Pro-p groups with linear subgroup growth
Abstract. Let G be a finitely generated pro-p group, and for every natural number n let sn(G) denote the number of subgroups of index at most n in G. The group G is said to have polynomial subgroup growth (PSG), if there exists α$ ℝ_{≥0} $ such that sn(G)≤nα for all nℕ. In this paper we investigat...
Ausführliche Beschreibung
Autor*in: |
Klopsch, Benjamin [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2003 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2003 |
---|
Übergeordnetes Werk: |
Enthalten in: Mathematische Zeitschrift - Springer-Verlag, 1918, 245(2003), 2 vom: 16. Aug., Seite 335-370 |
---|---|
Übergeordnetes Werk: |
volume:245 ; year:2003 ; number:2 ; day:16 ; month:08 ; pages:335-370 |
Links: |
---|
DOI / URN: |
10.1007/s00209-003-0548-5 |
---|
Katalog-ID: |
OLC2039723382 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2039723382 | ||
003 | DE-627 | ||
005 | 20230323161232.0 | ||
007 | tu | ||
008 | 200819s2003 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00209-003-0548-5 |2 doi | |
035 | |a (DE-627)OLC2039723382 | ||
035 | |a (DE-He213)s00209-003-0548-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Klopsch, Benjamin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Pro-p groups with linear subgroup growth |
264 | 1 | |c 2003 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2003 | ||
520 | |a Abstract. Let G be a finitely generated pro-p group, and for every natural number n let sn(G) denote the number of subgroups of index at most n in G. The group G is said to have polynomial subgroup growth (PSG), if there exists α$ ℝ_{≥0} $ such that sn(G)≤nα for all nℕ. In this paper we investigate the structure of pro-p groups which have (slow) PSG. Our main result is a complete description of pro-p groups with linear subgroup growth; this solves a problem posed by Shalev [20]. | ||
650 | 4 | |a Natural Number | |
650 | 4 | |a Subgroup Growth | |
650 | 4 | |a Polynomial Subgroup | |
650 | 4 | |a Polynomial Subgroup Growth | |
650 | 4 | |a Linear Subgroup | |
773 | 0 | 8 | |i Enthalten in |t Mathematische Zeitschrift |d Springer-Verlag, 1918 |g 245(2003), 2 vom: 16. Aug., Seite 335-370 |w (DE-627)129474193 |w (DE-600)203014-7 |w (DE-576)014852047 |x 0025-5874 |7 nnns |
773 | 1 | 8 | |g volume:245 |g year:2003 |g number:2 |g day:16 |g month:08 |g pages:335-370 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00209-003-0548-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2030 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4314 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4320 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 245 |j 2003 |e 2 |b 16 |c 08 |h 335-370 |
author_variant |
b k bk |
---|---|
matchkey_str |
article:00255874:2003----::rprusihierug |
hierarchy_sort_str |
2003 |
publishDate |
2003 |
allfields |
10.1007/s00209-003-0548-5 doi (DE-627)OLC2039723382 (DE-He213)s00209-003-0548-5-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Klopsch, Benjamin verfasserin aut Pro-p groups with linear subgroup growth 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2003 Abstract. Let G be a finitely generated pro-p group, and for every natural number n let sn(G) denote the number of subgroups of index at most n in G. The group G is said to have polynomial subgroup growth (PSG), if there exists α$ ℝ_{≥0} $ such that sn(G)≤nα for all nℕ. In this paper we investigate the structure of pro-p groups which have (slow) PSG. Our main result is a complete description of pro-p groups with linear subgroup growth; this solves a problem posed by Shalev [20]. Natural Number Subgroup Growth Polynomial Subgroup Polynomial Subgroup Growth Linear Subgroup Enthalten in Mathematische Zeitschrift Springer-Verlag, 1918 245(2003), 2 vom: 16. Aug., Seite 335-370 (DE-627)129474193 (DE-600)203014-7 (DE-576)014852047 0025-5874 nnns volume:245 year:2003 number:2 day:16 month:08 pages:335-370 https://doi.org/10.1007/s00209-003-0548-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4320 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 AR 245 2003 2 16 08 335-370 |
spelling |
10.1007/s00209-003-0548-5 doi (DE-627)OLC2039723382 (DE-He213)s00209-003-0548-5-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Klopsch, Benjamin verfasserin aut Pro-p groups with linear subgroup growth 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2003 Abstract. Let G be a finitely generated pro-p group, and for every natural number n let sn(G) denote the number of subgroups of index at most n in G. The group G is said to have polynomial subgroup growth (PSG), if there exists α$ ℝ_{≥0} $ such that sn(G)≤nα for all nℕ. In this paper we investigate the structure of pro-p groups which have (slow) PSG. Our main result is a complete description of pro-p groups with linear subgroup growth; this solves a problem posed by Shalev [20]. Natural Number Subgroup Growth Polynomial Subgroup Polynomial Subgroup Growth Linear Subgroup Enthalten in Mathematische Zeitschrift Springer-Verlag, 1918 245(2003), 2 vom: 16. Aug., Seite 335-370 (DE-627)129474193 (DE-600)203014-7 (DE-576)014852047 0025-5874 nnns volume:245 year:2003 number:2 day:16 month:08 pages:335-370 https://doi.org/10.1007/s00209-003-0548-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4320 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 AR 245 2003 2 16 08 335-370 |
