A domain decomposition discretization of parabolic problems
Abstract In recent years, domain decomposition methods have attracted much attention due to their successful application to many elliptic and parabolic problems. Domain decomposition methods treat problems based on a domain substructuring, which is attractive for parallel computation, due to the ind...
Ausführliche Beschreibung
Autor*in: |
Dryja, Maksymilian [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2007 |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer-Verlag 2007 |
---|
Übergeordnetes Werk: |
Enthalten in: Numerische Mathematik - Springer-Verlag, 1959, 107(2007), 4 vom: 04. Sept., Seite 625-640 |
---|---|
Übergeordnetes Werk: |
volume:107 ; year:2007 ; number:4 ; day:04 ; month:09 ; pages:625-640 |
Links: |
---|
DOI / URN: |
10.1007/s00211-007-0103-0 |
---|
Katalog-ID: |
OLC2039996958 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2039996958 | ||
003 | DE-627 | ||
005 | 20230323164158.0 | ||
007 | tu | ||
008 | 200819s2007 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00211-007-0103-0 |2 doi | |
035 | |a (DE-627)OLC2039996958 | ||
035 | |a (DE-He213)s00211-007-0103-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a SA 7310 |q VZ |2 rvk | ||
100 | 1 | |a Dryja, Maksymilian |e verfasserin |4 aut | |
245 | 1 | 0 | |a A domain decomposition discretization of parabolic problems |
264 | 1 | |c 2007 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2007 | ||
520 | |a Abstract In recent years, domain decomposition methods have attracted much attention due to their successful application to many elliptic and parabolic problems. Domain decomposition methods treat problems based on a domain substructuring, which is attractive for parallel computation, due to the independence among the subdomains. In principle, domain decomposition methods may be applied to the system resulting from a standard discretization of the parabolic problems or, directly, be carried out through a discretization of parabolic problems. In this paper, a direct domain decomposition method is introduced to discretize the parabolic problems. The stability and convergence of this algorithm are analyzed. | ||
700 | 1 | |a Tu, Xuemin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Numerische Mathematik |d Springer-Verlag, 1959 |g 107(2007), 4 vom: 04. Sept., Seite 625-640 |w (DE-627)129081469 |w (DE-600)3460-5 |w (DE-576)014414333 |x 0029-599X |7 nnns |
773 | 1 | 8 | |g volume:107 |g year:2007 |g number:4 |g day:04 |g month:09 |g pages:625-640 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00211-007-0103-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_147 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2030 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4700 | ||
936 | r | v | |a SA 7310 |
951 | |a AR | ||
952 | |d 107 |j 2007 |e 4 |b 04 |c 09 |h 625-640 |
author_variant |
m d md x t xt |
---|---|
matchkey_str |
article:0029599X:2007----::dmidcmoiiniceiainfa |
hierarchy_sort_str |
2007 |
publishDate |
2007 |
allfields |
10.1007/s00211-007-0103-0 doi (DE-627)OLC2039996958 (DE-He213)s00211-007-0103-0-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 7310 VZ rvk Dryja, Maksymilian verfasserin aut A domain decomposition discretization of parabolic problems 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2007 Abstract In recent years, domain decomposition methods have attracted much attention due to their successful application to many elliptic and parabolic problems. Domain decomposition methods treat problems based on a domain substructuring, which is attractive for parallel computation, due to the independence among the subdomains. In principle, domain decomposition methods may be applied to the system resulting from a standard discretization of the parabolic problems or, directly, be carried out through a discretization of parabolic problems. In this paper, a direct domain decomposition method is introduced to discretize the parabolic problems. The stability and convergence of this algorithm are analyzed. Tu, Xuemin aut Enthalten in Numerische Mathematik Springer-Verlag, 1959 107(2007), 4 vom: 04. Sept., Seite 625-640 (DE-627)129081469 (DE-600)3460-5 (DE-576)014414333 0029-599X nnns volume:107 year:2007 number:4 day:04 month:09 pages:625-640 https://doi.org/10.1007/s00211-007-0103-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_147 GBV_ILN_170 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4700 SA 7310 AR 107 2007 4 04 09 625-640 |
spelling |
