Spherical subcategories in representation theory
Abstract We introduce a new invariant for triangulated categories: the poset of spherical subcategories ordered by inclusion. This yields several numerical invariants, like the cardinality and the height of the poset. We explicitly describe spherical subcategories and their poset structure for deriv...
Ausführliche Beschreibung
Autor*in: |
Hochenegger, Andreas [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Mathematische Zeitschrift - Springer Berlin Heidelberg, 1918, 291(2018), 1-2 vom: 05. Juni, Seite 113-147 |
---|---|
Übergeordnetes Werk: |
volume:291 ; year:2018 ; number:1-2 ; day:05 ; month:06 ; pages:113-147 |
Links: |
---|
DOI / URN: |
10.1007/s00209-018-2075-4 |
---|
Katalog-ID: |
OLC2039747443 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2039747443 | ||
003 | DE-627 | ||
005 | 20230323161422.0 | ||
007 | tu | ||
008 | 200819s2018 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00209-018-2075-4 |2 doi | |
035 | |a (DE-627)OLC2039747443 | ||
035 | |a (DE-He213)s00209-018-2075-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Hochenegger, Andreas |e verfasserin |4 aut | |
245 | 1 | 0 | |a Spherical subcategories in representation theory |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag GmbH Germany, part of Springer Nature 2018 | ||
520 | |a Abstract We introduce a new invariant for triangulated categories: the poset of spherical subcategories ordered by inclusion. This yields several numerical invariants, like the cardinality and the height of the poset. We explicitly describe spherical subcategories and their poset structure for derived categories of certain finite-dimensional algebras. | ||
650 | 4 | |a Spherical object | |
650 | 4 | |a Spherelike object | |
650 | 4 | |a Spherical subcategory | |
650 | 4 | |a Spherelike poset | |
650 | 4 | |a Derived invariant | |
650 | 4 | |a Cluster-tilting | |
650 | 4 | |a Finite-dimensional algebra | |
650 | 4 | |a Quiver | |
700 | 1 | |a Kalck, Martin |4 aut | |
700 | 1 | |a Ploog, David |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Mathematische Zeitschrift |d Springer Berlin Heidelberg, 1918 |g 291(2018), 1-2 vom: 05. Juni, Seite 113-147 |w (DE-627)129474193 |w (DE-600)203014-7 |w (DE-576)014852047 |x 0025-5874 |7 nnns |
773 | 1 | 8 | |g volume:291 |g year:2018 |g number:1-2 |g day:05 |g month:06 |g pages:113-147 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00209-018-2075-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2030 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4320 | ||
951 | |a AR | ||
952 | |d 291 |j 2018 |e 1-2 |b 05 |c 06 |h 113-147 |
author_variant |
a h ah m k mk d p dp |
---|---|
matchkey_str |
article:00255874:2018----::peiasbaeoisnersn |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s00209-018-2075-4 doi (DE-627)OLC2039747443 (DE-He213)s00209-018-2075-4-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Hochenegger, Andreas verfasserin aut Spherical subcategories in representation theory 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract We introduce a new invariant for triangulated categories: the poset of spherical subcategories ordered by inclusion. This yields several numerical invariants, like the cardinality and the height of the poset. We explicitly describe spherical subcategories and their poset structure for derived categories of certain finite-dimensional algebras. Spherical object Spherelike object Spherical subcategory Spherelike poset Derived invariant Cluster-tilting Finite-dimensional algebra Quiver Kalck, Martin aut Ploog, David aut Enthalten in Mathematische Zeitschrift Springer Berlin Heidelberg, 1918 291(2018), 1-2 vom: 05. Juni, Seite 113-147 (DE-627)129474193 (DE-600)203014-7 (DE-576)014852047 0025-5874 nnns volume:291 year:2018 number:1-2 day:05 month:06 pages:113-147 https://doi.org/10.1007/s00209-018-2075-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_70 GBV_ILN_2007 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4320 AR 291 2018 1-2 05 06 113-147 |
spelling |
10.1007/s00209-018-2075-4 doi (DE-627)OLC2039747443 (DE-He213)s00209-018-2075-4-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Hochenegger, Andreas verfasserin aut Spherical subcategories in representation theory 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract We introduce a new invariant for triangulated categories: the poset of spherical subcategories ordered by inclusion. This yields several numerical invariants, like the cardinality and the height of the poset. We explicitly describe spherical subcategories and their poset structure for derived categories of certain finite-dimensional algebras. Spherical object Spherelike object Spherical subcategory Spherelike poset Derived invariant Cluster-tilting Finite-dimensional algebra Quiver Kalck, Martin aut Ploog, David aut Enthalten in Mathematische Zeitschrift Springer Berlin Heidelberg, 1918 291(2018), 1-2 vom: 05. Juni, Seite 113-147 (DE-627)129474193 (DE-600)203014-7 (DE-576)014852047 0025-5874 nnns volume:291 year:2018 number:1-2 day:05 month:06 pages:113-147 https://doi.org/10.1007/s00209-018-2075-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_70 GBV_ILN_2007 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4320 AR 291 2018 1-2 05 06 113-147 |
