Selective recovery of dissolved Fe, Al, Cu, and Zn in acid mine drainage based on modeling to predict precipitation pH
Abstract Mining activities have caused serious environmental problems including acid mine drainage (AMD), the dispersion of mine tailings and dust, and extensive mine waste. In particular, AMD contaminates soil and water downstream of mines and generally contains mainly valuable metals such as Cu, Z...
Ausführliche Beschreibung
Autor*in: |
Park, Sang-Min [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: Environmental science and pollution research - Springer Berlin Heidelberg, 1994, 22(2014), 4 vom: 19. Sept., Seite 3013-3022 |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2014 ; number:4 ; day:19 ; month:09 ; pages:3013-3022 |
Links: |
---|
DOI / URN: |
10.1007/s11356-014-3536-x |
---|
Katalog-ID: |
OLC2040439072 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2040439072 | ||
003 | DE-627 | ||
005 | 20230606194816.0 | ||
007 | tu | ||
008 | 200820s2014 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11356-014-3536-x |2 doi | |
035 | |a (DE-627)OLC2040439072 | ||
035 | |a (DE-He213)s11356-014-3536-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |a 360 |a 333.7 |q VZ |
082 | 0 | 4 | |a 690 |a 333.7 |a 540 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
100 | 1 | |a Park, Sang-Min |e verfasserin |4 aut | |
245 | 1 | 0 | |a Selective recovery of dissolved Fe, Al, Cu, and Zn in acid mine drainage based on modeling to predict precipitation pH |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2014 | ||
520 | |a Abstract Mining activities have caused serious environmental problems including acid mine drainage (AMD), the dispersion of mine tailings and dust, and extensive mine waste. In particular, AMD contaminates soil and water downstream of mines and generally contains mainly valuable metals such as Cu, Zn, and Ni as well as Fe and Al. In this study, we investigated the selective recovery of Fe, Al, Cu, Zn, and Ni from AMD. First, the speciation of Fe, Al, Cu, Zn, and Ni as a function of the equilibrium solution pH was simulated by Visual MINTEQ. Based on the simulation results, the predicted pHs for the selective precipitation of Fe, Al, Cu, and Zn/Ni were determined. And recovery yield of metals using simulation is over 99 %. Experiments using artificial AMD based on the simulation results confirmed the selective recovery of Fe, Al, Cu, and Zn/Ni, and the recovery yields of Fe/Al/Cu/Zn and Fe/Al/Cu/Ni mixtures using $ Na_{2} $$ CO_{3} $ were 99.6/86.8/71.9/77.0 % and 99.2/85.7/73.3/86.1 %, respectively. After then, the simulation results were applied to an actual AMD for the selective recovery of metals, and the recovery yields of Fe, Al, Cu, and Zn using NaOH were 97.2, 74.9, 66.9, and 89.7 %, respectively. Based on the results, it was concluded that selective recovery of dissolved metals from AMD is possible by adjusting the solution pH using NaOH or $ Na_{2} $$ CO_{3} $ as neutralizing agents. | ||
650 | 4 | |a Visual MINTEQ | |
650 | 4 | |a Acid mine drainage (AMD) | |
650 | 4 | |a Selective recovery | |
650 | 4 | |a Precipitation | |
650 | 4 | |a pH | |
700 | 1 | |a Yoo, Jong-Chan |4 aut | |
700 | 1 | |a Ji, Sang-Woo |4 aut | |
700 | 1 | |a Yang, Jung-Seok |4 aut | |
700 | 1 | |a Baek, Kitae |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Environmental science and pollution research |d Springer Berlin Heidelberg, 1994 |g 22(2014), 4 vom: 19. Sept., Seite 3013-3022 |w (DE-627)171335805 |w (DE-600)1178791-0 |w (DE-576)038875101 |x 0944-1344 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2014 |g number:4 |g day:19 |g month:09 |g pages:3013-3022 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11356-014-3536-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-ARC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-FOR | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_183 | ||
912 | |a GBV_ILN_252 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4219 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 22 |j 2014 |e 4 |b 19 |c 09 |h 3013-3022 |