10.1007/s00211-007-0103-0 doi (DE-627)OLC2039996958 (DE-He213)s00211-007-0103-0-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 7310 VZ rvk Dryja, Maksymilian verfasserin aut A domain decomposition discretization of parabolic problems 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2007 Abstract In recent years, domain decomposition methods have attracted much attention due to their successful application to many elliptic and parabolic problems. Domain decomposition methods treat problems based on a domain substructuring, which is attractive for parallel computation, due to the independence among the subdomains. In principle, domain decomposition methods may be applied to the system resulting from a standard discretization of the parabolic problems or, directly, be carried out through a discretization of parabolic problems. In this paper, a direct domain decomposition method is introduced to discretize the parabolic problems. The stability and convergence of this algorithm are analyzed. Tu, Xuemin aut Enthalten in Numerische Mathematik Springer-Verlag, 1959 107(2007), 4 vom: 04. Sept., Seite 625-640 (DE-627)129081469 (DE-600)3460-5 (DE-576)014414333 0029-599X nnns volume:107 year:2007 number:4 day:04 month:09 pages:625-640 https://doi.org/10.1007/s00211-007-0103-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_147 GBV_ILN_170 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4700 SA 7310 AR 107 2007 4 04 09 625-640 |
allfields_unstemmed |
10.1007/s00211-007-0103-0 doi (DE-627)OLC2039996958 (DE-He213)s00211-007-0103-0-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 7310 VZ rvk Dryja, Maksymilian verfasserin aut A domain decomposition discretization of parabolic problems 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2007 Abstract In recent years, domain decomposition methods have attracted much attention due to their successful application to many elliptic and parabolic problems. Domain decomposition methods treat problems based on a domain substructuring, which is attractive for parallel computation, due to the independence among the subdomains. In principle, domain decomposition methods may be applied to the system resulting from a standard discretization of the parabolic problems or, directly, be carried out through a discretization of parabolic problems. In this paper, a direct domain decomposition method is introduced to discretize the parabolic problems. The stability and convergence of this algorithm are analyzed. Tu, Xuemin aut Enthalten in Numerische Mathematik Springer-Verlag, 1959 107(2007), 4 vom: 04. Sept., Seite 625-640 (DE-627)129081469 (DE-600)3460-5 (DE-576)014414333 0029-599X nnns volume:107 year:2007 number:4 day:04 month:09 pages:625-640 https://doi.org/10.1007/s00211-007-0103-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_147 GBV_ILN_170 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4700 SA 7310 AR 107 2007 4 04 09 625-640 |
allfieldsGer |
10.1007/s00211-007-0103-0 doi (DE-627)OLC2039996958 (DE-He213)s00211-007-0103-0-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 7310 VZ rvk Dryja, Maksymilian verfasserin aut A domain decomposition discretization of parabolic problems 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2007 Abstract In recent years, domain decomposition methods have attracted much attention due to their successful application to many elliptic and parabolic problems. Domain decomposition methods treat problems based on a domain substructuring, which is attractive for parallel computation, due to the independence among the subdomains. In principle, domain decomposition methods may be applied to the system resulting from a standard discretization of the parabolic problems or, directly, be carried out through a discretization of parabolic problems. In this paper, a direct domain decomposition method is introduced to discretize the parabolic problems. The stability and convergence of this algorithm are analyzed. Tu, Xuemin aut Enthalten in Numerische Mathematik Springer-Verlag, 1959 107(2007), 4 vom: 04. Sept., Seite 625-640 (DE-627)129081469 (DE-600)3460-5 (DE-576)014414333 0029-599X nnns volume:107 year:2007 number:4 day:04 month:09 pages:625-640 https://doi.org/10.1007/s00211-007-0103-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_147 GBV_ILN_170 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4700 SA 7310 AR 107 2007 4 04 09 625-640 |
allfieldsSound |
10.1007/s00211-007-0103-0 doi (DE-627)OLC2039996958 (DE-He213)s00211-007-0103-0-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SA 7310 VZ rvk Dryja, Maksymilian verfasserin aut A domain decomposition discretization of parabolic problems 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2007 Abstract In recent years, domain decomposition methods have attracted much attention due to their successful application to many elliptic and parabolic problems. Domain decomposition methods treat problems based on a domain substructuring, which is attractive for parallel computation, due to the independence among the subdomains. In principle, domain decomposition methods may be applied to the system resulting from a standard discretization of the parabolic problems or, directly, be carried out through a discretization of parabolic problems. In this paper, a direct domain decomposition method is introduced to discretize the parabolic problems. The stability and convergence of this algorithm are analyzed. Tu, Xuemin aut Enthalten in Numerische Mathematik Springer-Verlag, 1959 107(2007), 4 vom: 04. Sept., Seite 625-640 (DE-627)129081469 (DE-600)3460-5 (DE-576)014414333 0029-599X nnns volume:107 year:2007 number:4 day:04 month:09 pages:625-640 https://doi.org/10.1007/s00211-007-0103-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_147 GBV_ILN_170 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4700 SA 7310 AR 107 2007 4 04 09 625-640 |
