Degradation of the cyanotoxin microcystin-LR using iron-based photocatalysts under visible light illumination
Abstract In this study, a simple and low-cost method to synthesize iron(III) oxide nanopowders in large quantity was successfully developed for the photocatalytic degradation of microcystin-LR (MC-LR). Two visible light-active iron(III) oxide samples (MG-9 calcined at 200 °C for 5 h and MG-11 calcin...
Ausführliche Beschreibung
Autor*in: |
Han, Changseok [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag GmbH Germany 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: Environmental science and pollution research - Springer Berlin Heidelberg, 1994, 24(2017), 23 vom: 04. Juli, Seite 19435-19443 |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2017 ; number:23 ; day:04 ; month:07 ; pages:19435-19443 |
Links: |
---|
DOI / URN: |
10.1007/s11356-017-9566-4 |
---|
Katalog-ID: |
OLC2040495592 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2040495592 | ||
003 | DE-627 | ||
005 | 20230606194940.0 | ||
007 | tu | ||
008 | 200820s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11356-017-9566-4 |2 doi | |
035 | |a (DE-627)OLC2040495592 | ||
035 | |a (DE-He213)s11356-017-9566-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |a 360 |a 333.7 |q VZ |
082 | 0 | 4 | |a 690 |a 333.7 |a 540 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
100 | 1 | |a Han, Changseok |e verfasserin |4 aut | |
245 | 1 | 0 | |a Degradation of the cyanotoxin microcystin-LR using iron-based photocatalysts under visible light illumination |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag GmbH Germany 2017 | ||
520 | |a Abstract In this study, a simple and low-cost method to synthesize iron(III) oxide nanopowders in large quantity was successfully developed for the photocatalytic degradation of microcystin-LR (MC-LR). Two visible light-active iron(III) oxide samples (MG-9 calcined at 200 °C for 5 h and MG-11 calcined at 180 °C for 16 h) with a particle size of 5–20 nm were prepared via thermal decomposition of ferrous oxalate dihydrate in air without any other modifications such as doping. The synthesized samples were characterized by X-ray powder diffraction, 57Fe Mössbauer spectroscopy, transmission electron microscopy, Brunauer–Emmett–Teller (BET) specific surface area analysis, and UV–visible diffuse reflectance spectroscopy. The samples exhibited similar phase composition (a mixture of α-$ Fe_{2} $$ O_{3} $ and γ-$ Fe_{2} $$ O_{3} $), particle size distribution (5–20 nm), particle morphology, and degree of agglomeration, but different specific surface areas (234 $ m^{2} $ $ g^{−1} $ for MG-9 and 207 $ m^{2} $ $ g^{−1} $ for MG-11). The results confirmed higher photocatalytic activity of the catalyst with higher specific surface area. The highest photocatalytic activity of the sample to decompose MC-LR was observed at solution pH of 3.0 and catalyst loading of 0.5 g $ L^{−1} $ due to large amount of MC-LR adsorption, but a little iron dissolution of 0.0065 wt% was observed. However, no iron leaching was observed at pH 5.8 even though the overall MC-LR removal was slightly lower than at pH 3.0. Thus, the pH 5.8 could be an appropriate operating condition for the catalyst to avoid problems of iron contamination by the catalyst. Moreover, magnetic behavior of γ-$ Fe_{2} $$ O_{3} $ gives a possibility for an easy separation of the catalyst particles after their use. | ||
650 | 4 | |a Microcystin | |
650 | 4 | |a Mössbauer spectroscopy | |
650 | 4 | |a Photocatalysis | |
650 | 4 | |a Iron oxide | |
650 | 4 | |a Water treatment | |
700 | 1 | |a Machala, Libor |4 aut | |
700 | 1 | |a Medrik, Ivo |4 aut | |
700 | 1 | |a Prucek, Robert |4 aut | |
700 | 1 | |a Kralchevska, Radina P. |4 aut | |
700 | 1 | |a Dionysiou, Dionysios D. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Environmental science and pollution research |d Springer Berlin Heidelberg, 1994 |g 24(2017), 23 vom: 04. Juli, Seite 19435-19443 |w (DE-627)171335805 |w (DE-600)1178791-0 |w (DE-576)038875101 |x 0944-1344 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2017 |g number:23 |g day:04 |g month:07 |g pages:19435-19443 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11356-017-9566-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-ARC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-FOR | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_252 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4219 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 24 |j 2017 |e 23 |b 04 |c 07 |h 19435-19443 |
