Hilbert–Poincaré series for spaces of commuting elements in Lie groups
Abstract In this article we study the homology of spaces $$\mathrm{Hom}({\mathbb Z}^n,G)$$ of ordered pairwise commuting n-tuples in a Lie group G. We give an explicit formula for the Poincaré series of these spaces in terms of invariants of the Weyl group of G. By work of Bergeron and Silberman, ou...
Ausführliche Beschreibung
Autor*in: |
Ramras, Daniel A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Mathematische Zeitschrift - Springer Berlin Heidelberg, 1918, 292(2018), 1-2 vom: 31. Juli, Seite 591-610 |
---|---|
Übergeordnetes Werk: |
volume:292 ; year:2018 ; number:1-2 ; day:31 ; month:07 ; pages:591-610 |
Links: |
---|
DOI / URN: |
10.1007/s00209-018-2122-1 |
---|
Katalog-ID: |
OLC2039747893 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2039747893 | ||
003 | DE-627 | ||
005 | 20230323161425.0 | ||
007 | tu | ||
008 | 200819s2018 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00209-018-2122-1 |2 doi | |
035 | |a (DE-627)OLC2039747893 | ||
035 | |a (DE-He213)s00209-018-2122-1-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Ramras, Daniel A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Hilbert–Poincaré series for spaces of commuting elements in Lie groups |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag GmbH Germany, part of Springer Nature 2018 | ||
520 | |a Abstract In this article we study the homology of spaces $$\mathrm{Hom}({\mathbb Z}^n,G)$$ of ordered pairwise commuting n-tuples in a Lie group G. We give an explicit formula for the Poincaré series of these spaces in terms of invariants of the Weyl group of G. By work of Bergeron and Silberman, our results also apply to $$\mathrm{Hom}(F_n/\Gamma _n^m,G)$$, where the subgroups $$\Gamma _n^m$$ are the terms in the descending central series of the free group $$F_n$$. Finally, we show that there is a stable equivalence between the space $$\mathrm{Comm}(G)$$ studied by Cohen–Stafa and its nilpotent analogues. | ||
650 | 4 | |a Representation space | |
650 | 4 | |a Hilbert–Poincaré series | |
650 | 4 | |a Characteristic degree | |
650 | 4 | |a Finite reflection group | |
700 | 1 | |a Stafa, Mentor |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Mathematische Zeitschrift |d Springer Berlin Heidelberg, 1918 |g 292(2018), 1-2 vom: 31. Juli, Seite 591-610 |w (DE-627)129474193 |w (DE-600)203014-7 |w (DE-576)014852047 |x 0025-5874 |7 nnns |
773 | 1 | 8 | |g volume:292 |g year:2018 |g number:1-2 |g day:31 |g month:07 |g pages:591-610 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00209-018-2122-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2030 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4320 | ||
951 | |a AR | ||
952 | |d 292 |j 2018 |e 1-2 |b 31 |c 07 |h 591-610 |
author_variant |
d a r da dar m s ms |
---|---|
matchkey_str |
article:00255874:2018----::ibrpicreisosaeocmuigl |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s00209-018-2122-1 doi (DE-627)OLC2039747893 (DE-He213)s00209-018-2122-1-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Ramras, Daniel A. verfasserin aut Hilbert–Poincaré series for spaces of commuting elements in Lie groups 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract In this article we study the homology of spaces $$\mathrm{Hom}({\mathbb Z}^n,G)$$ of ordered pairwise commuting n-tuples in a Lie group G. We give an explicit formula for the Poincaré series of these spaces in terms of invariants of the Weyl group of G. By work of Bergeron and Silberman, our results also apply to $$\mathrm{Hom}(F_n/\Gamma _n^m,G)$$, where the subgroups $$\Gamma _n^m$$ are the terms in the descending central series of the free group $$F_n$$. Finally, we show that there is a stable equivalence between the space $$\mathrm{Comm}(G)$$ studied by Cohen–Stafa and its nilpotent analogues. Representation space Hilbert–Poincaré series Characteristic degree Finite reflection group Stafa, Mentor aut Enthalten in Mathematische Zeitschrift Springer Berlin Heidelberg, 1918 292(2018), 1-2 vom: 31. Juli, Seite 591-610 (DE-627)129474193 (DE-600)203014-7 (DE-576)014852047 0025-5874 nnns volume:292 year:2018 number:1-2 day:31 month:07 pages:591-610 https://doi.org/10.1007/s00209-018-2122-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_70 GBV_ILN_2007 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4320 AR 292 2018 1-2 31 07 591-610 |
