Structure of bicentralizer algebras and inclusions of type $$\mathrm{III}$$ factors
Abstract We investigate the structure of the relative bicentralizer algebra $$\mathrm{B}(N \subset M, \varphi )$$ for inclusions of von Neumann algebras with normal expectation where N is a type $$\mathrm{III}_1$$ subfactor and $$\varphi \in N_*$$ is a faithful state. We first construct a canonical...
Ausführliche Beschreibung
Autor*in: |
Ando, Hiroshi [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Anmerkung: |
© Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Mathematische Annalen - Springer Berlin Heidelberg, 1869, 376(2019), 3-4 vom: 30. Nov., Seite 1145-1194 |
---|---|
Übergeordnetes Werk: |
volume:376 ; year:2019 ; number:3-4 ; day:30 ; month:11 ; pages:1145-1194 |
Links: |
---|
DOI / URN: |
10.1007/s00208-019-01939-9 |
---|
Katalog-ID: |
OLC2039634851 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2039634851 | ||
003 | DE-627 | ||
005 | 20240308175943.0 | ||
007 | tu | ||
008 | 200820s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00208-019-01939-9 |2 doi | |
035 | |a (DE-627)OLC2039634851 | ||
035 | |a (DE-He213)s00208-019-01939-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Ando, Hiroshi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Structure of bicentralizer algebras and inclusions of type $$\mathrm{III}$$ factors |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag GmbH Germany, part of Springer Nature 2019 | ||
520 | |a Abstract We investigate the structure of the relative bicentralizer algebra $$\mathrm{B}(N \subset M, \varphi )$$ for inclusions of von Neumann algebras with normal expectation where N is a type $$\mathrm{III}_1$$ subfactor and $$\varphi \in N_*$$ is a faithful state. We first construct a canonical flow $$\beta ^\varphi : \mathbf {R}^*_+ \curvearrowright \mathrm{B}(N \subset M, \varphi )$$ on the relative bicentralizer algebra and we show that the W$$^*$$-dynamical system $$(\mathrm{B}(N \subset M, \varphi ), \beta ^\varphi )$$ is independent of the choice of $$\varphi $$ up to a canonical isomorphism. In the case when $$N=M$$, we deduce new results on the structure of the automorphism group of $$\mathrm{B}(M,\varphi )$$ and we relate the period of the flow $$\beta ^\varphi $$ to the tensorial absorption of Powers factors. For general irreducible inclusions $$N \subset M$$, we relate the ergodicity of the flow $$\beta ^\varphi $$ to the existence of irreducible AFD subfactors in M that sit with normal expectation in N. When the inclusion $$N \subset M$$ is discrete, we prove a relative bicentralizer theorem and we use it to solve Kadison’s problem when N is amenable. | ||
700 | 1 | |a Haagerup, Uffe |4 aut | |
700 | 1 | |a Houdayer, Cyril |0 (orcid)0000-0002-5953-263X |4 aut | |
700 | 1 | |a Marrakchi, Amine |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Mathematische Annalen |d Springer Berlin Heidelberg, 1869 |g 376(2019), 3-4 vom: 30. Nov., Seite 1145-1194 |w (DE-627)129060151 |w (DE-600)285-9 |w (DE-576)014390825 |x 0025-5831 |7 nnns |
773 | 1 | 8 | |g volume:376 |g year:2019 |g number:3-4 |g day:30 |g month:11 |g pages:1145-1194 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00208-019-01939-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-FOR | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2030 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4306 | ||
936 | b | k | |a 31.00 |j Mathematik: Allgemeines |j Mathematik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 376 |j 2019 |e 3-4 |b 30 |c 11 |h 1145-1194 |
author_variant |
h a ha u h uh c h ch a m am |
---|---|
matchkey_str |
article:00255831:2019----::tutrobcnrlzrlersnicuinot |
hierarchy_sort_str |
2019 |
bklnumber |
31.00 |
publishDate |
2019 |
allfields |
