Rationally trivial hermitian spaces are locally trivial
Abstract. Let R be a regular local ring, K its field of fractions and A an Azumaya algebra with involution over R. Let h be an $\epsilon$-hermitian space over A. We show that if $\bold{h}\otimes_R K$ is hyperbolic over $A\otimes_R K$, then h is hyperbolic over A.
Autor*in: |
Ojanguren, Manuel [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2001 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2001 |
---|
Übergeordnetes Werk: |
Enthalten in: Mathematische Zeitschrift - Springer-Verlag, 1918, 237(2001), 1 vom: Mai, Seite 181-198 |
---|---|
Übergeordnetes Werk: |
volume:237 ; year:2001 ; number:1 ; month:05 ; pages:181-198 |
Links: |
---|
DOI / URN: |
10.1007/PL00004859 |
---|
Katalog-ID: |
OLC2039720146 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2039720146 | ||
003 | DE-627 | ||
005 | 20230323161218.0 | ||
007 | tu | ||
008 | 200819s2001 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/PL00004859 |2 doi | |
035 | |a (DE-627)OLC2039720146 | ||
035 | |a (DE-He213)PL00004859-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Ojanguren, Manuel |e verfasserin |4 aut | |
245 | 1 | 0 | |a Rationally trivial hermitian spaces are locally trivial |
264 | 1 | |c 2001 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2001 | ||
520 | |a Abstract. Let R be a regular local ring, K its field of fractions and A an Azumaya algebra with involution over R. Let h be an $\epsilon$-hermitian space over A. We show that if $\bold{h}\otimes_R K$ is hyperbolic over $A\otimes_R K$, then h is hyperbolic over A. | ||
650 | 4 | |a Local Ring | |
650 | 4 | |a Regular Local Ring | |
650 | 4 | |a Hermitian Space | |
700 | 1 | |a Panin, Ivan |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Mathematische Zeitschrift |d Springer-Verlag, 1918 |g 237(2001), 1 vom: Mai, Seite 181-198 |w (DE-627)129474193 |w (DE-600)203014-7 |w (DE-576)014852047 |x 0025-5874 |7 nnns |
773 | 1 | 8 | |g volume:237 |g year:2001 |g number:1 |g month:05 |g pages:181-198 |
856 | 4 | 1 | |u https://doi.org/10.1007/PL00004859 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4314 | ||
912 | |a GBV_ILN_4315 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4320 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 237 |j 2001 |e 1 |c 05 |h 181-198 |
author_variant |
m o mo i p ip |
---|---|
matchkey_str |
article:00255874:2001----::ainlyrvahriinpcsrl |
hierarchy_sort_str |
2001 |
publishDate |
2001 |
allfields |
10.1007/PL00004859 doi (DE-627)OLC2039720146 (DE-He213)PL00004859-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Ojanguren, Manuel verfasserin aut Rationally trivial hermitian spaces are locally trivial 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2001 Abstract. Let R be a regular local ring, K its field of fractions and A an Azumaya algebra with involution over R. Let h be an $\epsilon$-hermitian space over A. We show that if $\bold{h}\otimes_R K$ is hyperbolic over $A\otimes_R K$, then h is hyperbolic over A. Local Ring Regular Local Ring Hermitian Space Panin, Ivan aut Enthalten in Mathematische Zeitschrift Springer-Verlag, 1918 237(2001), 1 vom: Mai, Seite 181-198 (DE-627)129474193 (DE-600)203014-7 (DE-576)014852047 0025-5874 nnns volume:237 year:2001 number:1 month:05 pages:181-198 https://doi.org/10.1007/PL00004859 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4082 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4320 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 AR 237 2001 1 05 181-198 |
spelling |
10.1007/PL00004859 doi (DE-627)OLC2039720146 (DE-He213)PL00004859-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Ojanguren, Manuel verfasserin aut Rationally trivial hermitian spaces are locally trivial 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2001 Abstract. Let R be a regular local ring, K its field of fractions and A an Azumaya algebra with involution over R. Let h be an $\epsilon$-hermitian space over A. We show that if $\bold{h}\otimes_R K$ is hyperbolic over $A\otimes_R K$, then h is hyperbolic over A. Local Ring Regular Local Ring Hermitian Space Panin, Ivan aut Enthalten in Mathematische Zeitschrift Springer-Verlag, 1918 237(2001), 1 vom: Mai, Seite 181-198 (DE-627)129474193 (DE-600)203014-7 (DE-576)014852047 0025-5874 nnns volume:237 year:2001 number:1 month:05 pages:181-198 https://doi.org/10.1007/PL00004859 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4082 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4320 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 AR 237 2001 1 05 181-198 |
allfields_unstemmed |
10.1007/PL00004859 doi (DE-627)OLC2039720146 (DE-He213)PL00004859-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Ojanguren, Manuel verfasserin aut Rationally trivial hermitian spaces are locally trivial 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2001 Abstract. Let R be a regular local ring, K its field of fractions and A an Azumaya algebra with involution over R. Let h be an $\epsilon$-hermitian space over A. We show that if $\bold{h}\otimes_R K$ is hyperbolic over $A\otimes_R K$, then h is hyperbolic over A. Local Ring Regular Local Ring Hermitian Space Panin, Ivan aut Enthalten in Mathematische Zeitschrift Springer-Verlag, 1918 237(2001), 1 vom: Mai, Seite 181-198 (DE-627)129474193 (DE-600)203014-7 (DE-576)014852047 0025-5874 nnns volume:237 year:2001 number:1 month:05 pages:181-198 https://doi.org/10.1007/PL00004859 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4082 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4320 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 AR 237 2001 1 05 181-198 |