author_variant |
c h ch l m lm i m im r p rp r p k rp rpk d d d dd ddd |
---|---|
matchkey_str |
article:09441344:2017----::erdtooteyntxnircsiluigrnaepooaaytudr |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1007/s11356-017-9566-4 doi (DE-627)OLC2040495592 (DE-He213)s11356-017-9566-4-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Han, Changseok verfasserin aut Degradation of the cyanotoxin microcystin-LR using iron-based photocatalysts under visible light illumination 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany 2017 Abstract In this study, a simple and low-cost method to synthesize iron(III) oxide nanopowders in large quantity was successfully developed for the photocatalytic degradation of microcystin-LR (MC-LR). Two visible light-active iron(III) oxide samples (MG-9 calcined at 200 °C for 5 h and MG-11 calcined at 180 °C for 16 h) with a particle size of 5–20 nm were prepared via thermal decomposition of ferrous oxalate dihydrate in air without any other modifications such as doping. The synthesized samples were characterized by X-ray powder diffraction, 57Fe Mössbauer spectroscopy, transmission electron microscopy, Brunauer–Emmett–Teller (BET) specific surface area analysis, and UV–visible diffuse reflectance spectroscopy. The samples exhibited similar phase composition (a mixture of α-$ Fe_{2} $$ O_{3} $ and γ-$ Fe_{2} $$ O_{3} $), particle size distribution (5–20 nm), particle morphology, and degree of agglomeration, but different specific surface areas (234 $ m^{2} $ $ g^{−1} $ for MG-9 and 207 $ m^{2} $ $ g^{−1} $ for MG-11). The results confirmed higher photocatalytic activity of the catalyst with higher specific surface area. The highest photocatalytic activity of the sample to decompose MC-LR was observed at solution pH of 3.0 and catalyst loading of 0.5 g $ L^{−1} $ due to large amount of MC-LR adsorption, but a little iron dissolution of 0.0065 wt% was observed. However, no iron leaching was observed at pH 5.8 even though the overall MC-LR removal was slightly lower than at pH 3.0. Thus, the pH 5.8 could be an appropriate operating condition for the catalyst to avoid problems of iron contamination by the catalyst. Moreover, magnetic behavior of γ-$ Fe_{2} $$ O_{3} $ gives a possibility for an easy separation of the catalyst particles after their use. Microcystin Mössbauer spectroscopy Photocatalysis Iron oxide Water treatment Machala, Libor aut Medrik, Ivo aut Prucek, Robert aut Kralchevska, Radina P. aut Dionysiou, Dionysios D. aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 24(2017), 23 vom: 04. Juli, Seite 19435-19443 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:24 year:2017 number:23 day:04 month:07 pages:19435-19443 https://doi.org/10.1007/s11356-017-9566-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4219 GBV_ILN_4277 AR 24 2017 23 04 07 19435-19443 |
spelling |
10.1007/s11356-017-9566-4 doi (DE-627)OLC2040495592 (DE-He213)s11356-017-9566-4-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Han, Changseok verfasserin aut Degradation of the cyanotoxin microcystin-LR using iron-based photocatalysts under visible light illumination 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany 2017 Abstract In this study, a simple and low-cost method to synthesize iron(III) oxide nanopowders in large quantity was successfully developed for the photocatalytic degradation of microcystin-LR (MC-LR). Two visible light-active iron(III) oxide samples (MG-9 calcined at 200 °C for 5 h and MG-11 calcined at 180 °C for 16 h) with a particle size of 5–20 nm were prepared via thermal decomposition of ferrous oxalate dihydrate in air without any other modifications such as doping. The synthesized samples were characterized by X-ray powder diffraction, 57Fe Mössbauer spectroscopy, transmission electron microscopy, Brunauer–Emmett–Teller (BET) specific surface area analysis, and UV–visible diffuse reflectance spectroscopy. The samples exhibited similar phase composition (a mixture of α-$ Fe_{2} $$ O_{3} $ and γ-$ Fe_{2} $$ O_{3} $), particle size distribution (5–20 nm), particle morphology, and degree of agglomeration, but different specific surface areas (234 $ m^{2} $ $ g^{−1} $ for MG-9 and 207 $ m^{2} $ $ g^{−1} $ for MG-11). The results confirmed higher photocatalytic activity of the catalyst with higher specific surface area. The highest photocatalytic activity of the sample to decompose MC-LR was observed at solution pH of 3.0 and catalyst loading of 0.5 g $ L^{−1} $ due to large amount of MC-LR adsorption, but a little iron dissolution of 0.0065 wt% was observed. However, no iron leaching was observed at pH 5.8 even though the overall MC-LR removal was slightly lower than at pH 3.0. Thus, the pH 5.8 could be an appropriate operating condition for the catalyst to avoid problems of iron contamination by the catalyst. Moreover, magnetic behavior of γ-$ Fe_{2} $$ O_{3} $ gives a possibility for an easy separation of the catalyst particles after their use. Microcystin Mössbauer spectroscopy Photocatalysis Iron oxide Water treatment Machala, Libor aut Medrik, Ivo aut Prucek, Robert aut Kralchevska, Radina P. aut Dionysiou, Dionysios D. aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 24(2017), 23 vom: 04. Juli, Seite 19435-19443 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:24 year:2017 number:23 day:04 month:07 pages:19435-19443 https://doi.org/10.1007/s11356-017-9566-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4219 GBV_ILN_4277 AR 24 2017 23 04 07 19435-19443 |
allfields_unstemmed |
10.1007/s11356-017-9566-4 doi (DE-627)OLC2040495592 (DE-He213)s11356-017-9566-4-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Han, Changseok verfasserin aut Degradation of the cyanotoxin microcystin-LR using iron-based photocatalysts under visible light illumination 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany 2017 Abstract In this study, a simple and low-cost method to synthesize iron(III) oxide nanopowders in large quantity was successfully developed for the photocatalytic degradation of microcystin-LR (MC-LR). Two visible light-active iron(III) oxide samples (MG-9 calcined at 200 °C for 5 h and MG-11 calcined at 180 °C for 16 h) with a particle size of 5–20 nm were prepared via thermal decomposition of ferrous oxalate dihydrate in air without any other modifications such as doping. The synthesized samples were characterized by X-ray powder diffraction, 57Fe Mössbauer spectroscopy, transmission electron microscopy, Brunauer–Emmett–Teller (BET) specific surface area analysis, and UV–visible diffuse reflectance spectroscopy. The samples exhibited similar phase composition (a mixture of α-$ Fe_{2} $$ O_{3} $ and γ-$ Fe_{2} $$ O_{3} $), particle size distribution (5–20 nm), particle morphology, and degree of agglomeration, but different specific surface areas (234 $ m^{2} $ $ g^{−1} $ for MG-9 and 207 $ m^{2} $ $ g^{−1} $ for MG-11). The results confirmed higher photocatalytic activity of the catalyst with higher specific surface area. The highest photocatalytic activity of the sample to decompose MC-LR was observed at solution pH of 3.0 and catalyst loading of 0.5 g $ L^{−1} $ due to large amount of MC-LR adsorption, but a little iron dissolution of 0.0065 wt% was observed. However, no iron leaching was observed at pH 5.8 even though the overall MC-LR removal was slightly lower than at pH 3.0. Thus, the pH 5.8 could be an appropriate operating condition for the catalyst to avoid problems of iron contamination by the catalyst. Moreover, magnetic behavior of γ-$ Fe_{2} $$ O_{3} $ gives a possibility for an easy separation of the catalyst particles after their use. Microcystin Mössbauer spectroscopy Photocatalysis Iron oxide Water treatment Machala, Libor aut Medrik, Ivo aut Prucek, Robert aut Kralchevska, Radina P. aut Dionysiou, Dionysios D. aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 24(2017), 23 vom: 04. Juli, Seite 19435-19443 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:24 year:2017 number:23 day:04 month:07 pages:19435-19443 https://doi.org/10.1007/s11356-017-9566-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4219 GBV_ILN_4277 AR 24 2017 23 04 07 19435-19443 |
allfieldsGer |
10.1007/s11356-017-9566-4 doi (DE-627)OLC2040495592 (DE-He213)s11356-017-9566-4-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Han, Changseok verfasserin aut Degradation of the cyanotoxin microcystin-LR using iron-based photocatalysts under visible light illumination 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany 2017 Abstract In this study, a simple and low-cost method to synthesize iron(III) oxide nanopowders in large quantity was successfully developed for the photocatalytic degradation of microcystin-LR (MC-LR). Two visible light-active iron(III) oxide samples (MG-9 calcined at 200 °C for 5 h and MG-11 calcined at 180 °C for 16 h) with a particle size of 5–20 nm were prepared via thermal decomposition of ferrous oxalate dihydrate in air without any other modifications such as