10.1007/s00208-019-01939-9 doi (DE-627)OLC2039634851 (DE-He213)s00208-019-01939-9-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn 31.00 bkl Ando, Hiroshi verfasserin aut Structure of bicentralizer algebras and inclusions of type $$\mathrm{III}$$ factors 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract We investigate the structure of the relative bicentralizer algebra $$\mathrm{B}(N \subset M, \varphi )$$ for inclusions of von Neumann algebras with normal expectation where N is a type $$\mathrm{III}_1$$ subfactor and $$\varphi \in N_*$$ is a faithful state. We first construct a canonical flow $$\beta ^\varphi : \mathbf {R}^*_+ \curvearrowright \mathrm{B}(N \subset M, \varphi )$$ on the relative bicentralizer algebra and we show that the W$$^*$$-dynamical system $$(\mathrm{B}(N \subset M, \varphi ), \beta ^\varphi )$$ is independent of the choice of $$\varphi $$ up to a canonical isomorphism. In the case when $$N=M$$, we deduce new results on the structure of the automorphism group of $$\mathrm{B}(M,\varphi )$$ and we relate the period of the flow $$\beta ^\varphi $$ to the tensorial absorption of Powers factors. For general irreducible inclusions $$N \subset M$$, we relate the ergodicity of the flow $$\beta ^\varphi $$ to the existence of irreducible AFD subfactors in M that sit with normal expectation in N. When the inclusion $$N \subset M$$ is discrete, we prove a relative bicentralizer theorem and we use it to solve Kadison’s problem when N is amenable. Haagerup, Uffe aut Houdayer, Cyril (orcid)0000-0002-5953-263X aut Marrakchi, Amine aut Enthalten in Mathematische Annalen Springer Berlin Heidelberg, 1869 376(2019), 3-4 vom: 30. Nov., Seite 1145-1194 (DE-627)129060151 (DE-600)285-9 (DE-576)014390825 0025-5831 nnns volume:376 year:2019 number:3-4 day:30 month:11 pages:1145-1194 https://doi.org/10.1007/s00208-019-01939-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_70 GBV_ILN_2007 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 376 2019 3-4 30 11 1145-1194 |
spelling |
10.1007/s00208-019-01939-9 doi (DE-627)OLC2039634851 (DE-He213)s00208-019-01939-9-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn 31.00 bkl Ando, Hiroshi verfasserin aut Structure of bicentralizer algebras and inclusions of type $$\mathrm{III}$$ factors 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract We investigate the structure of the relative bicentralizer algebra $$\mathrm{B}(N \subset M, \varphi )$$ for inclusions of von Neumann algebras with normal expectation where N is a type $$\mathrm{III}_1$$ subfactor and $$\varphi \in N_*$$ is a faithful state. We first construct a canonical flow $$\beta ^\varphi : \mathbf {R}^*_+ \curvearrowright \mathrm{B}(N \subset M, \varphi )$$ on the relative bicentralizer algebra and we show that the W$$^*$$-dynamical system $$(\mathrm{B}(N \subset M, \varphi ), \beta ^\varphi )$$ is independent of the choice of $$\varphi $$ up to a canonical isomorphism. In the case when $$N=M$$, we deduce new results on the structure of the automorphism group of $$\mathrm{B}(M,\varphi )$$ and we relate the period of the flow $$\beta ^\varphi $$ to the tensorial absorption of Powers factors. For general irreducible inclusions $$N \subset M$$, we relate the ergodicity of the flow $$\beta ^\varphi $$ to the existence of irreducible AFD subfactors in M that sit with normal expectation in N. When the inclusion $$N \subset M$$ is discrete, we prove a relative bicentralizer theorem and we use it to solve Kadison’s problem when N is amenable. Haagerup, Uffe aut Houdayer, Cyril (orcid)0000-0002-5953-263X aut Marrakchi, Amine aut Enthalten in Mathematische Annalen Springer Berlin Heidelberg, 1869 376(2019), 3-4 vom: 30. Nov., Seite 1145-1194 (DE-627)129060151 (DE-600)285-9 (DE-576)014390825 0025-5831 nnns volume:376 year:2019 number:3-4 day:30 month:11 pages:1145-1194 https://doi.org/10.1007/s00208-019-01939-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_70 GBV_ILN_2007 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 376 2019 3-4 30 11 1145-1194 |