author_variant |
s m p smp j c y jcy s w j swj j s y jsy k b kb |
---|---|
matchkey_str |
article:09441344:2014----::eetvrcvrodsovdelunziaimndangbsdnoeig |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1007/s11356-014-3536-x doi (DE-627)OLC2040439072 (DE-He213)s11356-014-3536-x-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Park, Sang-Min verfasserin aut Selective recovery of dissolved Fe, Al, Cu, and Zn in acid mine drainage based on modeling to predict precipitation pH 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2014 Abstract Mining activities have caused serious environmental problems including acid mine drainage (AMD), the dispersion of mine tailings and dust, and extensive mine waste. In particular, AMD contaminates soil and water downstream of mines and generally contains mainly valuable metals such as Cu, Zn, and Ni as well as Fe and Al. In this study, we investigated the selective recovery of Fe, Al, Cu, Zn, and Ni from AMD. First, the speciation of Fe, Al, Cu, Zn, and Ni as a function of the equilibrium solution pH was simulated by Visual MINTEQ. Based on the simulation results, the predicted pHs for the selective precipitation of Fe, Al, Cu, and Zn/Ni were determined. And recovery yield of metals using simulation is over 99 %. Experiments using artificial AMD based on the simulation results confirmed the selective recovery of Fe, Al, Cu, and Zn/Ni, and the recovery yields of Fe/Al/Cu/Zn and Fe/Al/Cu/Ni mixtures using $ Na_{2} $$ CO_{3} $ were 99.6/86.8/71.9/77.0 % and 99.2/85.7/73.3/86.1 %, respectively. After then, the simulation results were applied to an actual AMD for the selective recovery of metals, and the recovery yields of Fe, Al, Cu, and Zn using NaOH were 97.2, 74.9, 66.9, and 89.7 %, respectively. Based on the results, it was concluded that selective recovery of dissolved metals from AMD is possible by adjusting the solution pH using NaOH or $ Na_{2} $$ CO_{3} $ as neutralizing agents. Visual MINTEQ Acid mine drainage (AMD) Selective recovery Precipitation pH Yoo, Jong-Chan aut Ji, Sang-Woo aut Yang, Jung-Seok aut Baek, Kitae aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 22(2014), 4 vom: 19. Sept., Seite 3013-3022 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:22 year:2014 number:4 day:19 month:09 pages:3013-3022 https://doi.org/10.1007/s11356-014-3536-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_183 GBV_ILN_252 GBV_ILN_267 GBV_ILN_370 GBV_ILN_2018 GBV_ILN_2057 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4219 GBV_ILN_4266 GBV_ILN_4277 AR 22 2014 4 19 09 3013-3022 |
spelling |
10.1007/s11356-014-3536-x doi (DE-627)OLC2040439072 (DE-He213)s11356-014-3536-x-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Park, Sang-Min verfasserin aut Selective recovery of dissolved Fe, Al, Cu, and Zn in acid mine drainage based on modeling to predict precipitation pH 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2014 Abstract Mining activities have caused serious environmental problems including acid mine drainage (AMD), the dispersion of mine tailings and dust, and extensive mine waste. In particular, AMD contaminates soil and water downstream of mines and generally contains mainly valuable metals such as Cu, Zn, and Ni as well as Fe and Al. In this study, we investigated the selective recovery of Fe, Al, Cu, Zn, and Ni from AMD. First, the speciation of Fe, Al, Cu, Zn, and Ni as a function of the equilibrium solution pH was simulated by Visual MINTEQ. Based on the simulation results, the predicted pHs for the selective precipitation of Fe, Al, Cu, and Zn/Ni were determined. And recovery yield of metals using simulation is over 99 %. Experiments using artificial AMD based on the simulation results confirmed the selective recovery of Fe, Al, Cu, and Zn/Ni, and the recovery yields of Fe/Al/Cu/Zn and Fe/Al/Cu/Ni mixtures using $ Na_{2} $$ CO_{3} $ were 99.6/86.8/71.9/77.0 % and 99.2/85.7/73.3/86.1 %, respectively. After then, the simulation results were applied to an actual AMD for the selective recovery of metals, and