doping. The synthesized samples were characterized by X-ray powder diffraction, 57Fe Mössbauer spectroscopy, transmission electron microscopy, Brunauer–Emmett–Teller (BET) specific surface area analysis, and UV–visible diffuse reflectance spectroscopy. The samples exhibited similar phase composition (a mixture of α-$ Fe_{2} $$ O_{3} $ and γ-$ Fe_{2} $$ O_{3} $), particle size distribution (5–20 nm), particle morphology, and degree of agglomeration, but different specific surface areas (234 $ m^{2} $ $ g^{−1} $ for MG-9 and 207 $ m^{2} $ $ g^{−1} $ for MG-11). The results confirmed higher photocatalytic activity of the catalyst with higher specific surface area. The highest photocatalytic activity of the sample to decompose MC-LR was observed at solution pH of 3.0 and catalyst loading of 0.5 g $ L^{−1} $ due to large amount of MC-LR adsorption, but a little iron dissolution of 0.0065 wt% was observed. However, no iron leaching was observed at pH 5.8 even though the overall MC-LR removal was slightly lower than at pH 3.0. Thus, the pH 5.8 could be an appropriate operating condition for the catalyst to avoid problems of iron contamination by the catalyst. Moreover, magnetic behavior of γ-$ Fe_{2} $$ O_{3} $ gives a possibility for an easy separation of the catalyst particles after their use. Microcystin Mössbauer spectroscopy Photocatalysis Iron oxide Water treatment Machala, Libor aut Medrik, Ivo aut Prucek, Robert aut Kralchevska, Radina P. aut Dionysiou, Dionysios D. aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 24(2017), 23 vom: 04. Juli, Seite 19435-19443 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:24 year:2017 number:23 day:04 month:07 pages:19435-19443 https://doi.org/10.1007/s11356-017-9566-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4219 GBV_ILN_4277 AR 24 2017 23 04 07 19435-19443 |
allfieldsSound |
10.1007/s11356-017-9566-4 doi (DE-627)OLC2040495592 (DE-He213)s11356-017-9566-4-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Han, Changseok verfasserin aut Degradation of the cyanotoxin microcystin-LR using iron-based photocatalysts under visible light illumination 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany 2017 Abstract In this study, a simple and low-cost method to synthesize iron(III) oxide nanopowders in large quantity was successfully developed for the photocatalytic degradation of microcystin-LR (MC-LR). Two visible light-active iron(III) oxide samples (MG-9 calcined at 200 °C for 5 h and MG-11 calcined at 180 °C for 16 h) with a particle size of 5–20 nm were prepared via thermal decomposition of ferrous oxalate dihydrate in air without any other modifications such as doping. The synthesized samples were characterized by X-ray powder diffraction, 57Fe Mössbauer spectroscopy, transmission electron microscopy, Brunauer–Emmett–Teller (BET) specific surface area analysis, and UV–visible diffuse reflectance spectroscopy. The samples exhibited similar phase composition (a mixture of α-$ Fe_{2} $$ O_{3} $ and γ-$ Fe_{2} $$ O_{3} $), particle size distribution (5–20 nm), particle morphology, and degree of agglomeration, but different specific surface areas (234 $ m^{2} $ $ g^{−1} $ for MG-9 and 207 $ m^{2} $ $ g^{−1} $ for MG-11). The results confirmed higher photocatalytic activity of the catalyst with higher specific surface area. The highest photocatalytic activity of the sample to decompose MC-LR was observed at solution pH of 3.0 and catalyst loading of 0.5 g $ L^{−1} $ due to large amount of MC-LR adsorption, but a little iron dissolution of 0.0065 wt% was observed. However, no iron leaching was observed at pH 5.8 even though the overall MC-LR removal was slightly lower than at pH 3.0. Thus, the pH 5.8 could be an appropriate operating condition for the catalyst to avoid problems of iron contamination by the catalyst. Moreover, magnetic behavior of γ-$ Fe_{2} $$ O_{3} $ gives a possibility for an easy separation of the catalyst particles after their use. Microcystin Mössbauer spectroscopy Photocatalysis Iron oxide Water treatment Machala, Libor aut Medrik, Ivo aut Prucek, Robert aut Kralchevska, Radina P. aut Dionysiou, Dionysios D. aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 24(2017), 23 vom: 04. Juli, Seite 19435-19443 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:24 year:2017 number:23 day:04 month:07 pages:19435-19443 https://doi.org/10.1007/s11356-017-9566-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4219 GBV_ILN_4277 AR 24 2017 23 04 07 19435-19443 |
language |