allfields_unstemmed |
10.1007/s00208-019-01939-9 doi (DE-627)OLC2039634851 (DE-He213)s00208-019-01939-9-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn 31.00 bkl Ando, Hiroshi verfasserin aut Structure of bicentralizer algebras and inclusions of type $$\mathrm{III}$$ factors 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract We investigate the structure of the relative bicentralizer algebra $$\mathrm{B}(N \subset M, \varphi )$$ for inclusions of von Neumann algebras with normal expectation where N is a type $$\mathrm{III}_1$$ subfactor and $$\varphi \in N_*$$ is a faithful state. We first construct a canonical flow $$\beta ^\varphi : \mathbf {R}^*_+ \curvearrowright \mathrm{B}(N \subset M, \varphi )$$ on the relative bicentralizer algebra and we show that the W$$^*$$-dynamical system $$(\mathrm{B}(N \subset M, \varphi ), \beta ^\varphi )$$ is independent of the choice of $$\varphi $$ up to a canonical isomorphism. In the case when $$N=M$$, we deduce new results on the structure of the automorphism group of $$\mathrm{B}(M,\varphi )$$ and we relate the period of the flow $$\beta ^\varphi $$ to the tensorial absorption of Powers factors. For general irreducible inclusions $$N \subset M$$, we relate the ergodicity of the flow $$\beta ^\varphi $$ to the existence of irreducible AFD subfactors in M that sit with normal expectation in N. When the inclusion $$N \subset M$$ is discrete, we prove a relative bicentralizer theorem and we use it to solve Kadison’s problem when N is amenable. Haagerup, Uffe aut Houdayer, Cyril (orcid)0000-0002-5953-263X aut Marrakchi, Amine aut Enthalten in Mathematische Annalen Springer Berlin Heidelberg, 1869 376(2019), 3-4 vom: 30. Nov., Seite 1145-1194 (DE-627)129060151 (DE-600)285-9 (DE-576)014390825 0025-5831 nnns volume:376 year:2019 number:3-4 day:30 month:11 pages:1145-1194 https://doi.org/10.1007/s00208-019-01939-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_70 GBV_ILN_2007 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 376 2019 3-4 30 11 1145-1194 |
allfieldsGer |
10.1007/s00208-019-01939-9 doi (DE-627)OLC2039634851 (DE-He213)s00208-019-01939-9-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn 31.00 bkl Ando, Hiroshi verfasserin aut Structure of bicentralizer algebras and inclusions of type $$\mathrm{III}$$ factors 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract We investigate the structure of the relative bicentralizer algebra $$\mathrm{B}(N \subset M, \varphi )$$ for inclusions of von Neumann algebras with normal expectation where N is a type $$\mathrm{III}_1$$ subfactor and $$\varphi \in N_*$$ is a faithful state. We first construct a canonical flow $$\beta ^\varphi : \mathbf {R}^*_+ \curvearrowright \mathrm{B}(N \subset M, \varphi )$$ on the relative bicentralizer algebra and we show that the W$$^*$$-dynamical system $$(\mathrm{B}(N \subset M, \varphi ), \beta ^\varphi )$$ is independent of the choice of $$\varphi $$ up to a canonical isomorphism. In the case when $$N=M$$, we deduce new results on the structure of the automorphism group of $$\mathrm{B}(M,\varphi )$$ and we relate the period of the flow $$\beta ^\varphi $$ to the tensorial absorption of Powers factors. For general irreducible inclusions $$N \subset M$$, we relate the ergodicity of the flow $$\beta ^\varphi $$ to the existence of irreducible AFD subfactors in M that sit with normal expectation in N. When the inclusion $$N \subset M$$ is discrete, we prove a relative bicentralizer theorem and we use it to solve Kadison’s problem when N is amenable. Haagerup, Uffe aut Houdayer, Cyril (orcid)0000-0002-5953-263X aut Marrakchi, Amine aut Enthalten in Mathematische Annalen Springer Berlin Heidelberg, 1869 376(2019), 3-4 vom: 30. Nov., Seite 1145-1194 (DE-627)129060151 (DE-600)285-9 (DE-576)014390825 0025-5831 nnns volume:376 year:2019 number:3-4 day:30 month:11 pages:1145-1194 https://doi.org/10.1007/s00208-019-01939-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_70 GBV_ILN_2007 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 376 2019 3-4 30 11 1145-1194 |