the recovery yields of Fe, Al, Cu, and Zn using NaOH were 97.2, 74.9, 66.9, and 89.7 %, respectively. Based on the results, it was concluded that selective recovery of dissolved metals from AMD is possible by adjusting the solution pH using NaOH or $ Na_{2} $$ CO_{3} $ as neutralizing agents. Visual MINTEQ Acid mine drainage (AMD) Selective recovery Precipitation pH Yoo, Jong-Chan aut Ji, Sang-Woo aut Yang, Jung-Seok aut Baek, Kitae aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 22(2014), 4 vom: 19. Sept., Seite 3013-3022 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:22 year:2014 number:4 day:19 month:09 pages:3013-3022 https://doi.org/10.1007/s11356-014-3536-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_183 GBV_ILN_252 GBV_ILN_267 GBV_ILN_370 GBV_ILN_2018 GBV_ILN_2057 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4219 GBV_ILN_4266 GBV_ILN_4277 AR 22 2014 4 19 09 3013-3022 |
allfields_unstemmed |
10.1007/s11356-014-3536-x doi (DE-627)OLC2040439072 (DE-He213)s11356-014-3536-x-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Park, Sang-Min verfasserin aut Selective recovery of dissolved Fe, Al, Cu, and Zn in acid mine drainage based on modeling to predict precipitation pH 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2014 Abstract Mining activities have caused serious environmental problems including acid mine drainage (AMD), the dispersion of mine tailings and dust, and extensive mine waste. In particular, AMD contaminates soil and water downstream of mines and generally contains mainly valuable metals such as Cu, Zn, and Ni as well as Fe and Al. In this study, we investigated the selective recovery of Fe, Al, Cu, Zn, and Ni from AMD. First, the speciation of Fe, Al, Cu, Zn, and Ni as a function of the equilibrium solution pH was simulated by Visual MINTEQ. Based on the simulation results, the predicted pHs for the selective precipitation of Fe, Al, Cu, and Zn/Ni were determined. And recovery yield of metals using simulation is over 99 %. Experiments using artificial AMD based on the simulation results confirmed the selective recovery of Fe, Al, Cu, and Zn/Ni, and the recovery yields of Fe/Al/Cu/Zn and Fe/Al/Cu/Ni mixtures using $ Na_{2} $$ CO_{3} $ were 99.6/86.8/71.9/77.0 % and 99.2/85.7/73.3/86.1 %, respectively. After then, the simulation results were applied to an actual AMD for the selective recovery of metals, and the recovery yields of Fe, Al, Cu, and Zn using NaOH were 97.2, 74.9, 66.9, and 89.7 %, respectively. Based on the results, it was concluded that selective recovery of dissolved metals from AMD is possible by adjusting the solution pH using NaOH or $ Na_{2} $$ CO_{3} $ as neutralizing agents. Visual MINTEQ Acid mine drainage (AMD) Selective recovery Precipitation pH Yoo, Jong-Chan aut Ji, Sang-Woo aut Yang, Jung-Seok aut Baek, Kitae aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 22(2014), 4 vom: 19. Sept., Seite 3013-3022 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:22 year:2014 number:4 day:19 month:09 pages:3013-3022 https://doi.org/10.1007/s11356-014-3536-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_183 GBV_ILN_252 GBV_ILN_267 GBV_ILN_370 GBV_ILN_2018 GBV_ILN_2057 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4219 GBV_ILN_4266 GBV_ILN_4277 AR 22 2014 4 19 09 3013-3022 |
allfieldsGer |
10.1007/s11356-014-3536-x doi (DE-627)OLC2040439072 (DE-He213)s11356-014-3536-x-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Park, Sang-Min verfasserin aut Selective recovery of dissolved Fe, Al, Cu, and Zn in acid mine drainage based on modeling to predict precipitation pH 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2014 Abstract Mining activities have caused serious environmental problems including acid mine drainage (AMD), the dispersion of mine tailings and dust, and extensive mine waste. In particular, AMD contaminates soil and water downstream of mines and generally contains mainly valuable metals such as Cu, Zn, and Ni as well as Fe and Al. In this study, we investigated the selective recovery of Fe, Al, Cu, Zn, and