language |
English |
source |
Enthalten in Numerische Mathematik 107(2007), 4 vom: 04. Sept., Seite 625-640 volume:107 year:2007 number:4 day:04 month:09 pages:625-640 |
sourceStr |
Enthalten in Numerische Mathematik 107(2007), 4 vom: 04. Sept., Seite 625-640 volume:107 year:2007 number:4 day:04 month:09 pages:625-640 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Numerische Mathematik |
authorswithroles_txt_mv |
Dryja, Maksymilian @@aut@@ Tu, Xuemin @@aut@@ |
publishDateDaySort_date |
2007-09-04T00:00:00Z |
hierarchy_top_id |
129081469 |
dewey-sort |
3510 |
id |
OLC2039996958 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2039996958</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323164158.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00211-007-0103-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2039996958</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00211-007-0103-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 7310</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dryja, Maksymilian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A domain decomposition discretization of parabolic problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In recent years, domain decomposition methods have attracted much attention due to their successful application to many elliptic and parabolic problems. Domain decomposition methods treat problems based on a domain substructuring, which is attractive for parallel computation, due to the independence among the subdomains. In principle, domain decomposition methods may be applied to the system resulting from a standard discretization of the parabolic problems or, directly, be carried out through a discretization of parabolic problems. In this paper, a direct domain decomposition method is introduced to discretize the parabolic problems. The stability and convergence of this algorithm are analyzed.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tu, Xuemin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Numerische Mathematik</subfield><subfield code="d">Springer-Verlag, 1959</subfield><subfield code="g">107(2007), 4 vom: 04. Sept., Seite 625-640</subfield><subfield code="w">(DE-627)129081469</subfield><subfield code="w">(DE-600)3460-5</subfield><subfield code="w">(DE-576)014414333</subfield><subfield code="x">0029-599X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:107</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:4</subfield><subfield code="g">day:04</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:625-640</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00211-007-0103-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 7310</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">107</subfield><subfield code="j">2007</subfield><subfield code="e">4</subfield><subfield code="b">04</subfield><subfield code="c">09</subfield><subfield code="h">625-640</subfield></datafield></record></collection>
|
author |
Dryja, Maksymilian |
spellingShingle |
Dryja, Maksymilian ddc 510 ssgn 17,1 rvk SA 7310 A domain decomposition discretization of parabolic problems |
authorStr |
Dryja, Maksymilian |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129081469 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0029-599X |
topic_title |
510 VZ 17,1 ssgn SA 7310 VZ rvk A domain decomposition discretization of parabolic problems |
topic |
ddc 510 ssgn 17,1 rvk SA 7310 |
topic_unstemmed |
ddc 510 ssgn 17,1 rvk SA 7310 |
topic_browse |
ddc 510 ssgn 17,1 rvk SA 7310 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Numerische Mathematik |
hierarchy_parent_id |
129081469 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Numerische Mathematik |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129081469 (DE-600)3460-5 (DE-576)014414333 |
title |
A domain decomposition discretization of parabolic problems |
ctrlnum |
(DE-627)OLC2039996958 (DE-He213)s00211-007-0103-0-p |
title_full |
A domain decomposition discretization of parabolic problems |
author_sort |
Dryja, Maksymilian |
journal |
Numerische Mathematik |
journalStr |
Numerische Mathematik |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2007 |
contenttype_str_mv |
txt |
container_start_page |
625 |
author_browse |
Dryja, Maksymilian Tu, Xuemin |
container_volume |
107 |
class |
510 VZ 17,1 ssgn SA 7310 VZ rvk |
format_se |
Aufsätze |
author-letter |
Dryja, Maksymilian |
doi_str_mv |
10.1007/s00211-007-0103-0 |
dewey-full |
510 |
title_sort |
a domain decomposition discretization of parabolic problems |
title_auth |
A domain decomposition discretization of parabolic problems |
abstract |