allfields_unstemmed |
10.1007/s00209-018-2075-4 doi (DE-627)OLC2039747443 (DE-He213)s00209-018-2075-4-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Hochenegger, Andreas verfasserin aut Spherical subcategories in representation theory 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract We introduce a new invariant for triangulated categories: the poset of spherical subcategories ordered by inclusion. This yields several numerical invariants, like the cardinality and the height of the poset. We explicitly describe spherical subcategories and their poset structure for derived categories of certain finite-dimensional algebras. Spherical object Spherelike object Spherical subcategory Spherelike poset Derived invariant Cluster-tilting Finite-dimensional algebra Quiver Kalck, Martin aut Ploog, David aut Enthalten in Mathematische Zeitschrift Springer Berlin Heidelberg, 1918 291(2018), 1-2 vom: 05. Juni, Seite 113-147 (DE-627)129474193 (DE-600)203014-7 (DE-576)014852047 0025-5874 nnns volume:291 year:2018 number:1-2 day:05 month:06 pages:113-147 https://doi.org/10.1007/s00209-018-2075-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_70 GBV_ILN_2007 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4320 AR 291 2018 1-2 05 06 113-147 |
allfieldsGer |
10.1007/s00209-018-2075-4 doi (DE-627)OLC2039747443 (DE-He213)s00209-018-2075-4-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Hochenegger, Andreas verfasserin aut Spherical subcategories in representation theory 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract We introduce a new invariant for triangulated categories: the poset of spherical subcategories ordered by inclusion. This yields several numerical invariants, like the cardinality and the height of the poset. We explicitly describe spherical subcategories and their poset structure for derived categories of certain finite-dimensional algebras. Spherical object Spherelike object Spherical subcategory Spherelike poset Derived invariant Cluster-tilting Finite-dimensional algebra Quiver Kalck, Martin aut Ploog, David aut Enthalten in Mathematische Zeitschrift Springer Berlin Heidelberg, 1918 291(2018), 1-2 vom: 05. Juni, Seite 113-147 (DE-627)129474193 (DE-600)203014-7 (DE-576)014852047 0025-5874 nnns volume:291 year:2018 number:1-2 day:05 month:06 pages:113-147 https://doi.org/10.1007/s00209-018-2075-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_70 GBV_ILN_2007 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4320 AR 291 2018 1-2 05 06 113-147 |
allfieldsSound |
10.1007/s00209-018-2075-4 doi (DE-627)OLC2039747443 (DE-He213)s00209-018-2075-4-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Hochenegger, Andreas verfasserin aut Spherical subcategories in representation theory 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract We introduce a new invariant for triangulated categories: the poset of spherical subcategories ordered by inclusion. This yields several numerical invariants, like the cardinality and the height of the poset. We explicitly describe spherical subcategories and their poset structure for derived categories of certain finite-dimensional algebras. Spherical object Spherelike object Spherical subcategory Spherelike poset Derived invariant Cluster-tilting Finite-dimensional algebra Quiver Kalck, Martin aut Ploog, David aut Enthalten in Mathematische Zeitschrift Springer Berlin Heidelberg, 1918 291(2018), 1-2 vom: 05. Juni, Seite 113-147 (DE-627)129474193 (DE-600)203014-7 (DE-576)014852047 0025-5874 nnns volume:291 year:2018 number:1-2 day:05 month:06 pages:113-147 https://doi.org/10.1007/s00209-018-2075-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_70 GBV_ILN_2007 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4320 AR 291 2018 1-2 05 06 113-147 |
language |
English |
source |
Enthalten in Mathematische Zeitschrift 291(2018), 1-2 vom: 05. Juni, Seite 113-147 volume:291 year:2018 number:1-2 day:05 month:06 pages:113-147 |
sourceStr |
Enthalten in Mathematische Zeitschrift 291(2018), 1-2 vom: 05. Juni, Seite 113-147 volume:291 year:2018 number:1-2 day:05 month:06 pages:113-147 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Spherical object Spherelike object Spherical subcategory Spherelike poset Derived invariant Cluster-tilting Finite-dimensional algebra Quiver |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Mathematische Zeitschrift |