Ni from AMD. First, the speciation of Fe, Al, Cu, Zn, and Ni as a function of the equilibrium solution pH was simulated by Visual MINTEQ. Based on the simulation results, the predicted pHs for the selective precipitation of Fe, Al, Cu, and Zn/Ni were determined. And recovery yield of metals using simulation is over 99 %. Experiments using artificial AMD based on the simulation results confirmed the selective recovery of Fe, Al, Cu, and Zn/Ni, and the recovery yields of Fe/Al/Cu/Zn and Fe/Al/Cu/Ni mixtures using $ Na_{2} $$ CO_{3} $ were 99.6/86.8/71.9/77.0 % and 99.2/85.7/73.3/86.1 %, respectively. After then, the simulation results were applied to an actual AMD for the selective recovery of metals, and the recovery yields of Fe, Al, Cu, and Zn using NaOH were 97.2, 74.9, 66.9, and 89.7 %, respectively. Based on the results, it was concluded that selective recovery of dissolved metals from AMD is possible by adjusting the solution pH using NaOH or $ Na_{2} $$ CO_{3} $ as neutralizing agents. Visual MINTEQ Acid mine drainage (AMD) Selective recovery Precipitation pH Yoo, Jong-Chan aut Ji, Sang-Woo aut Yang, Jung-Seok aut Baek, Kitae aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 22(2014), 4 vom: 19. Sept., Seite 3013-3022 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:22 year:2014 number:4 day:19 month:09 pages:3013-3022 https://doi.org/10.1007/s11356-014-3536-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_183 GBV_ILN_252 GBV_ILN_267 GBV_ILN_370 GBV_ILN_2018 GBV_ILN_2057 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4219 GBV_ILN_4266 GBV_ILN_4277 AR 22 2014 4 19 09 3013-3022 |
allfieldsSound |
10.1007/s11356-014-3536-x doi (DE-627)OLC2040439072 (DE-He213)s11356-014-3536-x-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Park, Sang-Min verfasserin aut Selective recovery of dissolved Fe, Al, Cu, and Zn in acid mine drainage based on modeling to predict precipitation pH 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2014 Abstract Mining activities have caused serious environmental problems including acid mine drainage (AMD), the dispersion of mine tailings and dust, and extensive mine waste. In particular, AMD contaminates soil and water downstream of mines and generally contains mainly valuable metals such as Cu, Zn, and Ni as well as Fe and Al. In this study, we investigated the selective recovery of Fe, Al, Cu, Zn, and Ni from AMD. First, the speciation of Fe, Al, Cu, Zn, and Ni as a function of the equilibrium solution pH was simulated by Visual MINTEQ. Based on the simulation results, the predicted pHs for the selective precipitation of Fe, Al, Cu, and Zn/Ni were determined. And recovery yield of metals using simulation is over 99 %. Experiments using artificial AMD based on the simulation results confirmed the selective recovery of Fe, Al, Cu, and Zn/Ni, and the recovery yields of Fe/Al/Cu/Zn and Fe/Al/Cu/Ni mixtures using $ Na_{2} $$ CO_{3} $ were 99.6/86.8/71.9/77.0 % and 99.2/85.7/73.3/86.1 %, respectively. After then, the simulation results were applied to an actual AMD for the selective recovery of metals, and the recovery yields of Fe, Al, Cu, and Zn using NaOH were 97.2, 74.9, 66.9, and 89.7 %, respectively. Based on the results, it was concluded that selective recovery of dissolved metals from AMD is possible by adjusting the solution pH using NaOH or $ Na_{2} $$ CO_{3} $ as neutralizing agents. Visual MINTEQ Acid mine drainage (AMD) Selective recovery Precipitation pH Yoo, Jong-Chan aut Ji, Sang-Woo aut Yang, Jung-Seok aut Baek, Kitae aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 22(2014), 4 vom: 19. Sept., Seite 3013-3022 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:22 year:2014 number:4 day:19 month:09 pages:3013-3022 https://doi.org/10.1007/s11356-014-3536-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_183 GBV_ILN_252 GBV_ILN_267 GBV_ILN_370 GBV_ILN_2018 GBV_ILN_2057 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4219 GBV_ILN_4266 GBV_ILN_4277 AR 22 2014 4 19 09 3013-3022 |
language |
English |
source |