allfieldsSound |
10.1007/s00208-019-01939-9 doi (DE-627)OLC2039634851 (DE-He213)s00208-019-01939-9-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn 31.00 bkl Ando, Hiroshi verfasserin aut Structure of bicentralizer algebras and inclusions of type $$\mathrm{III}$$ factors 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract We investigate the structure of the relative bicentralizer algebra $$\mathrm{B}(N \subset M, \varphi )$$ for inclusions of von Neumann algebras with normal expectation where N is a type $$\mathrm{III}_1$$ subfactor and $$\varphi \in N_*$$ is a faithful state. We first construct a canonical flow $$\beta ^\varphi : \mathbf {R}^*_+ \curvearrowright \mathrm{B}(N \subset M, \varphi )$$ on the relative bicentralizer algebra and we show that the W$$^*$$-dynamical system $$(\mathrm{B}(N \subset M, \varphi ), \beta ^\varphi )$$ is independent of the choice of $$\varphi $$ up to a canonical isomorphism. In the case when $$N=M$$, we deduce new results on the structure of the automorphism group of $$\mathrm{B}(M,\varphi )$$ and we relate the period of the flow $$\beta ^\varphi $$ to the tensorial absorption of Powers factors. For general irreducible inclusions $$N \subset M$$, we relate the ergodicity of the flow $$\beta ^\varphi $$ to the existence of irreducible AFD subfactors in M that sit with normal expectation in N. When the inclusion $$N \subset M$$ is discrete, we prove a relative bicentralizer theorem and we use it to solve Kadison’s problem when N is amenable. Haagerup, Uffe aut Houdayer, Cyril (orcid)0000-0002-5953-263X aut Marrakchi, Amine aut Enthalten in Mathematische Annalen Springer Berlin Heidelberg, 1869 376(2019), 3-4 vom: 30. Nov., Seite 1145-1194 (DE-627)129060151 (DE-600)285-9 (DE-576)014390825 0025-5831 nnns volume:376 year:2019 number:3-4 day:30 month:11 pages:1145-1194 https://doi.org/10.1007/s00208-019-01939-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_70 GBV_ILN_2007 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 376 2019 3-4 30 11 1145-1194 |
language |
English |
source |
Enthalten in Mathematische Annalen 376(2019), 3-4 vom: 30. Nov., Seite 1145-1194 volume:376 year:2019 number:3-4 day:30 month:11 pages:1145-1194 |
sourceStr |
Enthalten in Mathematische Annalen 376(2019), 3-4 vom: 30. Nov., Seite 1145-1194 volume:376 year:2019 number:3-4 day:30 month:11 pages:1145-1194 |
format_phy_str_mv |
Article |
bklname |
Mathematik: Allgemeines |
institution |
findex.gbv.de |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Mathematische Annalen |
authorswithroles_txt_mv |
Ando, Hiroshi @@aut@@ Haagerup, Uffe @@aut@@ Houdayer, Cyril @@aut@@ Marrakchi, Amine @@aut@@ |
publishDateDaySort_date |
2019-11-30T00:00:00Z |
hierarchy_top_id |
129060151 |
dewey-sort |
3510 |
id |
OLC2039634851 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2039634851</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240308175943.