authorswithroles_txt_mv |
Hochenegger, Andreas @@aut@@ Kalck, Martin @@aut@@ Ploog, David @@aut@@ |
publishDateDaySort_date |
2018-06-05T00:00:00Z |
hierarchy_top_id |
129474193 |
dewey-sort |
3510 |
id |
OLC2039747443 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2039747443</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323161422.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00209-018-2075-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2039747443</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00209-018-2075-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hochenegger, Andreas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spherical subcategories in representation theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We introduce a new invariant for triangulated categories: the poset of spherical subcategories ordered by inclusion. This yields several numerical invariants, like the cardinality and the height of the poset. We explicitly describe spherical subcategories and their poset structure for derived categories of certain finite-dimensional algebras.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spherical object</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spherelike object</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spherical subcategory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spherelike poset</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Derived invariant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cluster-tilting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite-dimensional algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quiver</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kalck, Martin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ploog, David</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematische Zeitschrift</subfield><subfield code="d">Springer Berlin Heidelberg, 1918</subfield><subfield code="g">291(2018), 1-2 vom: 05. Juni, Seite 113-147</subfield><subfield code="w">(DE-627)129474193</subfield><subfield code="w">(DE-600)203014-7</subfield><subfield code="w">(DE-576)014852047</subfield><subfield code="x">0025-5874</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:291</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1-2</subfield><subfield code="g">day:05</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:113-147</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00209-018-2075-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4320</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">291</subfield><subfield code="j">2018</subfield><subfield code="e">1-2</subfield><subfield code="b">05</subfield><subfield code="c">06</subfield><subfield code="h">113-147</subfield></datafield></record></collection>
|
author |
Hochenegger, Andreas |
spellingShingle |
Hochenegger, Andreas ddc 510 ssgn 17,1 misc Spherical object misc Spherelike object misc Spherical subcategory misc Spherelike poset misc Derived invariant misc Cluster-tilting misc Finite-dimensional algebra misc Quiver Spherical subcategories in representation theory |
authorStr |
Hochenegger, Andreas |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129474193 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0025-5874 |
topic_title |
510 VZ 17,1 ssgn Spherical subcategories in representation theory Spherical object Spherelike object Spherical subcategory Spherelike poset Derived invariant Cluster-tilting Finite-dimensional algebra Quiver |
topic |
ddc 510 ssgn 17,1 misc Spherical object misc Spherelike object misc Spherical subcategory misc Spherelike poset misc Derived invariant misc Cluster-tilting misc Finite-dimensional algebra misc Quiver |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Spherical object misc Spherelike object misc Spherical subcategory misc Spherelike poset misc Derived invariant misc Cluster-tilting misc Finite-dimensional algebra misc Quiver |
topic_browse |
ddc 510 ssgn 17,1 misc Spherical object misc Spherelike object misc Spherical subcategory misc Spherelike poset misc Derived invariant misc Cluster-tilting misc Finite-dimensional algebra misc Quiver |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Mathematische Zeitschrift |
hierarchy_parent_id |
129474193 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Mathematische Zeitschrift |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129474193 (DE-600)203014-7 (DE-576)014852047 |
title |
Spherical subcategories in representation theory |
ctrlnum |
(DE-627)OLC2039747443 (DE-He213)s00209-018-2075-4-p |
title_full |
Spherical subcategories in representation theory |
author_sort |
Hochenegger, Andreas |
journal |
Mathematische Zeitschrift |