Enthalten in Environmental science and pollution research 22(2014), 4 vom: 19. Sept., Seite 3013-3022 volume:22 year:2014 number:4 day:19 month:09 pages:3013-3022 |
sourceStr |
Enthalten in Environmental science and pollution research 22(2014), 4 vom: 19. Sept., Seite 3013-3022 volume:22 year:2014 number:4 day:19 month:09 pages:3013-3022 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Visual MINTEQ Acid mine drainage (AMD) Selective recovery Precipitation pH |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Environmental science and pollution research |
authorswithroles_txt_mv |
Park, Sang-Min @@aut@@ Yoo, Jong-Chan @@aut@@ Ji, Sang-Woo @@aut@@ Yang, Jung-Seok @@aut@@ Baek, Kitae @@aut@@ |
publishDateDaySort_date |
2014-09-19T00:00:00Z |
hierarchy_top_id |
171335805 |
dewey-sort |
3570 |
id |
OLC2040439072 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2040439072</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230606194816.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11356-014-3536-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2040439072</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11356-014-3536-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">360</subfield><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="a">333.7</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Park, Sang-Min</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Selective recovery of dissolved Fe, Al, Cu, and Zn in acid mine drainage based on modeling to predict precipitation pH</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Mining activities have caused serious environmental problems including acid mine drainage (AMD), the dispersion of mine tailings and dust, and extensive mine waste. In particular, AMD contaminates soil and water downstream of mines and generally contains mainly valuable metals such as Cu, Zn, and Ni as well as Fe and Al. In this study, we investigated the selective recovery of Fe, Al, Cu, Zn, and Ni from AMD. First, the speciation of Fe, Al, Cu, Zn, and Ni as a function of the equilibrium solution pH was simulated by Visual MINTEQ. Based on the simulation results, the predicted pHs for the selective precipitation of Fe, Al, Cu, and Zn/Ni were determined. And recovery yield of metals using simulation is over 99 %. Experiments using artificial AMD based on the simulation results confirmed the selective recovery of Fe, Al, Cu, and Zn/Ni, and the recovery yields of Fe/Al/Cu/Zn and Fe/Al/Cu/Ni mixtures using $ Na_{2} $$ CO_{3} $ were 99.6/86.8/71.9/77.0 % and 99.2/85.7/73.3/86.1 %, respectively. After then, the simulation results were applied to an actual AMD for the selective recovery of metals, and the recovery yields of Fe, Al, Cu, and Zn using NaOH were 97.2, 74.9, 66.9, and 89.7 %, respectively. Based on the results, it was concluded that selective recovery of dissolved metals from AMD is possible by adjusting the solution pH using NaOH or $ Na_{2} $$ CO_{3} $ as neutralizing agents.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Visual MINTEQ</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acid mine drainage (AMD)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Selective recovery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Precipitation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pH</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yoo, Jong-Chan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ji, Sang-Woo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jung-Seok</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baek, Kitae</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Environmental science and pollution research</subfield><subfield code="d">Springer Berlin Heidelberg, 1994</subfield><subfield code="g">22(2014), 4 vom: 19. Sept., Seite 3013-3022</subfield><subfield code="w">(DE-627)171335805</subfield><subfield code="w">(DE-600)1178791-0</subfield><subfield code="w">(DE-576)038875101</subfield><subfield code="x">0944-1344</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:4</subfield><subfield code="g">day:19</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:3013-3022</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11356-014-3536-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_183</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2014</subfield><subfield code="e">4</subfield><subfield code="b">19</subfield><subfield code="c">09</subfield><subfield code="h">3013-3022</subfield></datafield></record></collection>
