 |e 1-2 |b 05 |c 01 |h 685-693 |
author_variant |
j a ja h s hs |
---|---|
matchkey_str |
article:00255831:2018----::xesosfraayif |
hierarchy_sort_str |
2018 |
bklnumber |
31.00 |
publishDate |
2018 |
allfields |
10.1007/s00208-017-1639-7 doi (DE-627)OLC2039631844 (DE-He213)s00208-017-1639-7-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn 31.00 bkl Adamus, Janusz verfasserin (orcid)0000-0003-3068-1161 aut Extensions of arc-analytic functions 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract We prove that every arc-analytic semialgebraic function on an arc-symmetric set X in $$\mathbb {R}^n$$ admits an arc-analytic semialgebraic extension to the whole $$\mathbb {R}^n$$. Arc-analytic functions Semialgebraic geometry Arc-symmetric sets Nash functions Seyedinejad, Hadi aut Enthalten in Mathematische Annalen Springer Berlin Heidelberg, 1869 371(2018), 1-2 vom: 05. Jan., Seite 685-693 (DE-627)129060151 (DE-600)285-9 (DE-576)014390825 0025-5831 nnns volume:371 year:2018 number:1-2 day:05 month:01 pages:685-693 https://doi.org/10.1007/s00208-017-1639-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2007 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4323 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 371 2018 1-2 05 01 685-693 |
spelling |
10.1007/s00208-017-1639-7 doi (DE-627)OLC2039631844 (DE-He213)s00208-017-1639-7-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn 31.00 bkl Adamus, Janusz verfasserin (orcid)0000-0003-3068-1161 aut Extensions of arc-analytic functions 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract We prove that every arc-analytic semialgebraic function on an arc-symmetric set X in $$\mathbb {R}^n$$ admits an arc-analytic semialgebraic extension to the whole $$\mathbb {R}^n$$. Arc-analytic functions Semialgebraic geometry Arc-symmetric sets Nash functions Seyedinejad, Hadi aut Enthalten in Mathematische Annalen Springer Berlin Heidelberg, 1869 371(2018), 1-2 vom: 05. Jan., Seite 685-693 (DE-627)129060151 (DE-600)285-9 (DE-576)014390825 0025-5831 nnns volume:371 year:2018 number:1-2 day:05 month:01 pages:685-693 https://doi.org/10.1007/s00208-017-1639-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2007 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4323 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 371 2018 1-2 05 01 685-693 |
allfields_unstemmed |
10.1007/s00208-017-1639-7 doi (DE-627)OLC2039631844 (DE-He213)s00208-017-1639-7-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn 31.00 bkl Adamus, Janusz verfasserin (orcid)0000-0003-3068-1161 aut Extensions of arc-analytic functions 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract We prove that every arc-analytic semialgebraic function on an arc-symmetric set X in $$\mathbb {R}^n$$ admits an arc-analytic semialgebraic extension to the whole $$\mathbb {R}^n$$. Arc-analytic functions Semialgebraic geometry Arc-symmetric sets Nash functions Seyedinejad, Hadi aut Enthalten in Mathematische Annalen Springer Berlin Heidelberg, 1869 371(2018), 1-2 vom: 05. Jan., Seite 685-693 (DE-627)129060151 (DE-600)285-9 (DE-576)014390825 0025-5831 nnns volume:371 year:2018 number:1-2 day:05 month:01 pages:685-693 https://doi.org/10.1007/s00208-017-1639-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2007 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4323 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 371 2018 1-2 05 01 685-693 |
allfieldsGer |
10.1007/s00208-017-1639-7 doi (DE-627)OLC2039631844 (DE-He213)s00208-017-1639-7-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn 31.00 bkl Adamus, Janusz verfasserin (orcid)0000-0003-3068-1161 aut Extensions of arc-analytic functions 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract We prove that every arc-analytic semialgebraic function on an arc-symmetric set X in $$\mathbb {R}^n$$ admits an arc-analytic semialgebraic extension to the whole $$\mathbb {R}^n$$. Arc-analytic functions Semialgebraic geometry Arc-symmetric sets Nash functions Seyedinejad, Hadi aut Enthalten in Mathematische Annalen Springer Berlin Heidelberg, 1869 371(2018), 1-2 vom: 05. Jan., Seite 685-693 (DE-627)129060151 (DE-600)285-9 (DE-576)014390825 0025-5831 nnns volume:371 year:2018 number:1-2 day:05 month:01 pages:685-693 https://doi.org/10.1007/s00208-017-1639-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2007 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4323 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 371 2018 1-2 05 01 685-693 |
allfieldsSound |