spelling |
10.1007/s00209-018-2122-1 doi (DE-627)OLC2039747893 (DE-He213)s00209-018-2122-1-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Ramras, Daniel A. verfasserin aut Hilbert–Poincaré series for spaces of commuting elements in Lie groups 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract In this article we study the homology of spaces $$\mathrm{Hom}({\mathbb Z}^n,G)$$ of ordered pairwise commuting n-tuples in a Lie group G. We give an explicit formula for the Poincaré series of these spaces in terms of invariants of the Weyl group of G. By work of Bergeron and Silberman, our results also apply to $$\mathrm{Hom}(F_n/\Gamma _n^m,G)$$, where the subgroups $$\Gamma _n^m$$ are the terms in the descending central series of the free group $$F_n$$. Finally, we show that there is a stable equivalence between the space $$\mathrm{Comm}(G)$$ studied by Cohen–Stafa and its nilpotent analogues. Representation space Hilbert–Poincaré series Characteristic degree Finite reflection group Stafa, Mentor aut Enthalten in Mathematische Zeitschrift Springer Berlin Heidelberg, 1918 292(2018), 1-2 vom: 31. Juli, Seite 591-610 (DE-627)129474193 (DE-600)203014-7 (DE-576)014852047 0025-5874 nnns volume:292 year:2018 number:1-2 day:31 month:07 pages:591-610 https://doi.org/10.1007/s00209-018-2122-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_70 GBV_ILN_2007 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4320 AR 292 2018 1-2 31 07 591-610 |
allfields_unstemmed |
10.1007/s00209-018-2122-1 doi (DE-627)OLC2039747893 (DE-He213)s00209-018-2122-1-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Ramras, Daniel A. verfasserin aut Hilbert–Poincaré series for spaces of commuting elements in Lie groups 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract In this article we study the homology of spaces $$\mathrm{Hom}({\mathbb Z}^n,G)$$ of ordered pairwise commuting n-tuples in a Lie group G. We give an explicit formula for the Poincaré series of these spaces in terms of invariants of the Weyl group of G. By work of Bergeron and Silberman, our results also apply to $$\mathrm{Hom}(F_n/\Gamma _n^m,G)$$, where the subgroups $$\Gamma _n^m$$ are the terms in the descending central series of the free group $$F_n$$. Finally, we show that there is a stable equivalence between the space $$\mathrm{Comm}(G)$$ studied by Cohen–Stafa and its nilpotent analogues. Representation space Hilbert–Poincaré series Characteristic degree Finite reflection group Stafa, Mentor aut Enthalten in Mathematische Zeitschrift Springer Berlin Heidelberg, 1918 292(2018), 1-2 vom: 31. Juli, Seite 591-610 (DE-627)129474193 (DE-600)203014-7 (DE-576)014852047 0025-5874 nnns volume:292 year:2018 number:1-2 day:31 month:07 pages:591-610 https://doi.org/10.1007/s00209-018-2122-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_70 GBV_ILN_2007 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4320 AR 292 2018 1-2 31 07 591-610 |
allfieldsGer |
10.1007/s00209-018-2122-1 doi (DE-627)OLC2039747893 (DE-He213)s00209-018-2122-1-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Ramras, Daniel A. verfasserin aut Hilbert–Poincaré series for spaces of commuting elements in Lie groups 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract In this article we study the homology of spaces $$\mathrm{Hom}({\mathbb Z}^n,G)$$ of ordered pairwise commuting n-tuples in a Lie group G. We give an explicit formula for the Poincaré series of these spaces in terms of invariants of the Weyl group of G. By work of Bergeron and Silberman, our results also apply to $$\mathrm{Hom}(F_n/\Gamma _n^m,G)$$, where the subgroups $$\Gamma _n^m$$ are the terms in the descending central series of the free group $$F_n$$. Finally, we show that there is a stable equivalence between the space $$\mathrm{Comm}(G)$$ studied by Cohen–Stafa and its nilpotent analogues. Representation space Hilbert–Poincaré series Characteristic degree Finite reflection group Stafa, Mentor aut Enthalten in Mathematische Zeitschrift Springer Berlin Heidelberg, 1918 292(2018), 1-2 vom: 31. Juli, Seite 591-610 (DE-627)129474193 (DE-600)203014-7 (DE-576)014852047 0025-5874 nnns volume:292 year:2018 number:1-2 day:31 month:07 pages:591-610 https://doi.org/10.1007/s00209-018-2122-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_70 GBV_ILN_2007 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4320 AR 292 2018 1-2 31 07 591-610 |