|
author |
Park, Sang-Min |
spellingShingle |
Park, Sang-Min ddc 570 ddc 690 fid BIODIV misc Visual MINTEQ misc Acid mine drainage (AMD) misc Selective recovery misc Precipitation misc pH Selective recovery of dissolved Fe, Al, Cu, and Zn in acid mine drainage based on modeling to predict precipitation pH |
authorStr |
Park, Sang-Min |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)171335805 |
format |
Article |
dewey-ones |
570 - Life sciences; biology 360 - Social problems & services; associations 333 - Economics of land & energy 690 - Buildings 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0944-1344 |
topic_title |
570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Selective recovery of dissolved Fe, Al, Cu, and Zn in acid mine drainage based on modeling to predict precipitation pH Visual MINTEQ Acid mine drainage (AMD) Selective recovery Precipitation pH |
topic |
ddc 570 ddc 690 fid BIODIV misc Visual MINTEQ misc Acid mine drainage (AMD) misc Selective recovery misc Precipitation misc pH |
topic_unstemmed |
ddc 570 ddc 690 fid BIODIV misc Visual MINTEQ misc Acid mine drainage (AMD) misc Selective recovery misc Precipitation misc pH |
topic_browse |
ddc 570 ddc 690 fid BIODIV misc Visual MINTEQ misc Acid mine drainage (AMD) misc Selective recovery misc Precipitation misc pH |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Environmental science and pollution research |
hierarchy_parent_id |
171335805 |
dewey-tens |
570 - Life sciences; biology 360 - Social problems & social services 330 - Economics 690 - Building & construction 540 - Chemistry |
hierarchy_top_title |
Environmental science and pollution research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 |
title |
Selective recovery of dissolved Fe, Al, Cu, and Zn in acid mine drainage based on modeling to predict precipitation pH |
ctrlnum |
(DE-627)OLC2040439072 (DE-He213)s11356-014-3536-x-p |
title_full |
Selective recovery of dissolved Fe, Al, Cu, and Zn in acid mine drainage based on modeling to predict precipitation pH |
author_sort |
Park, Sang-Min |
journal |
Environmental science and pollution research |
journalStr |
Environmental science and pollution research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 300 - Social sciences 600 - Technology |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
3013 |
author_browse |
Park, Sang-Min Yoo, Jong-Chan Ji, Sang-Woo Yang, Jung-Seok Baek, Kitae |
container_volume |
22 |
class |
570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid |
format_se |
Aufsätze |
author-letter |
Park, Sang-Min |
doi_str_mv |
10.1007/s11356-014-3536-x |
dewey-full |
570 360 333.7 690 540 |
title_sort |
selective recovery of dissolved fe, al, cu, and zn in acid mine drainage based on modeling to predict precipitation ph |
title_auth |
Selective recovery of dissolved Fe, Al, Cu, and Zn in acid mine drainage based on modeling to predict precipitation pH |
abstract |
Abstract Mining activities have caused serious environmental problems including acid mine drainage (AMD), the dispersion of mine tailings and dust, and extensive mine waste. In particular, AMD contaminates soil and water downstream of mines and generally contains mainly valuable metals such as Cu, Zn, and Ni as well as Fe and Al. In this study, we investigated the selective recovery of Fe, Al, Cu, Zn, and Ni from AMD. First, the speciation of Fe, Al, Cu, Zn, and Ni as a function of the equilibrium solution pH was simulated by Visual MINTEQ. Based on the simulation results, the predicted pHs for the selective precipitation of Fe, Al, Cu, and Zn/Ni were determined. And recovery yield of metals