English |
source |
Enthalten in Environmental science and pollution research 24(2017), 23 vom: 04. Juli, Seite 19435-19443 volume:24 year:2017 number:23 day:04 month:07 pages:19435-19443 |
sourceStr |
Enthalten in Environmental science and pollution research 24(2017), 23 vom: 04. Juli, Seite 19435-19443 volume:24 year:2017 number:23 day:04 month:07 pages:19435-19443 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Microcystin Mössbauer spectroscopy Photocatalysis Iron oxide Water treatment |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Environmental science and pollution research |
authorswithroles_txt_mv |
Han, Changseok @@aut@@ Machala, Libor @@aut@@ Medrik, Ivo @@aut@@ Prucek, Robert @@aut@@ Kralchevska, Radina P. @@aut@@ Dionysiou, Dionysios D. @@aut@@ |
publishDateDaySort_date |
2017-07-04T00:00:00Z |
hierarchy_top_id |
171335805 |
dewey-sort |
3570 |
id |
OLC2040495592 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2040495592</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230606194940.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11356-017-9566-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2040495592</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11356-017-9566-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">360</subfield><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="a">333.7</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Han, Changseok</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Degradation of the cyanotoxin microcystin-LR using iron-based photocatalysts under visible light illumination</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this study, a simple and low-cost method to synthesize iron(III) oxide nanopowders in large quantity was successfully developed for the photocatalytic degradation of microcystin-LR (MC-LR). Two visible light-active iron(III) oxide samples (MG-9 calcined at 200 °C for 5 h and MG-11 calcined at 180 °C for 16 h) with a particle size of 5–20 nm were prepared via thermal decomposition of ferrous oxalate dihydrate in air without any other modifications such as doping. The synthesized samples were characterized by X-ray powder diffraction, 57Fe Mössbauer spectroscopy, transmission electron microscopy, Brunauer–Emmett–Teller (BET) specific surface area analysis, and UV–visible diffuse reflectance spectroscopy. The samples exhibited similar phase composition (a mixture of α-$ Fe_{2} $$ O_{3} $ and γ-$ Fe_{2} $$ O_{3} $), particle size distribution (5–20 nm), particle morphology, and degree of agglomeration, but different specific surface areas (234 $ m^{2} $ $ g^{−1} $ for MG-9 and 207 $ m^{2} $ $ g^{−1} $ for MG-11). The results confirmed higher photocatalytic activity of the catalyst with higher specific surface area. The highest photocatalytic activity of the sample to decompose MC-LR was observed at solution pH of 3.0 and catalyst loading of 0.5 g $ L^{−1} $ due to large amount of MC-LR adsorption, but a little iron dissolution of 0.0065 wt% was observed. However, no iron leaching was observed at pH 5.8 even though the overall MC-LR removal was slightly lower than at pH 3.0. Thus, the pH 5.8 could be an appropriate operating condition for the catalyst to avoid problems of iron contamination by the catalyst. Moreover, magnetic behavior of γ-$ Fe_{2} $$ O_{3} $ gives a possibility for an easy separation of the catalyst particles after their use.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microcystin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mössbauer spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photocatalysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iron oxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water treatment</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Machala, Libor</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Medrik, Ivo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prucek, Robert</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kralchevska, Radina P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dionysiou, Dionysios D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Environmental science and pollution research</subfield><subfield code="d">Springer Berlin Heidelberg, 1994</subfield><subfield code="g">24(2017), 23 vom: 04. Juli, Seite 19435-19443</subfield><subfield code="w">(DE-627)171335805</subfield><subfield code="w">(DE-600)1178791-0</subfield><subfield code="w">(DE-576)038875101</subfield><subfield code="x">0944-1344</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:23</subfield><subfield code="g">day:04</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:19435-19443</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11356-017-9566-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2017</subfield><subfield code="e">23</subfield><subfield code="b">04</subfield><subfield code="c">07</subfield><subfield code="h">19435-19443</subfield></datafield></record></collection>