allfieldsSound |
10.1007/s00209-018-2122-1 doi (DE-627)OLC2039747893 (DE-He213)s00209-018-2122-1-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Ramras, Daniel A. verfasserin aut Hilbert–Poincaré series for spaces of commuting elements in Lie groups 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract In this article we study the homology of spaces $$\mathrm{Hom}({\mathbb Z}^n,G)$$ of ordered pairwise commuting n-tuples in a Lie group G. We give an explicit formula for the Poincaré series of these spaces in terms of invariants of the Weyl group of G. By work of Bergeron and Silberman, our results also apply to $$\mathrm{Hom}(F_n/\Gamma _n^m,G)$$, where the subgroups $$\Gamma _n^m$$ are the terms in the descending central series of the free group $$F_n$$. Finally, we show that there is a stable equivalence between the space $$\mathrm{Comm}(G)$$ studied by Cohen–Stafa and its nilpotent analogues. Representation space Hilbert–Poincaré series Characteristic degree Finite reflection group Stafa, Mentor aut Enthalten in Mathematische Zeitschrift Springer Berlin Heidelberg, 1918 292(2018), 1-2 vom: 31. Juli, Seite 591-610 (DE-627)129474193 (DE-600)203014-7 (DE-576)014852047 0025-5874 nnns volume:292 year:2018 number:1-2 day:31 month:07 pages:591-610 https://doi.org/10.1007/s00209-018-2122-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_70 GBV_ILN_2007 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4320 AR 292 2018 1-2 31 07 591-610 |
language |
English |
source |
Enthalten in Mathematische Zeitschrift 292(2018), 1-2 vom: 31. Juli, Seite 591-610 volume:292 year:2018 number:1-2 day:31 month:07 pages:591-610 |
sourceStr |
Enthalten in Mathematische Zeitschrift 292(2018), 1-2 vom: 31. Juli, Seite 591-610 volume:292 year:2018 number:1-2 day:31 month:07 pages:591-610 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Representation space Hilbert–Poincaré series Characteristic degree Finite reflection group |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Mathematische Zeitschrift |
authorswithroles_txt_mv |
Ramras, Daniel A. @@aut@@ Stafa, Mentor @@aut@@ |
publishDateDaySort_date |
2018-07-31T00:00:00Z |
hierarchy_top_id |
129474193 |
dewey-sort |
3510 |
id |
OLC2039747893 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2039747893</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323161425.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00209-018-2122-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2039747893</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00209-018-2122-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ramras, Daniel A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hilbert–Poincaré series for spaces of commuting elements in Lie groups</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this article we study the homology of spaces $$\mathrm{Hom}({\mathbb Z}^n,G)$$ of ordered pairwise commuting n-tuples in a Lie group G. We give an explicit formula for the Poincaré series of these spaces in terms of invariants of the Weyl group of G. By work of Bergeron and Silberman, our results also apply to $$\mathrm{Hom}(F_n/\Gamma _n^m,G)$$, where the subgroups $$\Gamma _n^m$$ are the terms in the descending central series of the free group $$F_n$$. Finally, we show that there is a stable equivalence between the space $$\mathrm{Comm}(G)$$ studied by Cohen–Stafa and its nilpotent analogues.