using simulation is over 99 %. Experiments using artificial AMD based on the simulation results confirmed the selective recovery of Fe, Al, Cu, and Zn/Ni, and the recovery yields of Fe/Al/Cu/Zn and Fe/Al/Cu/Ni mixtures using $ Na_{2} $$ CO_{3} $ were 99.6/86.8/71.9/77.0 % and 99.2/85.7/73.3/86.1 %, respectively. After then, the simulation results were applied to an actual AMD for the selective recovery of metals, and the recovery yields of Fe, Al, Cu, and Zn using NaOH were 97.2, 74.9, 66.9, and 89.7 %, respectively. Based on the results, it was concluded that selective recovery of dissolved metals from AMD is possible by adjusting the solution pH using NaOH or $ Na_{2} $$ CO_{3} $ as neutralizing agents. © Springer-Verlag Berlin Heidelberg 2014 |
abstractGer |
Abstract Mining activities have caused serious environmental problems including acid mine drainage (AMD), the dispersion of mine tailings and dust, and extensive mine waste. In particular, AMD contaminates soil and water downstream of mines and generally contains mainly valuable metals such as Cu, Zn, and Ni as well as Fe and Al. In this study, we investigated the selective recovery of Fe, Al, Cu, Zn, and Ni from AMD. First, the speciation of Fe, Al, Cu, Zn, and Ni as a function of the equilibrium solution pH was simulated by Visual MINTEQ. Based on the simulation results, the predicted pHs for the selective precipitation of Fe, Al, Cu, and Zn/Ni were determined. And recovery yield of metals using simulation is over 99 %. Experiments using artificial AMD based on the simulation results confirmed the selective recovery of Fe, Al, Cu, and Zn/Ni, and the recovery yields of Fe/Al/Cu/Zn and Fe/Al/Cu/Ni mixtures using $ Na_{2} $$ CO_{3} $ were 99.6/86.8/71.9/77.0 % and 99.2/85.7/73.3/86.1 %, respectively. After then, the simulation results were applied to an actual AMD for the selective recovery of metals, and the recovery yields of Fe, Al, Cu, and Zn using NaOH were 97.2, 74.9, 66.9, and 89.7 %, respectively. Based on the results, it was concluded that selective recovery of dissolved metals from AMD is possible by adjusting the solution pH using NaOH or $ Na_{2} $$ CO_{3} $ as neutralizing agents. © Springer-Verlag Berlin Heidelberg 2014 |
abstract_unstemmed |
Abstract Mining activities have caused serious environmental problems including acid mine drainage (AMD), the dispersion of mine tailings and dust, and extensive mine waste. In particular, AMD contaminates soil and water downstream of mines and generally contains mainly valuable metals such as Cu, Zn, and Ni as well as Fe and Al. In this study, we investigated the selective recovery of Fe, Al, Cu, Zn, and Ni from AMD. First, the speciation of Fe, Al, Cu, Zn, and Ni as a function of the equilibrium solution pH was simulated by Visual MINTEQ. Based on the simulation results, the predicted pHs for the selective precipitation of Fe, Al, Cu, and Zn/Ni were determined. And recovery yield of metals using simulation is over 99 %. Experiments using artificial AMD based on the simulation results confirmed the selective recovery of Fe, Al, Cu, and Zn/Ni, and the recovery yields of Fe/Al/Cu/Zn and Fe/Al/Cu/Ni mixtures using $ Na_{2} $$ CO_{3} $ were 99.6/86.8/71.9/77.0 % and 99.2/85.7/73.3/86.1 %, respectively. After then, the simulation results were applied to an actual AMD for the selective recovery of metals, and the recovery yields of Fe, Al, Cu, and Zn using NaOH were 97.2, 74.9, 66.9, and 89.7 %, respectively. Based on the results, it was concluded that selective recovery of dissolved metals from AMD is possible by adjusting the solution pH using NaOH or $ Na_{2} $$ CO_{3} $ as neutralizing agents. © Springer-Verlag Berlin Heidelberg 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_183 GBV_ILN_252 GBV_ILN_267 GBV_ILN_370 GBV_ILN_2018 GBV_ILN_2057 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4219 GBV_ILN_4266 GBV_ILN_4277 |
container_issue |
4 |
title_short |
Selective recovery of dissolved Fe, Al, Cu, and Zn in acid mine drainage based on modeling to predict precipitation pH |
url |