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00208-019-01939-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2039634851</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00208-019-01939-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ando, Hiroshi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structure of bicentralizer algebras and inclusions of type $$\mathrm{III}$$ factors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We investigate the structure of the relative bicentralizer algebra $$\mathrm{B}(N \subset M, \varphi )$$ for inclusions of von Neumann algebras with normal expectation where N is a type $$\mathrm{III}_1$$ subfactor and $$\varphi \in N_*$$ is a faithful state. We first construct a canonical flow $$\beta ^\varphi : \mathbf {R}^*_+ \curvearrowright \mathrm{B}(N \subset M, \varphi )$$ on the relative bicentralizer algebra and we show that the W$$^*$$-dynamical system $$(\mathrm{B}(N \subset M, \varphi ), \beta ^\varphi )$$ is independent of the choice of $$\varphi $$ up to a canonical isomorphism. In the case when $$N=M$$, we deduce new results on the structure of the automorphism group of $$\mathrm{B}(M,\varphi )$$ and we relate the period of the flow $$\beta ^\varphi $$ to the tensorial absorption of Powers factors. For general irreducible inclusions $$N \subset M$$, we relate the ergodicity of the flow $$\beta ^\varphi $$ to the existence of irreducible AFD subfactors in M that sit with normal expectation in N. When the inclusion $$N \subset M$$ is discrete, we prove a relative bicentralizer theorem and we use it to solve Kadison’s problem when N is amenable.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Haagerup, Uffe</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Houdayer, Cyril</subfield><subfield code="0">(orcid)0000-0002-5953-263X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marrakchi, Amine</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematische Annalen</subfield><subfield code="d">Springer Berlin Heidelberg, 1869</subfield><subfield code="g">376(2019), 3-4 vom: 30. Nov., Seite 1145-1194</subfield><subfield code="w">(DE-627)129060151</subfield><subfield code="w">(DE-600)285-9</subfield><subfield code="w">(DE-576)014390825</subfield><subfield code="x">0025-5831</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:376</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:3-4</subfield><subfield code="g">day:30</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:1145-1194</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00208-019-01939-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">376</subfield><subfield code="j">2019</subfield><subfield code="e">3-4</subfield><subfield code="b">30</subfield><subfield code="c">11</subfield><subfield code="h">1145-1194</subfield></datafield></record></collection>
|
author |
Ando, Hiroshi |
spellingShingle |
Ando, Hiroshi ddc 510 ssgn 17,1 bkl 31.00 Structure of bicentralizer algebras and inclusions of type $$\mathrm{III}$$ factors |
authorStr |
Ando, Hiroshi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129060151 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0025-5831 |
topic_title |
510 VZ 17,1 ssgn 31.00 bkl Structure of bicentralizer algebras and inclusions of type $$\mathrm{III}$$ factors |
topic |
ddc 510 ssgn 17,1 bkl 31.00 |
topic_unstemmed |
ddc 510 ssgn 17,1 bkl 31.00 |
topic_browse |
ddc 510 ssgn 17,1 bkl 31.00 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Mathematische Annalen |
hierarchy_parent_id |
129060151 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Mathematische Annalen |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129060151 (DE-600)285-9 (DE-576)014390825 |
title |
Structure of bicentralizer algebras and inclusions of type $$\mathrm{III}$$ factors |
ctrlnum |
(DE-627)OLC2039634851 (DE-He213)s00208-019-01939-9-p |
title_full |
Structure of bicentralizer algebras and inclusions of type $$\mathrm{III}$$ factors |
author_sort |
Ando, Hiroshi |
journal |
Mathematische Annalen |
journalStr |
Mathematische Annalen |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
1145 |
author_browse |
Ando, Hiroshi Haagerup, Uffe Houdayer, Cyril Marrakchi, Amine |
container_volume |
376 |
class |
510 VZ 17,1 ssgn 31.00 bkl |
format_se |
Aufsätze |
author-letter |
Ando, Hiroshi |
doi_str_mv |