allfieldsGer |
10.1007/PL00004859 doi (DE-627)OLC2039720146 (DE-He213)PL00004859-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Ojanguren, Manuel verfasserin aut Rationally trivial hermitian spaces are locally trivial 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2001 Abstract. Let R be a regular local ring, K its field of fractions and A an Azumaya algebra with involution over R. Let h be an $\epsilon$-hermitian space over A. We show that if $\bold{h}\otimes_R K$ is hyperbolic over $A\otimes_R K$, then h is hyperbolic over A. Local Ring Regular Local Ring Hermitian Space Panin, Ivan aut Enthalten in Mathematische Zeitschrift Springer-Verlag, 1918 237(2001), 1 vom: Mai, Seite 181-198 (DE-627)129474193 (DE-600)203014-7 (DE-576)014852047 0025-5874 nnns volume:237 year:2001 number:1 month:05 pages:181-198 https://doi.org/10.1007/PL00004859 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4082 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4320 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 AR 237 2001 1 05 181-198 |
allfieldsSound |
10.1007/PL00004859 doi (DE-627)OLC2039720146 (DE-He213)PL00004859-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Ojanguren, Manuel verfasserin aut Rationally trivial hermitian spaces are locally trivial 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2001 Abstract. Let R be a regular local ring, K its field of fractions and A an Azumaya algebra with involution over R. Let h be an $\epsilon$-hermitian space over A. We show that if $\bold{h}\otimes_R K$ is hyperbolic over $A\otimes_R K$, then h is hyperbolic over A. Local Ring Regular Local Ring Hermitian Space Panin, Ivan aut Enthalten in Mathematische Zeitschrift Springer-Verlag, 1918 237(2001), 1 vom: Mai, Seite 181-198 (DE-627)129474193 (DE-600)203014-7 (DE-576)014852047 0025-5874 nnns volume:237 year:2001 number:1 month:05 pages:181-198 https://doi.org/10.1007/PL00004859 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4082 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4320 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 AR 237 2001 1 05 181-198 |
language |
English |
source |
Enthalten in Mathematische Zeitschrift 237(2001), 1 vom: Mai, Seite 181-198 volume:237 year:2001 number:1 month:05 pages:181-198 |
sourceStr |
Enthalten in Mathematische Zeitschrift 237(2001), 1 vom: Mai, Seite 181-198 volume:237 year:2001 number:1 month:05 pages:181-198 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Local Ring Regular Local Ring Hermitian Space |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Mathematische Zeitschrift |
authorswithroles_txt_mv |
Ojanguren, Manuel @@aut@@ Panin, Ivan @@aut@@ |
publishDateDaySort_date |
2001-05-01T00:00:00Z |
hierarchy_top_id |
129474193 |
dewey-sort |
3510 |
id |
OLC2039720146 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2039720146</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323161218.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2001 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/PL00004859</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2039720146</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)PL00004859-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ojanguren, Manuel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rationally trivial hermitian spaces are locally trivial</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2001</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2001</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. Let R be a regular local ring, K its field of fractions and A an Azumaya algebra with involution over R. Let h be an $\epsilon$-hermitian space over A. We show that if $\bold{h}\otimes_R K$ is hyperbolic over $A\otimes_R K$, then h is hyperbolic over A.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local Ring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Regular Local Ring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hermitian Space</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Panin, Ivan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematische Zeitschrift</subfield><subfield code="d">Springer-Verlag, 1918</subfield><subfield code="g">237(2001), 1 vom: Mai, Seite 181-198</subfield><subfield code="w">(DE-627)129474193</subfield><subfield code="w">(DE-600)203014-7</subfield><subfield code="w">(DE-576)014852047</subfield><subfield code="x">0025-5874</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:237</subfield><subfield code="g">year:2001</subfield><subfield code="g">number:1</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:181-198</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/PL00004859</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4320</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">237</subfield><subfield code="j">2001</subfield><subfield code="e">1</subfield><subfield code="c">05</subfield><subfield code="h">181-198</subfield></datafield></record></collection>
|
author |
Ojanguren, Manuel |
spellingShingle |
Ojanguren, Manuel ddc 510 ssgn 17,1 misc Local Ring misc Regular Local Ring misc Hermitian Space Rationally trivial hermitian spaces are locally trivial |
