A priori bounds on difference quotients of solutions to some linear uniformly elliptic difference equations
Abstract Second order difference quotients of solutions to a class of linear uniformly elliptic difference Dirichlet problems are bounded in terms of quantities which depend on the coefficients of the operator, the inhomogenous term, the boundary values and the domain-which we take to be a rectangle...
Ausführliche Beschreibung
Autor*in: |
McAllister, G. T. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1968 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer-Verlag 1968 |
---|
Übergeordnetes Werk: |
Enthalten in: Numerische Mathematik - Springer-Verlag, 1959, 11(1968), 1 vom: Jan., Seite 13-37 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:1968 ; number:1 ; month:01 ; pages:13-37 |
Links: |
---|
DOI / URN: |
10.1007/BF02165468 |
---|
Katalog-ID: |
OLC2039965173 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2039965173 | ||
003 | DE-627 | ||
005 | 20230323163915.0 | ||
007 | tu | ||
008 | 200819s1968 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02165468 |2 doi | |
035 | |a (DE-627)OLC2039965173 | ||
035 | |a (DE-He213)BF02165468-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a SA 7310 |q VZ |2 rvk | ||
100 | 1 | |a McAllister, G. T. |e verfasserin |4 aut | |
245 | 1 | 0 | |a A priori bounds on difference quotients of solutions to some linear uniformly elliptic difference equations |
264 | 1 | |c 1968 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 1968 | ||
520 | |a Abstract Second order difference quotients of solutions to a class of linear uniformly elliptic difference Dirichlet problems are bounded in terms of quantities which depend on the coefficients of the operator, the inhomogenous term, the boundary values and the domain-which we take to be a rectangle. The results we obtain have theoretical and practical applications. | ||
650 | 4 | |a Singular Point | |
650 | 4 | |a Difference Equation | |
650 | 4 | |a Mesh Point | |
650 | 4 | |a Inhomogenous Term | |
650 | 4 | |a Difference Quotient | |
773 | 0 | 8 | |i Enthalten in |t Numerische Mathematik |d Springer-Verlag, 1959 |g 11(1968), 1 vom: Jan., Seite 13-37 |w (DE-627)129081469 |w (DE-600)3460-5 |w (DE-576)014414333 |x 0029-599X |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:1968 |g number:1 |g month:01 |g pages:13-37 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02165468 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_55 | ||
912 | |a GBV_ILN_59 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_147 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_201 | ||
912 | |a GBV_ILN_252 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2066 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4103 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4314 | ||
912 | |a GBV_ILN_4315 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4700 | ||
936 | r | v | |a SA 7310 |
951 | |a AR | ||
952 | |d 11 |j 1968 |e 1 |c 01 |h 13-37 |
author_variant |
g t m gt gtm |
---|---|
matchkey_str |
article:0029599X:1968----::pirbudodfeecqoinsfouintsmlnauiomyl |
hierarchy_sort_str |
1968 |
publishDate |
1968 |
allfields |
10.1007/BF02165468 doi (DE-627)OLC2039965173 (DE-He213)BF02165468-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 7310 VZ rvk McAllister, G. T. verfasserin aut A priori bounds on difference quotients of solutions to some linear uniformly elliptic difference equations 1968 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1968 Abstract Second order difference quotients of solutions to a class of linear uniformly elliptic difference Dirichlet problems are bounded in terms of quantities which depend on the coefficients of the operator, the inhomogenous term, the boundary values and the domain-which we take to be a rectangle. The results we obtain have theoretical and practical applications. Singular Point Difference Equation Mesh Point Inhomogenous Term Difference Quotient Enthalten in Numerische Mathematik Springer-Verlag, 1959 11(1968), 1 vom: Jan., Seite 13-37 (DE-627)129081469 (DE-600)3460-5 (DE-576)014414333 0029-599X nnns volume:11 year:1968 number:1 month:01 pages:13-37 https://doi.org/10.1007/BF02165468 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_55 GBV_ILN_59 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_70 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_147 GBV_ILN_150 GBV_ILN_170 GBV_ILN_201 GBV_ILN_252 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_2066 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 7310 AR 11 1968 1 01 13-37 |
spelling |