|
author |
Han, Changseok |
spellingShingle |
Han, Changseok ddc 570 ddc 690 fid BIODIV misc Microcystin misc Mössbauer spectroscopy misc Photocatalysis misc Iron oxide misc Water treatment Degradation of the cyanotoxin microcystin-LR using iron-based photocatalysts under visible light illumination |
authorStr |
Han, Changseok |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)171335805 |
format |
Article |
dewey-ones |
570 - Life sciences; biology 360 - Social problems & services; associations 333 - Economics of land & energy 690 - Buildings 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0944-1344 |
topic_title |
570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Degradation of the cyanotoxin microcystin-LR using iron-based photocatalysts under visible light illumination Microcystin Mössbauer spectroscopy Photocatalysis Iron oxide Water treatment |
topic |
ddc 570 ddc 690 fid BIODIV misc Microcystin misc Mössbauer spectroscopy misc Photocatalysis misc Iron oxide misc Water treatment |
topic_unstemmed |
ddc 570 ddc 690 fid BIODIV misc Microcystin misc Mössbauer spectroscopy misc Photocatalysis misc Iron oxide misc Water treatment |
topic_browse |
ddc 570 ddc 690 fid BIODIV misc Microcystin misc Mössbauer spectroscopy misc Photocatalysis misc Iron oxide misc Water treatment |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Environmental science and pollution research |
hierarchy_parent_id |
171335805 |
dewey-tens |
570 - Life sciences; biology 360 - Social problems & social services 330 - Economics 690 - Building & construction 540 - Chemistry |
hierarchy_top_title |
Environmental science and pollution research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 |
title |
Degradation of the cyanotoxin microcystin-LR using iron-based photocatalysts under visible light illumination |
ctrlnum |
(DE-627)OLC2040495592 (DE-He213)s11356-017-9566-4-p |
title_full |
Degradation of the cyanotoxin microcystin-LR using iron-based photocatalysts under visible light illumination |
author_sort |
Han, Changseok |
journal |
Environmental science and pollution research |
journalStr |
Environmental science and pollution research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 300 - Social sciences 600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
19435 |
author_browse |
Han, Changseok Machala, Libor Medrik, Ivo Prucek, Robert Kralchevska, Radina P. Dionysiou, Dionysios D. |
container_volume |
24 |
class |
570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid |
format_se |
Aufsätze |
author-letter |
Han, Changseok |
doi_str_mv |
10.1007/s11356-017-9566-4 |
dewey-full |
570 360 333.7 690 540 |
title_sort |
degradation of the cyanotoxin microcystin-lr using iron-based photocatalysts under visible light illumination |
title_auth |
Degradation of the cyanotoxin microcystin-LR using iron-based photocatalysts under visible light illumination |
abstract |
Abstract In this study, a simple and low-cost method to synthesize iron(III) oxide nanopowders in large quantity was successfully developed for the photocatalytic degradation of microcystin-LR (MC-LR). Two visible light-active iron(III) oxide samples (MG-9 calcined at 200 °C for 5 h and MG-11 calcined at 180 °C for 16 h) with a particle size of 5–20 nm were prepared via thermal decomposition of ferrous oxalate dihydrate in air without any other modifications such as doping. The synthesized samples were characterized by X-ray powder diffraction, 57Fe Mössbauer spectroscopy, transmission electron microscopy, Brunauer–Emmett–Teller (BET) specific surface area analysis, and UV–visible diffuse reflectance spectroscopy. The samples exhibited similar phase composition (a mixture of α-$ Fe_{2} $$ O_{3} $ and γ-$ Fe_{2} $$ O_{3} $), particle size distribution (5–20 nm), particle morphology, and degree of agglomeration, but different specific surface areas (234 $ m^{2} $ $ g^{−1} $ for MG-9 and 207 $ m^{2} $ $ g^{−1} $ for MG-11). The results confirmed higher photocatalytic activity of the catalyst with higher specific surface area. The highest photocatalytic activity of the sample to decompose MC-LR was observed at solution pH of 3.0 and catalyst loading of 0.5 g $ L^{−1} $ due to large amount of MC-LR adsorption, but a little iron dissolution of 0.0065 wt% was observed. However, no iron leaching was observed at pH 5.8 even though the overall MC-LR removal was slightly lower than at pH 3.0. Thus, the pH 5.8 could be an appropriate operating condition for the catalyst to avoid problems of iron contamination by the catalyst. Moreover, magnetic behavior of γ-$ Fe_{2} $$ O_{3} $ gives a possibility for an easy separation of the catalyst particles after their use. © Springer-Verlag GmbH Germany 2017 |