10.1007/s00208-017-1639-7 doi (DE-627)OLC2039631844 (DE-He213)s00208-017-1639-7-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn 31.00 bkl Adamus, Janusz verfasserin (orcid)0000-0003-3068-1161 aut Extensions of arc-analytic functions 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract We prove that every arc-analytic semialgebraic function on an arc-symmetric set X in $$\mathbb {R}^n$$ admits an arc-analytic semialgebraic extension to the whole $$\mathbb {R}^n$$. Arc-analytic functions Semialgebraic geometry Arc-symmetric sets Nash functions Seyedinejad, Hadi aut Enthalten in Mathematische Annalen Springer Berlin Heidelberg, 1869 371(2018), 1-2 vom: 05. Jan., Seite 685-693 (DE-627)129060151 (DE-600)285-9 (DE-576)014390825 0025-5831 nnns volume:371 year:2018 number:1-2 day:05 month:01 pages:685-693 https://doi.org/10.1007/s00208-017-1639-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2007 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4323 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 371 2018 1-2 05 01 685-693 |
language |
English |
source |
Enthalten in Mathematische Annalen 371(2018), 1-2 vom: 05. Jan., Seite 685-693 volume:371 year:2018 number:1-2 day:05 month:01 pages:685-693 |
sourceStr |
Enthalten in Mathematische Annalen 371(2018), 1-2 vom: 05. Jan., Seite 685-693 volume:371 year:2018 number:1-2 day:05 month:01 pages:685-693 |
format_phy_str_mv |
Article |
bklname |
Mathematik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Arc-analytic functions Semialgebraic geometry Arc-symmetric sets Nash functions |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Mathematische Annalen |
authorswithroles_txt_mv |
Adamus, Janusz @@aut@@ Seyedinejad, Hadi @@aut@@ |
publishDateDaySort_date |
2018-01-05T00:00:00Z |
hierarchy_top_id |
129060151 |
dewey-sort |
3510 |
id |
OLC2039631844 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2039631844</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240308175937.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00208-017-1639-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2039631844</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00208-017-1639-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Adamus, Janusz</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3068-1161</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Extensions of arc-analytic functions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We prove that every arc-analytic semialgebraic function on an arc-symmetric set X in $$\mathbb {R}^n$$ admits an arc-analytic semialgebraic extension to the whole $$\mathbb {R}^n$$.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arc-analytic functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semialgebraic geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arc-symmetric sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nash functions</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Seyedinejad, Hadi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematische Annalen</subfield><subfield code="d">Springer Berlin Heidelberg, 1869</subfield><subfield code="g">371(2018), 1-2 vom: 05. Jan., Seite 685-693</subfield><subfield code="w">(DE-627)129060151</subfield><subfield code="w">(DE-600)285-9</subfield><subfield code="w">(DE-576)014390825</subfield><subfield code="x">0025-5831</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:371</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1-2</subfield><subfield code="g">day:05</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:685-693</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00208-017-1639-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">371</subfield><subfield code="j">2018</subfield><subfield code="e">1-2</subfield><subfield code="b">05</subfield><subfield code="c">01</subfield><subfield code="h">685-693</subfield></datafield></record></collection>
|
author |
Adamus, Janusz |
spellingShingle |
Adamus, Janusz ddc 510 ssgn 17,1 bkl 31.00 misc Arc-analytic functions misc Semialgebraic geometry misc Arc-symmetric sets misc Nash functions Extensions of arc-analytic functions |
authorStr |
Adamus, Janusz |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129060151 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0025-5831 |
topic_title |
510 VZ 17,1 ssgn 31.00 bkl Extensions of arc-analytic functions Arc-analytic functions Semialgebraic geometry Arc-symmetric sets Nash functions |
topic |
ddc 510 ssgn 17,1 bkl 31.00 misc Arc-analytic functions misc Semialgebraic geometry misc Arc-symmetric sets misc Nash functions |
topic_unstemmed |