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representation space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hilbert–Poincaré series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Characteristic degree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite reflection group</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stafa, Mentor</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematische Zeitschrift</subfield><subfield code="d">Springer Berlin Heidelberg, 1918</subfield><subfield code="g">292(2018), 1-2 vom: 31. Juli, Seite 591-610</subfield><subfield code="w">(DE-627)129474193</subfield><subfield code="w">(DE-600)203014-7</subfield><subfield code="w">(DE-576)014852047</subfield><subfield code="x">0025-5874</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:292</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1-2</subfield><subfield code="g">day:31</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:591-610</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00209-018-2122-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4320</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">292</subfield><subfield code="j">2018</subfield><subfield code="e">1-2</subfield><subfield code="b">31</subfield><subfield code="c">07</subfield><subfield code="h">591-610</subfield></datafield></record></collection>
|
author |
Ramras, Daniel A. |
spellingShingle |
Ramras, Daniel A. ddc 510 ssgn 17,1 misc Representation space misc Hilbert–Poincaré series misc Characteristic degree misc Finite reflection group Hilbert–Poincaré series for spaces of commuting elements in Lie groups |
authorStr |
Ramras, Daniel A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129474193 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0025-5874 |
topic_title |
510 VZ 17,1 ssgn Hilbert–Poincaré series for spaces of commuting elements in Lie groups Representation space Hilbert–Poincaré series Characteristic degree Finite reflection group |
topic |
ddc 510 ssgn 17,1 misc Representation space misc Hilbert–Poincaré series misc Characteristic degree misc Finite reflection group |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Representation space misc Hilbert–Poincaré series misc Characteristic degree misc Finite reflection group |
topic_browse |
ddc 510 ssgn 17,1 misc Representation space misc Hilbert–Poincaré series misc Characteristic degree misc Finite reflection group |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Mathematische Zeitschrift |
hierarchy_parent_id |
129474193 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Mathematische Zeitschrift |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129474193 (DE-600)203014-7 (DE-576)014852047 |
title |
Hilbert–Poincaré series for spaces of commuting elements in Lie groups |
ctrlnum |
(DE-627)OLC2039747893 (DE-He213)s00209-018-2122-1-p |
title_full |
Hilbert–Poincaré series for spaces of commuting elements in Lie groups |
author_sort |
Ramras, Daniel A. |
journal |
Mathematische Zeitschrift |
journalStr |
Mathematische Zeitschrift |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
591 |
author_browse |
Ramras, Daniel A. Stafa, Mentor |
container_volume |
292 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Ramras, Daniel A. |
doi_str_mv |
10.1007/s00209-018-2122-1 |
dewey-full |
510 |
title_sort |
hilbert–poincaré series for spaces of commuting elements in lie groups |
title_auth |
Hilbert–Poincaré series for spaces of commuting elements in Lie groups |
abstract |
Abstract In this article we study the homology of spaces $$\mathrm{Hom}({\mathbb Z}^n,G)$$ of ordered pairwise commuting n-tuples in a Lie group G. We give an explicit formula for the Poincaré series of these spaces in terms of invariants of the Weyl group of G. By work of Bergeron and Silberman, our results also apply to $$\mathrm{Hom}(F_n/\Gamma _n^m,G)$$, where the subgroups $$\Gamma _n^m$$ are the terms in the descending central series of the free group $$F_n$$. Finally, we show that there is a stable equivalence between the space $$\mathrm{Comm}(G)$$ studied by Cohen–Stafa and its nilpotent analogues. © Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
abstractGer |