allfields_unstemmed |
10.1007/s00209-003-0548-5 doi (DE-627)OLC2039723382 (DE-He213)s00209-003-0548-5-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Klopsch, Benjamin verfasserin aut Pro-p groups with linear subgroup growth 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2003 Abstract. Let G be a finitely generated pro-p group, and for every natural number n let sn(G) denote the number of subgroups of index at most n in G. The group G is said to have polynomial subgroup growth (PSG), if there exists α$ ℝ_{≥0} $ such that sn(G)≤nα for all nℕ. In this paper we investigate the structure of pro-p groups which have (slow) PSG. Our main result is a complete description of pro-p groups with linear subgroup growth; this solves a problem posed by Shalev [20]. Natural Number Subgroup Growth Polynomial Subgroup Polynomial Subgroup Growth Linear Subgroup Enthalten in Mathematische Zeitschrift Springer-Verlag, 1918 245(2003), 2 vom: 16. Aug., Seite 335-370 (DE-627)129474193 (DE-600)203014-7 (DE-576)014852047 0025-5874 nnns volume:245 year:2003 number:2 day:16 month:08 pages:335-370 https://doi.org/10.1007/s00209-003-0548-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4320 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 AR 245 2003 2 16 08 335-370 |
allfieldsGer |
10.1007/s00209-003-0548-5 doi (DE-627)OLC2039723382 (DE-He213)s00209-003-0548-5-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Klopsch, Benjamin verfasserin aut Pro-p groups with linear subgroup growth 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2003 Abstract. Let G be a finitely generated pro-p group, and for every natural number n let sn(G) denote the number of subgroups of index at most n in G. The group G is said to have polynomial subgroup growth (PSG), if there exists α$ ℝ_{≥0} $ such that sn(G)≤nα for all nℕ. In this paper we investigate the structure of pro-p groups which have (slow) PSG. Our main result is a complete description of pro-p groups with linear subgroup growth; this solves a problem posed by Shalev [20]. Natural Number Subgroup Growth Polynomial Subgroup Polynomial Subgroup Growth Linear Subgroup Enthalten in Mathematische Zeitschrift Springer-Verlag, 1918 245(2003), 2 vom: 16. Aug., Seite 335-370 (DE-627)129474193 (DE-600)203014-7 (DE-576)014852047 0025-5874 nnns volume:245 year:2003 number:2 day:16 month:08 pages:335-370 https://doi.org/10.1007/s00209-003-0548-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4320 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 AR 245 2003 2 16 08 335-370 |
allfieldsSound |
10.1007/s00209-003-0548-5 doi (DE-627)OLC2039723382 (DE-He213)s00209-003-0548-5-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Klopsch, Benjamin verfasserin aut Pro-p groups with linear subgroup growth 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2003 Abstract. Let G be a finitely generated pro-p group, and for every natural number n let sn(G) denote the number of subgroups of index at most n in G. The group G is said to have polynomial subgroup growth (PSG), if there exists α$ ℝ_{≥0} $ such that sn(G)≤nα for all nℕ. In this paper we investigate the structure of pro-p groups which have (slow) PSG. Our main result is a complete description of pro-p groups with linear subgroup growth; this solves a problem posed by Shalev [20]. Natural Number Subgroup Growth Polynomial Subgroup Polynomial Subgroup Growth Linear Subgroup Enthalten in Mathematische Zeitschrift Springer-Verlag, 1918 245(2003), 2 vom: 16. Aug., Seite 335-370 (DE-627)129474193 (DE-600)203014-7 (DE-576)014852047 0025-5874 nnns volume:245 year:2003 number:2 day:16 month:08 pages:335-370 https://doi.org/10.1007/s00209-003-0548-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4320 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 AR 245 2003 2 16 08 335-370 |
language |
English |
source |
Enthalten in Mathematische Zeitschrift 245(2003), 2 vom: 16. Aug., Seite 335-370 volume:245 year:2003 number:2 day:16 month:08 pages:335-370 |
sourceStr |
Enthalten in Mathematische Zeitschrift 245(2003), 2 vom: 16. Aug., Seite 335-370 volume:245 year:2003 number:2 day:16 month:08 pages:335-370 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Natural Number Subgroup Growth Polynomial Subgroup Polynomial Subgroup Growth Linear Subgroup |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Mathematische Zeitschrift |