10.1007/BF02165468 doi (DE-627)OLC2039965173 (DE-He213)BF02165468-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 7310 VZ rvk McAllister, G. T. verfasserin aut A priori bounds on difference quotients of solutions to some linear uniformly elliptic difference equations 1968 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1968 Abstract Second order difference quotients of solutions to a class of linear uniformly elliptic difference Dirichlet problems are bounded in terms of quantities which depend on the coefficients of the operator, the inhomogenous term, the boundary values and the domain-which we take to be a rectangle. The results we obtain have theoretical and practical applications. Singular Point Difference Equation Mesh Point Inhomogenous Term Difference Quotient Enthalten in Numerische Mathematik Springer-Verlag, 1959 11(1968), 1 vom: Jan., Seite 13-37 (DE-627)129081469 (DE-600)3460-5 (DE-576)014414333 0029-599X nnns volume:11 year:1968 number:1 month:01 pages:13-37 https://doi.org/10.1007/BF02165468 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_55 GBV_ILN_59 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_70 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_147 GBV_ILN_150 GBV_ILN_170 GBV_ILN_201 GBV_ILN_252 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_2066 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 7310 AR 11 1968 1 01 13-37 |
allfields_unstemmed |
10.1007/BF02165468 doi (DE-627)OLC2039965173 (DE-He213)BF02165468-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 7310 VZ rvk McAllister, G. T. verfasserin aut A priori bounds on difference quotients of solutions to some linear uniformly elliptic difference equations 1968 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1968 Abstract Second order difference quotients of solutions to a class of linear uniformly elliptic difference Dirichlet problems are bounded in terms of quantities which depend on the coefficients of the operator, the inhomogenous term, the boundary values and the domain-which we take to be a rectangle. The results we obtain have theoretical and practical applications. Singular Point Difference Equation Mesh Point Inhomogenous Term Difference Quotient Enthalten in Numerische Mathematik Springer-Verlag, 1959 11(1968), 1 vom: Jan., Seite 13-37 (DE-627)129081469 (DE-600)3460-5 (DE-576)014414333 0029-599X nnns volume:11 year:1968 number:1 month:01 pages:13-37 https://doi.org/10.1007/BF02165468 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_55 GBV_ILN_59 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_70 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_147 GBV_ILN_150 GBV_ILN_170 GBV_ILN_201 GBV_ILN_252 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_2066 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 7310 AR 11 1968 1 01 13-37 |
allfieldsGer |
10.1007/BF02165468 doi (DE-627)OLC2039965173 (DE-He213)BF02165468-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 7310 VZ rvk McAllister, G. T. verfasserin aut A priori bounds on difference quotients of solutions to some linear uniformly elliptic difference equations 1968 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1968 Abstract Second order difference quotients of solutions to a class of linear uniformly elliptic difference Dirichlet problems are bounded in terms of quantities which depend on the coefficients of the operator, the inhomogenous term, the boundary values and the domain-which we take to be a rectangle. The results we obtain have theoretical and practical applications. Singular Point Difference Equation Mesh Point Inhomogenous Term Difference Quotient Enthalten in Numerische Mathematik Springer-Verlag, 1959 11(1968), 1 vom: Jan., Seite 13-37 (DE-627)129081469 (DE-600)3460-5 (DE-576)014414333 0029-599X nnns volume:11 year:1968 number:1 month:01 pages:13-37 https://doi.org/10.1007/BF02165468 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_55 GBV_ILN_59 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_70 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_147 GBV_ILN_150 GBV_ILN_170 GBV_ILN_201 GBV_ILN_252 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_2066 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 7310 AR 11 1968 1 01 13-37 |
allfieldsSound |
10.1007/BF02165468 doi (DE-627)OLC2039965173 (DE-He213)BF02165468-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 7310 VZ rvk McAllister, G. T. verfasserin aut A priori bounds on difference quotients of solutions to some linear uniformly elliptic difference equations 1968 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1968 Abstract Second order difference quotients of solutions to a class of linear uniformly elliptic difference Dirichlet problems are bounded in terms of quantities which depend on the coefficients of the operator, the inhomogenous term, the boundary values and the domain-which we take to be a rectangle. The results we obtain have theoretical and practical applications. Singular Point Difference Equation Mesh Point Inhomogenous Term Difference Quotient Enthalten in Numerische Mathematik Springer-Verlag, 1959 11(1968), 1 vom: Jan., Seite 13-37 (DE-627)129081469 (DE-600)3460-5 (DE-576)014414333 0029-599X nnns volume:11 year:1968 number:1 month:01 pages:13-37 https://doi.org/10.1007/BF02165468 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_55 GBV_ILN_59 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_70 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_147 GBV_ILN_150 GBV_ILN_170 GBV_ILN_201 GBV_ILN_252 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_2066 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 7310 AR 11 1968 1 01 13-37 |
