NILPOTENT ELEMENTS IN THE JACOBSON–WITT ALGEBRA OVER A FINITE FIELD
Abstract It is shown in this paper that the number of nilpotent elements in the Jacobson–Witt algebra Wn over a finite field $$ {\mathbb F} $$q is equal to the expected power of q.
Autor*in: |
SKRYABIN, SERGE [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: Transformation groups - Springer US, 1996, 19(2014), 3 vom: 16. Mai, Seite 927-940 |
---|---|
Übergeordnetes Werk: |
volume:19 ; year:2014 ; number:3 ; day:16 ; month:05 ; pages:927-940 |
Links: |
---|
DOI / URN: |
10.1007/s00031-014-9270-0 |
---|
Katalog-ID: |
OLC2040056645 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2040056645 | ||
003 | DE-627 | ||
005 | 20230323114426.0 | ||
007 | tu | ||
008 | 200819s2014 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00031-014-9270-0 |2 doi | |
035 | |a (DE-627)OLC2040056645 | ||
035 | |a (DE-He213)s00031-014-9270-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a SKRYABIN, SERGE |e verfasserin |4 aut | |
245 | 1 | 0 | |a NILPOTENT ELEMENTS IN THE JACOBSON–WITT ALGEBRA OVER A FINITE FIELD |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2014 | ||
520 | |a Abstract It is shown in this paper that the number of nilpotent elements in the Jacobson–Witt algebra Wn over a finite field $$ {\mathbb F} $$q is equal to the expected power of q. | ||
650 | 4 | |a Nilpotent Element | |
650 | 4 | |a Nilpotent Ideal | |
650 | 4 | |a Nilpotent Derivation | |
650 | 4 | |a Vector Space Isomorphism | |
650 | 4 | |a Associative Unital Algebra | |
773 | 0 | 8 | |i Enthalten in |t Transformation groups |d Springer US, 1996 |g 19(2014), 3 vom: 16. Mai, Seite 927-940 |w (DE-627)214901173 |w (DE-600)1332663-6 |w (DE-576)054227798 |x 1083-4362 |7 nnns |
773 | 1 | 8 | |g volume:19 |g year:2014 |g number:3 |g day:16 |g month:05 |g pages:927-940 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00031-014-9270-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2088 | ||
951 | |a AR | ||
952 | |d 19 |j 2014 |e 3 |b 16 |c 05 |h 927-940 |
author_variant |
s s ss |
---|---|
matchkey_str |
article:10834362:2014----::iptneeetiteaosnitlero |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1007/s00031-014-9270-0 doi (DE-627)OLC2040056645 (DE-He213)s00031-014-9270-0-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SKRYABIN, SERGE verfasserin aut NILPOTENT ELEMENTS IN THE JACOBSON–WITT ALGEBRA OVER A FINITE FIELD 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract It is shown in this paper that the number of nilpotent elements in the Jacobson–Witt algebra Wn over a finite field $$ {\mathbb F} $$q is equal to the expected power of q. Nilpotent Element Nilpotent Ideal Nilpotent Derivation Vector Space Isomorphism Associative Unital Algebra Enthalten in Transformation groups Springer US, 1996 19(2014), 3 vom: 16. Mai, Seite 927-940 (DE-627)214901173 (DE-600)1332663-6 (DE-576)054227798 1083-4362 nnns volume:19 year:2014 number:3 day:16 month:05 pages:927-940 https://doi.org/10.1007/s00031-014-9270-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_2088 AR 19 2014 3 16 05 927-940 |
spelling |
10.1007/s00031-014-9270-0 doi (DE-627)OLC2040056645 (DE-He213)s00031-014-9270-0-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SKRYABIN, SERGE verfasserin aut NILPOTENT ELEMENTS IN THE JACOBSON–WITT ALGEBRA OVER A FINITE FIELD 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract It is shown in this paper that the number of nilpotent elements in the Jacobson–Witt algebra Wn over a finite field $$ {\mathbb F} $$q is equal to the expected power of q. Nilpotent Element Nilpotent Ideal Nilpotent Derivation Vector Space Isomorphism Associative Unital Algebra Enthalten in Transformation groups Springer US, 1996 19(2014), 3 vom: 16. Mai, Seite 927-940 (DE-627)214901173 (DE-600)1332663-6 (DE-576)054227798 1083-4362 nnns volume:19 year:2014 number:3 day:16 month:05 pages:927-940 https://doi.org/10.1007/s00031-014-9270-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_2088 AR 19 2014 3 16 05 927-940 |
allfields_unstemmed |
10.1007/s00031-014-9270-0 doi (DE-627)OLC2040056645 (DE-He213)s00031-014-9270-0-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SKRYABIN, SERGE verfasserin aut NILPOTENT ELEMENTS IN THE JACOBSON–WITT ALGEBRA OVER A FINITE FIELD 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract It is shown in this paper that the number of nilpotent elements in the Jacobson–Witt algebra Wn over a finite field $$ {\mathbb F} $$q is equal to the expected power of q. Nilpotent Element Nilpotent Ideal Nilpotent Derivation Vector Space Isomorphism Associative Unital Algebra Enthalten in Transformation groups Springer US, 1996 19(2014), 3 vom: 16. Mai, Seite 927-940 (DE-627)214901173 (DE-600)1332663-6 (DE-576)054227798 1083-4362 nnns volume:19 year:2014 number:3 day:16 month:05 pages:927-940 https://doi.org/10.1007/s00031-014-9270-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_2088 AR 19 2014 3 16 05 927-940 |