abstractGer |
Abstract In this study, a simple and low-cost method to synthesize iron(III) oxide nanopowders in large quantity was successfully developed for the photocatalytic degradation of microcystin-LR (MC-LR). Two visible light-active iron(III) oxide samples (MG-9 calcined at 200 °C for 5 h and MG-11 calcined at 180 °C for 16 h) with a particle size of 5–20 nm were prepared via thermal decomposition of ferrous oxalate dihydrate in air without any other modifications such as doping. The synthesized samples were characterized by X-ray powder diffraction, 57Fe Mössbauer spectroscopy, transmission electron microscopy, Brunauer–Emmett–Teller (BET) specific surface area analysis, and UV–visible diffuse reflectance spectroscopy. The samples exhibited similar phase composition (a mixture of α-$ Fe_{2} $$ O_{3} $ and γ-$ Fe_{2} $$ O_{3} $), particle size distribution (5–20 nm), particle morphology, and degree of agglomeration, but different specific surface areas (234 $ m^{2} $ $ g^{−1} $ for MG-9 and 207 $ m^{2} $ $ g^{−1} $ for MG-11). The results confirmed higher photocatalytic activity of the catalyst with higher specific surface area. The highest photocatalytic activity of the sample to decompose MC-LR was observed at solution pH of 3.0 and catalyst loading of 0.5 g $ L^{−1} $ due to large amount of MC-LR adsorption, but a little iron dissolution of 0.0065 wt% was observed. However, no iron leaching was observed at pH 5.8 even though the overall MC-LR removal was slightly lower than at pH 3.0. Thus, the pH 5.8 could be an appropriate operating condition for the catalyst to avoid problems of iron contamination by the catalyst. Moreover, magnetic behavior of γ-$ Fe_{2} $$ O_{3} $ gives a possibility for an easy separation of the catalyst particles after their use. © Springer-Verlag GmbH Germany 2017 |
abstract_unstemmed |
Abstract In this study, a simple and low-cost method to synthesize iron(III) oxide nanopowders in large quantity was successfully developed for the photocatalytic degradation of microcystin-LR (MC-LR). Two visible light-active iron(III) oxide samples (MG-9 calcined at 200 °C for 5 h and MG-11 calcined at 180 °C for 16 h) with a particle size of 5–20 nm were prepared via thermal decomposition of ferrous oxalate dihydrate in air without any other modifications such as doping. The synthesized samples were characterized by X-ray powder diffraction, 57Fe Mössbauer spectroscopy, transmission electron microscopy, Brunauer–Emmett–Teller (BET) specific surface area analysis, and UV–visible diffuse reflectance spectroscopy. The samples exhibited similar phase composition (a mixture of α-$ Fe_{2} $$ O_{3} $ and γ-$ Fe_{2} $$ O_{3} $), particle size distribution (5–20 nm), particle morphology, and degree of agglomeration, but different specific surface areas (234 $ m^{2} $ $ g^{−1} $ for MG-9 and 207 $ m^{2} $ $ g^{−1} $ for MG-11). The results confirmed higher photocatalytic activity of the catalyst with higher specific surface area. The highest photocatalytic activity of the sample to decompose MC-LR was observed at solution pH of 3.0 and catalyst loading of 0.5 g $ L^{−1} $ due to large amount of MC-LR adsorption, but a little iron dissolution of 0.0065 wt% was observed. However, no iron leaching was observed at pH 5.8 even though the overall MC-LR removal was slightly lower than at pH 3.0. Thus, the pH 5.8 could be an appropriate operating condition for the catalyst to avoid problems of iron contamination by the catalyst. Moreover, magnetic behavior of γ-$ Fe_{2} $$ O_{3} $ gives a possibility for an easy separation of the catalyst particles after their use. © Springer-Verlag GmbH Germany 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4219 GBV_ILN_4277 |
container_issue |
23 |
title_short |
Degradation of the cyanotoxin microcystin-LR using iron-based photocatalysts under visible light illumination |
url |