authorStr |
Ojanguren, Manuel |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129474193 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0025-5874 |
topic_title |
510 VZ 17,1 ssgn Rationally trivial hermitian spaces are locally trivial Local Ring Regular Local Ring Hermitian Space |
topic |
ddc 510 ssgn 17,1 misc Local Ring misc Regular Local Ring misc Hermitian Space |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Local Ring misc Regular Local Ring misc Hermitian Space |
topic_browse |
ddc 510 ssgn 17,1 misc Local Ring misc Regular Local Ring misc Hermitian Space |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Mathematische Zeitschrift |
hierarchy_parent_id |
129474193 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Mathematische Zeitschrift |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129474193 (DE-600)203014-7 (DE-576)014852047 |
title |
Rationally trivial hermitian spaces are locally trivial |
ctrlnum |
(DE-627)OLC2039720146 (DE-He213)PL00004859-p |
title_full |
Rationally trivial hermitian spaces are locally trivial |
author_sort |
Ojanguren, Manuel |
journal |
Mathematische Zeitschrift |
journalStr |
Mathematische Zeitschrift |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2001 |
contenttype_str_mv |
txt |
container_start_page |
181 |
author_browse |
Ojanguren, Manuel Panin, Ivan |
container_volume |
237 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Ojanguren, Manuel |
doi_str_mv |
10.1007/PL00004859 |
dewey-full |
510 |
title_sort |
rationally trivial hermitian spaces are locally trivial |
title_auth |
Rationally trivial hermitian spaces are locally trivial |
abstract |
Abstract. Let R be a regular local ring, K its field of fractions and A an Azumaya algebra with involution over R. Let h be an $\epsilon$-hermitian space over A. We show that if $\bold{h}\otimes_R K$ is hyperbolic over $A\otimes_R K$, then h is hyperbolic over A. © Springer-Verlag Berlin Heidelberg 2001 |
abstractGer |
Abstract. Let R be a regular local ring, K its field of fractions and A an Azumaya algebra with involution over R. Let h be an $\epsilon$-hermitian space over A. We show that if $\bold{h}\otimes_R K$ is hyperbolic over $A\otimes_R K$, then h is hyperbolic over A. © Springer-Verlag Berlin Heidelberg 2001 |
abstract_unstemmed |
Abstract. Let R be a regular local ring, K its field of fractions and A an Azumaya algebra with involution over R. Let h be an $\epsilon$-hermitian space over A. We show that if $\bold{h}\otimes_R K$ is hyperbolic over $A\otimes_R K$, then h is hyperbolic over A. © Springer-Verlag Berlin Heidelberg 2001 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4082 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4320 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Rationally trivial hermitian spaces are locally trivial |
url |
https://doi.org/10.1007/PL00004859 |
remote_bool |
false |
author2 |
Panin, Ivan |
author2Str |
Panin, Ivan |
ppnlink |
129474193 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/PL00004859 |
up_date |
2024-07-03T23:47:26.736Z |
_version_ |
1803603617238745088 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2039720146</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323161218.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2001 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/PL00004859</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2039720146</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)PL00004859-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ojanguren, Manuel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rationally trivial hermitian spaces are locally trivial</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2001</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2001</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. Let R be a regular local ring, K its field of fractions and A an Azumaya algebra with involution over R. Let h be an $\epsilon$-hermitian space over A. We show that if $\bold{h}\otimes_R K$ is hyperbolic over $A\otimes_R K$, then h is hyperbolic over A.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local Ring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Regular Local Ring</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hermitian Space</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Panin, Ivan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematische Zeitschrift</subfield><subfield code="d">Springer-Verlag, 1918</subfield><subfield code="g">237(2001), 1 vom: Mai, Seite 181-198</subfield><subfield code="w">(DE-627)129474193</subfield><subfield code="w">(DE-600)203014-7</subfield><subfield code="w">(DE-576)014852047</subfield><subfield code="x">0025-5874</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:237</subfield><subfield code="g">year:2001</subfield><subfield code="g">number:1</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:181-198</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/PL00004859</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4320</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">237</subfield><subfield code="j">2001</subfield><subfield code="e">1</subfield><subfield code="c">05</subfield><subfield code="h">181-198</subfield></datafield></record></collection>
|
score |
7.40189 |