https://doi.org/10.1007/s11356-014-3536-x |
remote_bool |
false |
author2 |
Yoo, Jong-Chan Ji, Sang-Woo Yang, Jung-Seok Baek, Kitae |
author2Str |
Yoo, Jong-Chan Ji, Sang-Woo Yang, Jung-Seok Baek, Kitae |
ppnlink |
171335805 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11356-014-3536-x |
up_date |
2024-07-04T02:14:22.067Z |
_version_ |
1803612860782215168 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2040439072</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230606194816.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11356-014-3536-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2040439072</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11356-014-3536-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">360</subfield><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="a">333.7</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Park, Sang-Min</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Selective recovery of dissolved Fe, Al, Cu, and Zn in acid mine drainage based on modeling to predict precipitation pH</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Mining activities have caused serious environmental problems including acid mine drainage (AMD), the dispersion of mine tailings and dust, and extensive mine waste. In particular, AMD contaminates soil and water downstream of mines and generally contains mainly valuable metals such as Cu, Zn, and Ni as well as Fe and Al. In this study, we investigated the selective recovery of Fe, Al, Cu, Zn, and Ni from AMD. First, the speciation of Fe, Al, Cu, Zn, and Ni as a function of the equilibrium solution pH was simulated by Visual MINTEQ. Based on the simulation results, the predicted pHs for the selective precipitation of Fe, Al, Cu, and Zn/Ni were determined. And recovery yield of metals using simulation is over 99 %. Experiments using artificial AMD based on the simulation results confirmed the selective recovery of Fe, Al, Cu, and Zn/Ni, and the recovery yields of Fe/Al/Cu/Zn and Fe/Al/Cu/Ni mixtures using $ Na_{2} $$ CO_{3} $ were 99.6/86.8/71.9/77.0 % and 99.2/85.7/73.3/86.1 %, respectively. After then, the simulation results were applied to an actual AMD for the selective recovery of metals, and the recovery yields of Fe, Al, Cu, and Zn using NaOH were 97.2, 74.9, 66.9, and 89.7 %, respectively. Based on the results, it was concluded that selective recovery of dissolved metals from AMD is possible by adjusting the solution pH using NaOH or $ Na_{2} $$ CO_{3} $ as neutralizing agents.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Visual MINTEQ</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acid mine drainage (AMD)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Selective recovery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Precipitation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pH</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yoo, Jong-Chan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ji, Sang-Woo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jung-Seok</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baek, Kitae</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Environmental science and pollution research</subfield><subfield code="d">Springer Berlin Heidelberg, 1994</subfield><subfield code="g">22(2014), 4 vom: 19. Sept., Seite 3013-3022</subfield><subfield code="w">(DE-627)171335805</subfield><subfield code="w">(DE-600)1178791-0</subfield><subfield code="w">(DE-576)038875101</subfield><subfield code="x">0944-1344</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:4</subfield><subfield code="g">day:19</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:3013-3022</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11356-014-3536-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_183</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2014</subfield><subfield code="e">4</subfield><subfield code="b">19</subfield><subfield code="c">09</subfield><subfield code="h">3013-3022</subfield></datafield></record></collection>
|
score |
7.39989 |