10.1007/s00208-019-01939-9 |
normlink |
(ORCID)0000-0002-5953-263X |
normlink_prefix_str_mv |
(orcid)0000-0002-5953-263X |
dewey-full |
510 |
title_sort |
structure of bicentralizer algebras and inclusions of type $$\mathrm{iii}$$ factors |
title_auth |
Structure of bicentralizer algebras and inclusions of type $$\mathrm{III}$$ factors |
abstract |
Abstract We investigate the structure of the relative bicentralizer algebra $$\mathrm{B}(N \subset M, \varphi )$$ for inclusions of von Neumann algebras with normal expectation where N is a type $$\mathrm{III}_1$$ subfactor and $$\varphi \in N_*$$ is a faithful state. We first construct a canonical flow $$\beta ^\varphi : \mathbf {R}^*_+ \curvearrowright \mathrm{B}(N \subset M, \varphi )$$ on the relative bicentralizer algebra and we show that the W$$^*$$-dynamical system $$(\mathrm{B}(N \subset M, \varphi ), \beta ^\varphi )$$ is independent of the choice of $$\varphi $$ up to a canonical isomorphism. In the case when $$N=M$$, we deduce new results on the structure of the automorphism group of $$\mathrm{B}(M,\varphi )$$ and we relate the period of the flow $$\beta ^\varphi $$ to the tensorial absorption of Powers factors. For general irreducible inclusions $$N \subset M$$, we relate the ergodicity of the flow $$\beta ^\varphi $$ to the existence of irreducible AFD subfactors in M that sit with normal expectation in N. When the inclusion $$N \subset M$$ is discrete, we prove a relative bicentralizer theorem and we use it to solve Kadison’s problem when N is amenable. © Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
abstractGer |
Abstract We investigate the structure of the relative bicentralizer algebra $$\mathrm{B}(N \subset M, \varphi )$$ for inclusions of von Neumann algebras with normal expectation where N is a type $$\mathrm{III}_1$$ subfactor and $$\varphi \in N_*$$ is a faithful state. We first construct a canonical flow $$\beta ^\varphi : \mathbf {R}^*_+ \curvearrowright \mathrm{B}(N \subset M, \varphi )$$ on the relative bicentralizer algebra and we show that the W$$^*$$-dynamical system $$(\mathrm{B}(N \subset M, \varphi ), \beta ^\varphi )$$ is independent of the choice of $$\varphi $$ up to a canonical isomorphism. In the case when $$N=M$$, we deduce new results on the structure of the automorphism group of $$\mathrm{B}(M,\varphi )$$ and we relate the period of the flow $$\beta ^\varphi $$ to the tensorial absorption of Powers factors. For general irreducible inclusions $$N \subset M$$, we relate the ergodicity of the flow $$\beta ^\varphi $$ to the existence of irreducible AFD subfactors in M that sit with normal expectation in N. When the inclusion $$N \subset M$$ is discrete, we prove a relative bicentralizer theorem and we use it to solve Kadison’s problem when N is amenable. © Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
abstract_unstemmed |
Abstract We investigate the structure of the relative bicentralizer algebra $$\mathrm{B}(N \subset M, \varphi )$$ for inclusions of von Neumann algebras with normal expectation where N is a type $$\mathrm{III}_1$$ subfactor and $$\varphi \in N_*$$ is a faithful state. We first construct a canonical flow $$\beta ^\varphi : \mathbf {R}^*_+ \curvearrowright \mathrm{B}(N \subset M, \varphi )$$ on the relative bicentralizer algebra and we show that the W$$^*$$-dynamical system $$(\mathrm{B}(N \subset M, \varphi ), \beta ^\varphi )$$ is independent of the choice of $$\varphi $$ up to a canonical isomorphism. In the case when $$N=M$$, we deduce new results on the structure of the automorphism group of $$\mathrm{B}(M,\varphi )$$ and we relate the period of the flow $$\beta ^\varphi $$ to the tensorial absorption of Powers factors. For general irreducible inclusions $$N \subset M$$, we relate the ergodicity of the flow $$\beta ^\varphi $$ to the existence of irreducible AFD subfactors in M that sit with normal expectation in N. When the inclusion $$N \subset M$$ is discrete, we prove a relative bicentralizer theorem and we use it to solve Kadison’s problem when N is amenable. © Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_70 GBV_ILN_2007 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 |