allfieldsGer |
10.1007/s00031-014-9270-0 doi (DE-627)OLC2040056645 (DE-He213)s00031-014-9270-0-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SKRYABIN, SERGE verfasserin aut NILPOTENT ELEMENTS IN THE JACOBSON–WITT ALGEBRA OVER A FINITE FIELD 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract It is shown in this paper that the number of nilpotent elements in the Jacobson–Witt algebra Wn over a finite field $$ {\mathbb F} $$q is equal to the expected power of q. Nilpotent Element Nilpotent Ideal Nilpotent Derivation Vector Space Isomorphism Associative Unital Algebra Enthalten in Transformation groups Springer US, 1996 19(2014), 3 vom: 16. Mai, Seite 927-940 (DE-627)214901173 (DE-600)1332663-6 (DE-576)054227798 1083-4362 nnns volume:19 year:2014 number:3 day:16 month:05 pages:927-940 https://doi.org/10.1007/s00031-014-9270-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_2088 AR 19 2014 3 16 05 927-940 |
allfieldsSound |
10.1007/s00031-014-9270-0 doi (DE-627)OLC2040056645 (DE-He213)s00031-014-9270-0-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn SKRYABIN, SERGE verfasserin aut NILPOTENT ELEMENTS IN THE JACOBSON–WITT ALGEBRA OVER A FINITE FIELD 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract It is shown in this paper that the number of nilpotent elements in the Jacobson–Witt algebra Wn over a finite field $$ {\mathbb F} $$q is equal to the expected power of q. Nilpotent Element Nilpotent Ideal Nilpotent Derivation Vector Space Isomorphism Associative Unital Algebra Enthalten in Transformation groups Springer US, 1996 19(2014), 3 vom: 16. Mai, Seite 927-940 (DE-627)214901173 (DE-600)1332663-6 (DE-576)054227798 1083-4362 nnns volume:19 year:2014 number:3 day:16 month:05 pages:927-940 https://doi.org/10.1007/s00031-014-9270-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_2088 AR 19 2014 3 16 05 927-940 |
language |
English |
source |
Enthalten in Transformation groups 19(2014), 3 vom: 16. Mai, Seite 927-940 volume:19 year:2014 number:3 day:16 month:05 pages:927-940 |
sourceStr |
Enthalten in Transformation groups 19(2014), 3 vom: 16. Mai, Seite 927-940 volume:19 year:2014 number:3 day:16 month:05 pages:927-940 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Nilpotent Element Nilpotent Ideal Nilpotent Derivation Vector Space Isomorphism Associative Unital Algebra |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Transformation groups |
authorswithroles_txt_mv |
SKRYABIN, SERGE @@aut@@ |
publishDateDaySort_date |
2014-05-16T00:00:00Z |
hierarchy_top_id |
214901173 |
dewey-sort |
3510 |
id |
OLC2040056645 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2040056645</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323114426.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00031-014-9270-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2040056645</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00031-014-9270-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">SKRYABIN, SERGE</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">NILPOTENT ELEMENTS IN THE JACOBSON–WITT ALGEBRA OVER A FINITE FIELD</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract It is shown in this paper that the number of nilpotent elements in the Jacobson–Witt algebra Wn over a finite field $$ {\mathbb F} $$q is equal to the expected power of q.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nilpotent Element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nilpotent Ideal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nilpotent Derivation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector Space Isomorphism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Associative Unital Algebra</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Transformation groups</subfield><subfield code="d">Springer US, 1996</subfield><subfield code="g">19(2014), 3 vom: 16. Mai, Seite 927-940</subfield><subfield code="w">(DE-627)214901173</subfield><subfield code="w">(DE-600)1332663-6</subfield><subfield code="w">(DE-576)054227798</subfield><subfield code="x">1083-4362</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:3</subfield><subfield code="g">day:16</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:927-940</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00031-014-9270-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2014</subfield><subfield code="e">3</subfield><subfield code="b">16</subfield><subfield code="c">05</subfield><subfield code="h">927-940</subfield></datafield></record></collection>
|
author |
SKRYABIN, SERGE |
spellingShingle |
SKRYABIN, SERGE ddc 510 ssgn 17,1 misc Nilpotent Element misc Nilpotent Ideal misc Nilpotent Derivation misc Vector Space Isomorphism misc Associative Unital Algebra NILPOTENT ELEMENTS IN THE JACOBSON–WITT ALGEBRA OVER A FINITE FIELD |
authorStr |