authorswithroles_txt_mv |
Klopsch, Benjamin @@aut@@ |
publishDateDaySort_date |
2003-08-16T00:00:00Z |
hierarchy_top_id |
129474193 |
dewey-sort |
3510 |
id |
OLC2039723382 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2039723382</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323161232.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2003 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00209-003-0548-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2039723382</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00209-003-0548-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Klopsch, Benjamin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pro-p groups with linear subgroup growth</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2003</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2003</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. Let G be a finitely generated pro-p group, and for every natural number n let sn(G) denote the number of subgroups of index at most n in G. The group G is said to have polynomial subgroup growth (PSG), if there exists α$ ℝ_{≥0} $ such that sn(G)≤nα for all nℕ. In this paper we investigate the structure of pro-p groups which have (slow) PSG. Our main result is a complete description of pro-p groups with linear subgroup growth; this solves a problem posed by Shalev [20].</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natural Number</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Subgroup Growth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomial Subgroup</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomial Subgroup Growth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear Subgroup</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematische Zeitschrift</subfield><subfield code="d">Springer-Verlag, 1918</subfield><subfield code="g">245(2003), 2 vom: 16. Aug., Seite 335-370</subfield><subfield code="w">(DE-627)129474193</subfield><subfield code="w">(DE-600)203014-7</subfield><subfield code="w">(DE-576)014852047</subfield><subfield code="x">0025-5874</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:245</subfield><subfield code="g">year:2003</subfield><subfield code="g">number:2</subfield><subfield code="g">day:16</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:335-370</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00209-003-0548-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4320</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">245</subfield><subfield code="j">2003</subfield><subfield code="e">2</subfield><subfield code="b">16</subfield><subfield code="c">08</subfield><subfield code="h">335-370</subfield></datafield></record></collection>
|
author |
Klopsch, Benjamin |
spellingShingle |
Klopsch, Benjamin ddc 510 ssgn 17,1 misc Natural Number misc Subgroup Growth misc Polynomial Subgroup misc Polynomial Subgroup Growth misc Linear Subgroup Pro-p groups with linear subgroup growth |
authorStr |
Klopsch, Benjamin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129474193 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0025-5874 |
topic_title |
510 VZ 17,1 ssgn Pro-p groups with linear subgroup growth Natural Number Subgroup Growth Polynomial Subgroup Polynomial Subgroup Growth Linear Subgroup |
topic |
ddc 510 ssgn 17,1 misc Natural Number misc Subgroup Growth misc Polynomial Subgroup misc Polynomial Subgroup Growth misc Linear Subgroup |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Natural Number misc Subgroup Growth misc Polynomial Subgroup misc Polynomial Subgroup Growth misc Linear Subgroup |
topic_browse |
ddc 510 ssgn 17,1 misc Natural Number misc Subgroup Growth misc Polynomial Subgroup misc Polynomial Subgroup Growth misc Linear Subgroup |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Mathematische Zeitschrift |
hierarchy_parent_id |
129474193 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Mathematische Zeitschrift |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129474193 (DE-600)203014-7 (DE-576)014852047 |
title |
Pro-p groups with linear subgroup growth |
ctrlnum |
(DE-627)OLC2039723382 (DE-He213)s00209-003-0548-5-p |
title_full |
Pro-p groups with linear subgroup growth |
author_sort |
Klopsch, Benjamin |
journal |
Mathematische Zeitschrift |
journalStr |
Mathematische Zeitschrift |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2003 |
contenttype_str_mv |
txt |
container_start_page |
335 |
author_browse |
Klopsch, Benjamin |
container_volume |
245 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Klopsch, Benjamin |
doi_str_mv |