Abstract In recent years, domain decomposition methods have attracted much attention due to their successful application to many elliptic and parabolic problems. Domain decomposition methods treat problems based on a domain substructuring, which is attractive for parallel computation, due to the independence among the subdomains. In principle, domain decomposition methods may be applied to the system resulting from a standard discretization of the parabolic problems or, directly, be carried out through a discretization of parabolic problems. In this paper, a direct domain decomposition method is introduced to discretize the parabolic problems. The stability and convergence of this algorithm are analyzed. © Springer-Verlag 2007 |
abstractGer |
Abstract In recent years, domain decomposition methods have attracted much attention due to their successful application to many elliptic and parabolic problems. Domain decomposition methods treat problems based on a domain substructuring, which is attractive for parallel computation, due to the independence among the subdomains. In principle, domain decomposition methods may be applied to the system resulting from a standard discretization of the parabolic problems or, directly, be carried out through a discretization of parabolic problems. In this paper, a direct domain decomposition method is introduced to discretize the parabolic problems. The stability and convergence of this algorithm are analyzed. © Springer-Verlag 2007 |
abstract_unstemmed |
Abstract In recent years, domain decomposition methods have attracted much attention due to their successful application to many elliptic and parabolic problems. Domain decomposition methods treat problems based on a domain substructuring, which is attractive for parallel computation, due to the independence among the subdomains. In principle, domain decomposition methods may be applied to the system resulting from a standard discretization of the parabolic problems or, directly, be carried out through a discretization of parabolic problems. In this paper, a direct domain decomposition method is introduced to discretize the parabolic problems. The stability and convergence of this algorithm are analyzed. © Springer-Verlag 2007 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_147 GBV_ILN_170 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4266 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4700 |
container_issue |
4 |
title_short |
A domain decomposition discretization of parabolic problems |
url |
https://doi.org/10.1007/s00211-007-0103-0 |
remote_bool |
false |
author2 |
Tu, Xuemin |
author2Str |
Tu, Xuemin |
ppnlink |
129081469 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00211-007-0103-0 |
up_date |
2024-07-04T00:54:18.717Z |
_version_ |
1803607824109928448 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2039996958</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323164158.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00211-007-0103-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2039996958</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00211-007-0103-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 7310</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dryja, Maksymilian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A domain decomposition discretization of parabolic problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In recent years, domain decomposition methods have attracted much attention due to their successful application to many elliptic and parabolic problems. Domain decomposition methods treat problems based on a domain substructuring, which is attractive for parallel computation, due to the independence among the subdomains. In principle, domain decomposition methods may be applied to the system resulting from a standard discretization of the parabolic problems or, directly, be carried out through a discretization of parabolic problems. In this paper, a direct domain decomposition method is introduced to discretize the parabolic problems. The stability and convergence of this algorithm are analyzed.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tu, Xuemin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Numerische Mathematik</subfield><subfield code="d">Springer-Verlag, 1959</subfield><subfield code="g">107(2007), 4 vom: 04. Sept., Seite 625-640</subfield><subfield code="w">(DE-627)129081469</subfield><subfield code="w">(DE-600)3460-5</subfield><subfield code="w">(DE-576)014414333</subfield><subfield code="x">0029-599X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:107</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:4</subfield><subfield code="g">day:04</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:625-640</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00211-007-0103-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 7310</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">107</subfield><subfield code="j">2007</subfield><subfield code="e">4</subfield><subfield code="b">04</subfield><subfield code="c">09</subfield><subfield code="h">625-640</subfield></datafield></record></collection>
|
score |
7.4006615 |