SKRYABIN, SERGE |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)214901173 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1083-4362 |
topic_title |
510 VZ 17,1 ssgn NILPOTENT ELEMENTS IN THE JACOBSON–WITT ALGEBRA OVER A FINITE FIELD Nilpotent Element Nilpotent Ideal Nilpotent Derivation Vector Space Isomorphism Associative Unital Algebra |
topic |
ddc 510 ssgn 17,1 misc Nilpotent Element misc Nilpotent Ideal misc Nilpotent Derivation misc Vector Space Isomorphism misc Associative Unital Algebra |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Nilpotent Element misc Nilpotent Ideal misc Nilpotent Derivation misc Vector Space Isomorphism misc Associative Unital Algebra |
topic_browse |
ddc 510 ssgn 17,1 misc Nilpotent Element misc Nilpotent Ideal misc Nilpotent Derivation misc Vector Space Isomorphism misc Associative Unital Algebra |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Transformation groups |
hierarchy_parent_id |
214901173 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Transformation groups |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)214901173 (DE-600)1332663-6 (DE-576)054227798 |
title |
NILPOTENT ELEMENTS IN THE JACOBSON–WITT ALGEBRA OVER A FINITE FIELD |
ctrlnum |
(DE-627)OLC2040056645 (DE-He213)s00031-014-9270-0-p |
title_full |
NILPOTENT ELEMENTS IN THE JACOBSON–WITT ALGEBRA OVER A FINITE FIELD |
author_sort |
SKRYABIN, SERGE |
journal |
Transformation groups |
journalStr |
Transformation groups |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
927 |
author_browse |
SKRYABIN, SERGE |
container_volume |
19 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
SKRYABIN, SERGE |
doi_str_mv |
10.1007/s00031-014-9270-0 |
dewey-full |
510 |
title_sort |
nilpotent elements in the jacobson–witt algebra over a finite field |
title_auth |
NILPOTENT ELEMENTS IN THE JACOBSON–WITT ALGEBRA OVER A FINITE FIELD |
abstract |
Abstract It is shown in this paper that the number of nilpotent elements in the Jacobson–Witt algebra Wn over a finite field $$ {\mathbb F} $$q is equal to the expected power of q. © Springer Science+Business Media New York 2014 |
abstractGer |
Abstract It is shown in this paper that the number of nilpotent elements in the Jacobson–Witt algebra Wn over a finite field $$ {\mathbb F} $$q is equal to the expected power of q. © Springer Science+Business Media New York 2014 |
abstract_unstemmed |
Abstract It is shown in this paper that the number of nilpotent elements in the Jacobson–Witt algebra Wn over a finite field $$ {\mathbb F} $$q is equal to the expected power of q. © Springer Science+Business Media New York 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_2088 |
container_issue |
3 |
title_short |
NILPOTENT ELEMENTS IN THE JACOBSON–WITT ALGEBRA OVER A FINITE FIELD |
url |
https://doi.org/10.1007/s00031-014-9270-0 |
remote_bool |
false |
ppnlink |
214901173 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00031-014-9270-0 |
up_date |
2024-07-04T01:06:28.432Z |
_version_ |
1803608589267369984 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2040056645</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323114426.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00031-014-9270-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2040056645</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00031-014-9270-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">SKRYABIN, SERGE</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">NILPOTENT ELEMENTS IN THE JACOBSON–WITT ALGEBRA OVER A FINITE FIELD</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract It is shown in this paper that the number of nilpotent elements in the Jacobson–Witt algebra Wn over a finite field $$ {\mathbb F} $$q is equal to the expected power of q.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nilpotent Element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nilpotent Ideal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nilpotent Derivation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector Space Isomorphism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Associative Unital Algebra</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Transformation groups</subfield><subfield code="d">Springer US, 1996</subfield><subfield code="g">19(2014), 3 vom: 16. Mai, Seite 927-940</subfield><subfield code="w">(DE-627)214901173</subfield><subfield code="w">(DE-600)1332663-6</subfield><subfield code="w">(DE-576)054227798</subfield><subfield code="x">1083-4362</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:3</subfield><subfield code="g">day:16</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:927-940</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00031-014-9270-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2014</subfield><subfield code="e">3</subfield><subfield code="b">16</subfield><subfield code="c">05</subfield><subfield code="h">927-940</subfield></datafield></record></collection>
|
score |
7.402337 |