10.1007/s00209-003-0548-5 |
dewey-full |
510 |
title_sort |
pro-p groups with linear subgroup growth |
title_auth |
Pro-p groups with linear subgroup growth |
abstract |
Abstract. Let G be a finitely generated pro-p group, and for every natural number n let sn(G) denote the number of subgroups of index at most n in G. The group G is said to have polynomial subgroup growth (PSG), if there exists α$ ℝ_{≥0} $ such that sn(G)≤nα for all nℕ. In this paper we investigate the structure of pro-p groups which have (slow) PSG. Our main result is a complete description of pro-p groups with linear subgroup growth; this solves a problem posed by Shalev [20]. © Springer-Verlag Berlin Heidelberg 2003 |
abstractGer |
Abstract. Let G be a finitely generated pro-p group, and for every natural number n let sn(G) denote the number of subgroups of index at most n in G. The group G is said to have polynomial subgroup growth (PSG), if there exists α$ ℝ_{≥0} $ such that sn(G)≤nα for all nℕ. In this paper we investigate the structure of pro-p groups which have (slow) PSG. Our main result is a complete description of pro-p groups with linear subgroup growth; this solves a problem posed by Shalev [20]. © Springer-Verlag Berlin Heidelberg 2003 |
abstract_unstemmed |
Abstract. Let G be a finitely generated pro-p group, and for every natural number n let sn(G) denote the number of subgroups of index at most n in G. The group G is said to have polynomial subgroup growth (PSG), if there exists α$ ℝ_{≥0} $ such that sn(G)≤nα for all nℕ. In this paper we investigate the structure of pro-p groups which have (slow) PSG. Our main result is a complete description of pro-p groups with linear subgroup growth; this solves a problem posed by Shalev [20]. © Springer-Verlag Berlin Heidelberg 2003 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_120 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4320 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Pro-p groups with linear subgroup growth |
url |
https://doi.org/10.1007/s00209-003-0548-5 |
remote_bool |
false |
ppnlink |
129474193 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00209-003-0548-5 |
up_date |
2024-07-03T23:48:07.188Z |
_version_ |
1803603659656790017 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2039723382</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323161232.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2003 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00209-003-0548-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2039723382</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00209-003-0548-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Klopsch, Benjamin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pro-p groups with linear subgroup growth</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2003</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2003</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract. Let G be a finitely generated pro-p group, and for every natural number n let sn(G) denote the number of subgroups of index at most n in G. The group G is said to have polynomial subgroup growth (PSG), if there exists α$ ℝ_{≥0} $ such that sn(G)≤nα for all nℕ. In this paper we investigate the structure of pro-p groups which have (slow) PSG. Our main result is a complete description of pro-p groups with linear subgroup growth; this solves a problem posed by Shalev [20].</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natural Number</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Subgroup Growth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomial Subgroup</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomial Subgroup Growth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear Subgroup</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematische Zeitschrift</subfield><subfield code="d">Springer-Verlag, 1918</subfield><subfield code="g">245(2003), 2 vom: 16. Aug., Seite 335-370</subfield><subfield code="w">(DE-627)129474193</subfield><subfield code="w">(DE-600)203014-7</subfield><subfield code="w">(DE-576)014852047</subfield><subfield code="x">0025-5874</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:245</subfield><subfield code="g">year:2003</subfield><subfield code="g">number:2</subfield><subfield code="g">day:16</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:335-370</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00209-003-0548-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4320</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">245</subfield><subfield code="j">2003</subfield><subfield code="e">2</subfield><subfield code="b">16</subfield><subfield code="c">08</subfield><subfield code="h">335-370</subfield></datafield></record></collection>
|
score |
7.4025593 |