Abstract In this article we study the homology of spaces $$\mathrm{Hom}({\mathbb Z}^n,G)$$ of ordered pairwise commuting n-tuples in a Lie group G. We give an explicit formula for the Poincaré series of these spaces in terms of invariants of the Weyl group of G. By work of Bergeron and Silberman, our results also apply to $$\mathrm{Hom}(F_n/\Gamma _n^m,G)$$, where the subgroups $$\Gamma _n^m$$ are the terms in the descending central series of the free group $$F_n$$. Finally, we show that there is a stable equivalence between the space $$\mathrm{Comm}(G)$$ studied by Cohen–Stafa and its nilpotent analogues. © Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
abstract_unstemmed |
Abstract In this article we study the homology of spaces $$\mathrm{Hom}({\mathbb Z}^n,G)$$ of ordered pairwise commuting n-tuples in a Lie group G. We give an explicit formula for the Poincaré series of these spaces in terms of invariants of the Weyl group of G. By work of Bergeron and Silberman, our results also apply to $$\mathrm{Hom}(F_n/\Gamma _n^m,G)$$, where the subgroups $$\Gamma _n^m$$ are the terms in the descending central series of the free group $$F_n$$. Finally, we show that there is a stable equivalence between the space $$\mathrm{Comm}(G)$$ studied by Cohen–Stafa and its nilpotent analogues. © Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_70 GBV_ILN_2007 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_4027 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4306 GBV_ILN_4320 |
container_issue |
1-2 |
title_short |
Hilbert–Poincaré series for spaces of commuting elements in Lie groups |
url |
https://doi.org/10.1007/s00209-018-2122-1 |
remote_bool |
false |
author2 |
Stafa, Mentor |
author2Str |
Stafa, Mentor |
ppnlink |
129474193 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00209-018-2122-1 |
up_date |
2024-07-03T23:53:12.179Z |
_version_ |
1803603979474567168 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2039747893</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323161425.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00209-018-2122-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2039747893</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00209-018-2122-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ramras, Daniel A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hilbert–Poincaré series for spaces of commuting elements in Lie groups</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this article we study the homology of spaces $$\mathrm{Hom}({\mathbb Z}^n,G)$$ of ordered pairwise commuting n-tuples in a Lie group G. We give an explicit formula for the Poincaré series of these spaces in terms of invariants of the Weyl group of G. By work of Bergeron and Silberman, our results also apply to $$\mathrm{Hom}(F_n/\Gamma _n^m,G)$$, where the subgroups $$\Gamma _n^m$$ are the terms in the descending central series of the free group $$F_n$$. Finally, we show that there is a stable equivalence between the space $$\mathrm{Comm}(G)$$ studied by Cohen–Stafa and its nilpotent analogues.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representation space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hilbert–Poincaré series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Characteristic degree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite reflection group</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stafa, Mentor</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematische Zeitschrift</subfield><subfield code="d">Springer Berlin Heidelberg, 1918</subfield><subfield code="g">292(2018), 1-2 vom: 31. Juli, Seite 591-610</subfield><subfield code="w">(DE-627)129474193</subfield><subfield code="w">(DE-600)203014-7</subfield><subfield code="w">(DE-576)014852047</subfield><subfield code="x">0025-5874</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:292</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1-2</subfield><subfield code="g">day:31</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:591-610</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00209-018-2122-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4320</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">292</subfield><subfield code="j">2018</subfield><subfield code="e">1-2</subfield><subfield code="b">31</subfield><subfield code="c">07</subfield><subfield code="h">591-610</subfield></datafield></record></collection>
|
score |
7.402011 |