language |
English |
source |
Enthalten in Numerische Mathematik 11(1968), 1 vom: Jan., Seite 13-37 volume:11 year:1968 number:1 month:01 pages:13-37 |
sourceStr |
Enthalten in Numerische Mathematik 11(1968), 1 vom: Jan., Seite 13-37 volume:11 year:1968 number:1 month:01 pages:13-37 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Singular Point Difference Equation Mesh Point Inhomogenous Term Difference Quotient |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Numerische Mathematik |
authorswithroles_txt_mv |
McAllister, G. T. @@aut@@ |
publishDateDaySort_date |
1968-01-01T00:00:00Z |
hierarchy_top_id |
129081469 |
dewey-sort |
3510 |
id |
OLC2039965173 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2039965173</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323163915.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1968 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02165468</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2039965173</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02165468-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 7310</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">McAllister, G. T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A priori bounds on difference quotients of solutions to some linear uniformly elliptic difference equations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1968</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1968</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Second order difference quotients of solutions to a class of linear uniformly elliptic difference Dirichlet problems are bounded in terms of quantities which depend on the coefficients of the operator, the inhomogenous term, the boundary values and the domain-which we take to be a rectangle. The results we obtain have theoretical and practical applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singular Point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Difference Equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mesh Point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inhomogenous Term</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Difference Quotient</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Numerische Mathematik</subfield><subfield code="d">Springer-Verlag, 1959</subfield><subfield code="g">11(1968), 1 vom: Jan., Seite 13-37</subfield><subfield code="w">(DE-627)129081469</subfield><subfield code="w">(DE-600)3460-5</subfield><subfield code="w">(DE-576)014414333</subfield><subfield code="x">0029-599X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:1968</subfield><subfield code="g">number:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:13-37</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02165468</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_55</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_201</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2066</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 7310</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">1968</subfield><subfield code="e">1</subfield><subfield code="c">01</subfield><subfield code="h">13-37</subfield></datafield></record></collection>
|
author |
McAllister, G. T. |
spellingShingle |
McAllister, G. T. ddc 510 ssgn 17,1 rvk SA 7310 misc Singular Point misc Difference Equation misc Mesh Point misc Inhomogenous Term misc Difference Quotient A priori bounds on difference quotients of solutions to some linear uniformly elliptic difference equations |
authorStr |
McAllister, G. T. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129081469 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0029-599X |
topic_title |
510 VZ 17,1 ssgn SA 7310 VZ rvk A priori bounds on difference quotients of solutions to some linear uniformly elliptic difference equations Singular Point Difference Equation Mesh Point Inhomogenous Term Difference Quotient |
topic |
ddc 510 ssgn 17,1 rvk SA 7310 misc Singular Point misc Difference Equation misc Mesh Point misc Inhomogenous Term misc Difference Quotient |
topic_unstemmed |
ddc 510 ssgn 17,1 rvk SA 7310 misc Singular Point misc Difference Equation misc Mesh Point misc Inhomogenous Term misc Difference Quotient |
topic_browse |
ddc 510 ssgn 17,1 rvk SA 7310 misc Singular Point misc Difference Equation misc Mesh Point misc Inhomogenous Term misc Difference Quotient |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Numerische Mathematik |
hierarchy_parent_id |
129081469 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Numerische Mathematik |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129081469 (DE-600)3460-5 (DE-576)014414333 |
title |
A priori bounds on difference quotients of solutions to some linear uniformly elliptic difference equations |
ctrlnum |
(DE-627)OLC2039965173 (DE-He213)BF02165468-p |
title_full |
A priori bounds on difference quotients of solutions to some linear uniformly elliptic difference equations |
author_sort |
McAllister, G. T. |
journal |
Numerische Mathematik |
journalStr |