journalStr |
Mathematische Zeitschrift |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
113 |
author_browse |
Hochenegger, Andreas Kalck, Martin Ploog, David |
container_volume |
291 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Hochenegger, Andreas |
doi_str_mv |
10.1007/s00209-018-2075-4 |
dewey-full |
510 |
title_sort |
spherical subcategories in representation theory |
title_auth |
Spherical subcategories in representation theory |
abstract |
Abstract We introduce a new invariant for triangulated categories: the poset of spherical subcategories ordered by inclusion. This yields several numerical invariants, like the cardinality and the height of the poset. We explicitly describe spherical subcategories and their poset structure for derived categories of certain finite-dimensional algebras. © Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
abstractGer |
Abstract We introduce a new invariant for triangulated categories: the poset of spherical subcategories ordered by inclusion. This yields several numerical invariants, like the cardinality and the height of the poset. We explicitly describe spherical subcategories and their poset structure for derived categories of certain finite-dimensional algebras. © Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
abstract_unstemmed |
Abstract We introduce a new invariant for triangulated categories: the poset of spherical subcategories ordered by inclusion. This yields several numerical invariants, like the cardinality and the height of the poset. We explicitly describe spherical subcategories and their poset structure for derived categories of certain finite-dimensional algebras. © Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_70 GBV_ILN_2007 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4320 |
container_issue |
1-2 |
title_short |
Spherical subcategories in representation theory |
url |
https://doi.org/10.1007/s00209-018-2075-4 |
remote_bool |
false |
author2 |
Kalck, Martin Ploog, David |
author2Str |
Kalck, Martin Ploog, David |
ppnlink |
129474193 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00209-018-2075-4 |
up_date |
2024-07-03T23:53:07.185Z |
_version_ |
1803603974224347136 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2039747443</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323161422.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00209-018-2075-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2039747443</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00209-018-2075-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hochenegger, Andreas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spherical subcategories in representation theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We introduce a new invariant for triangulated categories: the poset of spherical subcategories ordered by inclusion. This yields several numerical invariants, like the cardinality and the height of the poset. We explicitly describe spherical subcategories and their poset structure for derived categories of certain finite-dimensional algebras.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spherical object</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spherelike object</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spherical subcategory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spherelike poset</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Derived invariant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cluster-tilting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite-dimensional algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quiver</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kalck, Martin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ploog, David</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematische Zeitschrift</subfield><subfield code="d">Springer Berlin Heidelberg, 1918</subfield><subfield code="g">291(2018), 1-2 vom: 05. Juni, Seite 113-147</subfield><subfield code="w">(DE-627)129474193</subfield><subfield code="w">(DE-600)203014-7</subfield><subfield code="w">(DE-576)014852047</subfield><subfield code="x">0025-5874</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:291</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1-2</subfield><subfield code="g">day:05</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:113-147</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00209-018-2075-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4320</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">291</subfield><subfield code="j">2018</subfield><subfield code="e">1-2</subfield><subfield code="b">05</subfield><subfield code="c">06</subfield><subfield code="h">113-147</subfield></datafield></record></collection>
|
score |
7.4009047 |