container_issue |
3-4 |
title_short |
Structure of bicentralizer algebras and inclusions of type $$\mathrm{III}$$ factors |
url |
https://doi.org/10.1007/s00208-019-01939-9 |
remote_bool |
false |
author2 |
Haagerup, Uffe Houdayer, Cyril Marrakchi, Amine |
author2Str |
Haagerup, Uffe Houdayer, Cyril Marrakchi, Amine |
ppnlink |
129060151 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00208-019-01939-9 |
up_date |
2024-07-03T23:31:37.938Z |
_version_ |
1803602622351933440 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2039634851</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240308175943.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00208-019-01939-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2039634851</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00208-019-01939-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ando, Hiroshi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structure of bicentralizer algebras and inclusions of type $$\mathrm{III}$$ factors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We investigate the structure of the relative bicentralizer algebra $$\mathrm{B}(N \subset M, \varphi )$$ for inclusions of von Neumann algebras with normal expectation where N is a type $$\mathrm{III}_1$$ subfactor and $$\varphi \in N_*$$ is a faithful state. We first construct a canonical flow $$\beta ^\varphi : \mathbf {R}^*_+ \curvearrowright \mathrm{B}(N \subset M, \varphi )$$ on the relative bicentralizer algebra and we show that the W$$^*$$-dynamical system $$(\mathrm{B}(N \subset M, \varphi ), \beta ^\varphi )$$ is independent of the choice of $$\varphi $$ up to a canonical isomorphism. In the case when $$N=M$$, we deduce new results on the structure of the automorphism group of $$\mathrm{B}(M,\varphi )$$ and we relate the period of the flow $$\beta ^\varphi $$ to the tensorial absorption of Powers factors. For general irreducible inclusions $$N \subset M$$, we relate the ergodicity of the flow $$\beta ^\varphi $$ to the existence of irreducible AFD subfactors in M that sit with normal expectation in N. When the inclusion $$N \subset M$$ is discrete, we prove a relative bicentralizer theorem and we use it to solve Kadison’s problem when N is amenable.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Haagerup, Uffe</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Houdayer, Cyril</subfield><subfield code="0">(orcid)0000-0002-5953-263X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marrakchi, Amine</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematische Annalen</subfield><subfield code="d">Springer Berlin Heidelberg, 1869</subfield><subfield code="g">376(2019), 3-4 vom: 30. Nov., Seite 1145-1194</subfield><subfield code="w">(DE-627)129060151</subfield><subfield code="w">(DE-600)285-9</subfield><subfield code="w">(DE-576)014390825</subfield><subfield code="x">0025-5831</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:376</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:3-4</subfield><subfield code="g">day:30</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:1145-1194</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00208-019-01939-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">376</subfield><subfield code="j">2019</subfield><subfield code="e">3-4</subfield><subfield code="b">30</subfield><subfield code="c">11</subfield><subfield code="h">1145-1194</subfield></datafield></record></collection>
|
score |
7.4002924 |