Numerische Mathematik |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1968 |
contenttype_str_mv |
txt |
container_start_page |
13 |
author_browse |
McAllister, G. T. |
container_volume |
11 |
class |
510 VZ 17,1 ssgn SA 7310 VZ rvk |
format_se |
Aufsätze |
author-letter |
McAllister, G. T. |
doi_str_mv |
10.1007/BF02165468 |
dewey-full |
510 |
title_sort |
a priori bounds on difference quotients of solutions to some linear uniformly elliptic difference equations |
title_auth |
A priori bounds on difference quotients of solutions to some linear uniformly elliptic difference equations |
abstract |
Abstract Second order difference quotients of solutions to a class of linear uniformly elliptic difference Dirichlet problems are bounded in terms of quantities which depend on the coefficients of the operator, the inhomogenous term, the boundary values and the domain-which we take to be a rectangle. The results we obtain have theoretical and practical applications. © Springer-Verlag 1968 |
abstractGer |
Abstract Second order difference quotients of solutions to a class of linear uniformly elliptic difference Dirichlet problems are bounded in terms of quantities which depend on the coefficients of the operator, the inhomogenous term, the boundary values and the domain-which we take to be a rectangle. The results we obtain have theoretical and practical applications. © Springer-Verlag 1968 |
abstract_unstemmed |
Abstract Second order difference quotients of solutions to a class of linear uniformly elliptic difference Dirichlet problems are bounded in terms of quantities which depend on the coefficients of the operator, the inhomogenous term, the boundary values and the domain-which we take to be a rectangle. The results we obtain have theoretical and practical applications. © Springer-Verlag 1968 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_55 GBV_ILN_59 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_70 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_147 GBV_ILN_150 GBV_ILN_170 GBV_ILN_201 GBV_ILN_252 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_2066 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4126 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 |
container_issue |
1 |
title_short |
A priori bounds on difference quotients of solutions to some linear uniformly elliptic difference equations |
url |
https://doi.org/10.1007/BF02165468 |
remote_bool |
false |
ppnlink |
129081469 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02165468 |
up_date |
2024-07-04T00:47:30.619Z |
_version_ |
1803607396182917120 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2039965173</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323163915.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1968 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02165468</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2039965173</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02165468-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 7310</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">McAllister, G. T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A priori bounds on difference quotients of solutions to some linear uniformly elliptic difference equations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1968</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1968</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Second order difference quotients of solutions to a class of linear uniformly elliptic difference Dirichlet problems are bounded in terms of quantities which depend on the coefficients of the operator, the inhomogenous term, the boundary values and the domain-which we take to be a rectangle. The results we obtain have theoretical and practical applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singular Point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Difference Equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mesh Point</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inhomogenous Term</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Difference Quotient</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Numerische Mathematik</subfield><subfield code="d">Springer-Verlag, 1959</subfield><subfield code="g">11(1968), 1 vom: Jan., Seite 13-37</subfield><subfield code="w">(DE-627)129081469</subfield><subfield code="w">(DE-600)3460-5</subfield><subfield code="w">(DE-576)014414333</subfield><subfield code="x">0029-599X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:1968</subfield><subfield code="g">number:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:13-37</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02165468</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_55</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_201</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2066</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 7310</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">1968</subfield><subfield code="e">1</subfield><subfield code="c">01</subfield><subfield code="h">13-37</subfield></datafield></record></collection>
|
score |
7.400281 |