https://doi.org/10.1007/s11356-017-9566-4 |
remote_bool |
false |
author2 |
Machala, Libor Medrik, Ivo Prucek, Robert Kralchevska, Radina P. Dionysiou, Dionysios D. |
author2Str |
Machala, Libor Medrik, Ivo Prucek, Robert Kralchevska, Radina P. Dionysiou, Dionysios D. |
ppnlink |
171335805 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11356-017-9566-4 |
up_date |
2024-07-04T02:25:26.261Z |
_version_ |
1803613557240102912 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2040495592</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230606194940.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11356-017-9566-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2040495592</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11356-017-9566-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">360</subfield><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="a">333.7</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Han, Changseok</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Degradation of the cyanotoxin microcystin-LR using iron-based photocatalysts under visible light illumination</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this study, a simple and low-cost method to synthesize iron(III) oxide nanopowders in large quantity was successfully developed for the photocatalytic degradation of microcystin-LR (MC-LR). Two visible light-active iron(III) oxide samples (MG-9 calcined at 200 °C for 5 h and MG-11 calcined at 180 °C for 16 h) with a particle size of 5–20 nm were prepared via thermal decomposition of ferrous oxalate dihydrate in air without any other modifications such as doping. The synthesized samples were characterized by X-ray powder diffraction, 57Fe Mössbauer spectroscopy, transmission electron microscopy, Brunauer–Emmett–Teller (BET) specific surface area analysis, and UV–visible diffuse reflectance spectroscopy. The samples exhibited similar phase composition (a mixture of α-$ Fe_{2} $$ O_{3} $ and γ-$ Fe_{2} $$ O_{3} $), particle size distribution (5–20 nm), particle morphology, and degree of agglomeration, but different specific surface areas (234 $ m^{2} $ $ g^{−1} $ for MG-9 and 207 $ m^{2} $ $ g^{−1} $ for MG-11). The results confirmed higher photocatalytic activity of the catalyst with higher specific surface area. The highest photocatalytic activity of the sample to decompose MC-LR was observed at solution pH of 3.0 and catalyst loading of 0.5 g $ L^{−1} $ due to large amount of MC-LR adsorption, but a little iron dissolution of 0.0065 wt% was observed. However, no iron leaching was observed at pH 5.8 even though the overall MC-LR removal was slightly lower than at pH 3.0. Thus, the pH 5.8 could be an appropriate operating condition for the catalyst to avoid problems of iron contamination by the catalyst. Moreover, magnetic behavior of γ-$ Fe_{2} $$ O_{3} $ gives a possibility for an easy separation of the catalyst particles after their use.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microcystin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mössbauer spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photocatalysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iron oxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water treatment</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Machala, Libor</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Medrik, Ivo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prucek, Robert</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kralchevska, Radina P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dionysiou, Dionysios D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Environmental science and pollution research</subfield><subfield code="d">Springer Berlin Heidelberg, 1994</subfield><subfield code="g">24(2017), 23 vom: 04. Juli, Seite 19435-19443</subfield><subfield code="w">(DE-627)171335805</subfield><subfield code="w">(DE-600)1178791-0</subfield><subfield code="w">(DE-576)038875101</subfield><subfield code="x">0944-1344</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:23</subfield><subfield code="g">day:04</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:19435-19443</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11356-017-9566-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2017</subfield><subfield code="e">23</subfield><subfield code="b">04</subfield><subfield code="c">07</subfield><subfield code="h">19435-19443</subfield></datafield></record></collection>
|
score |
7.402236 |