ddc 510 ssgn 17,1 bkl 31.00 misc Arc-analytic functions misc Semialgebraic geometry misc Arc-symmetric sets misc Nash functions |
topic_browse |
ddc 510 ssgn 17,1 bkl 31.00 misc Arc-analytic functions misc Semialgebraic geometry misc Arc-symmetric sets misc Nash functions |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Mathematische Annalen |
hierarchy_parent_id |
129060151 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Mathematische Annalen |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129060151 (DE-600)285-9 (DE-576)014390825 |
title |
Extensions of arc-analytic functions |
ctrlnum |
(DE-627)OLC2039631844 (DE-He213)s00208-017-1639-7-p |
title_full |
Extensions of arc-analytic functions |
author_sort |
Adamus, Janusz |
journal |
Mathematische Annalen |
journalStr |
Mathematische Annalen |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
685 |
author_browse |
Adamus, Janusz Seyedinejad, Hadi |
container_volume |
371 |
class |
510 VZ 17,1 ssgn 31.00 bkl |
format_se |
Aufsätze |
author-letter |
Adamus, Janusz |
doi_str_mv |
10.1007/s00208-017-1639-7 |
normlink |
(ORCID)0000-0003-3068-1161 |
normlink_prefix_str_mv |
(orcid)0000-0003-3068-1161 |
dewey-full |
510 |
title_sort |
extensions of arc-analytic functions |
title_auth |
Extensions of arc-analytic functions |
abstract |
Abstract We prove that every arc-analytic semialgebraic function on an arc-symmetric set X in $$\mathbb {R}^n$$ admits an arc-analytic semialgebraic extension to the whole $$\mathbb {R}^n$$. © Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
abstractGer |
Abstract We prove that every arc-analytic semialgebraic function on an arc-symmetric set X in $$\mathbb {R}^n$$ admits an arc-analytic semialgebraic extension to the whole $$\mathbb {R}^n$$. © Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
abstract_unstemmed |
Abstract We prove that every arc-analytic semialgebraic function on an arc-symmetric set X in $$\mathbb {R}^n$$ admits an arc-analytic semialgebraic extension to the whole $$\mathbb {R}^n$$. © Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2007 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4323 |
container_issue |
1-2 |
title_short |
Extensions of arc-analytic functions |
url |
https://doi.org/10.1007/s00208-017-1639-7 |
remote_bool |
false |
author2 |
Seyedinejad, Hadi |
author2Str |
Seyedinejad, Hadi |
ppnlink |
129060151 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00208-017-1639-7 |
up_date |
2024-07-03T23:30:58.888Z |
_version_ |
1803602581409234944 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2039631844</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240308175937.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00208-017-1639-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2039631844</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00208-017-1639-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Adamus, Janusz</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3068-1161</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Extensions of arc-analytic functions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We prove that every arc-analytic semialgebraic function on an arc-symmetric set X in $$\mathbb {R}^n$$ admits an arc-analytic semialgebraic extension to the whole $$\mathbb {R}^n$$.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arc-analytic functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semialgebraic geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arc-symmetric sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nash functions</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Seyedinejad, Hadi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematische Annalen</subfield><subfield code="d">Springer Berlin Heidelberg, 1869</subfield><subfield code="g">371(2018), 1-2 vom: 05. Jan., Seite 685-693</subfield><subfield code="w">(DE-627)129060151</subfield><subfield code="w">(DE-600)285-9</subfield><subfield code="w">(DE-576)014390825</subfield><subfield code="x">0025-5831</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:371</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1-2</subfield><subfield code="g">day:05</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:685-693</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00208-017-1639-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">371</subfield><subfield code="j">2018</subfield><subfield code="e">1-2</subfield><subfield code="b">05</subfield><subfield code="c">01</subfield><subfield code="h">685-693</subfield></datafield></record></collection>
|
score |
7.4028378 |