Study of different environmental matrices to access the extension of metal contamination along highways
Abstract Metals are indicators of contamination by anthropic activities, such as road traffic. To assess the extent of the metal contamination, more comprehensive studies analyzing different environmental matrices, such as soils, dust, and plants, collected in different sites that are potential sour...
Ausführliche Beschreibung
Autor*in: |
Zanello, Sônia [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag GmbH Germany, part of Springer Nature 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: Environmental science and pollution research - Springer Berlin Heidelberg, 1994, 25(2017), 6 vom: 13. Dez., Seite 5969-5979 |
---|---|
Übergeordnetes Werk: |
volume:25 ; year:2017 ; number:6 ; day:13 ; month:12 ; pages:5969-5979 |
Links: |
---|
DOI / URN: |
10.1007/s11356-017-0908-z |
---|
Katalog-ID: |
OLC2040508392 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2040508392 | ||
003 | DE-627 | ||
005 | 20230606194959.0 | ||
007 | tu | ||
008 | 200820s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11356-017-0908-z |2 doi | |
035 | |a (DE-627)OLC2040508392 | ||
035 | |a (DE-He213)s11356-017-0908-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |a 360 |a 333.7 |q VZ |
082 | 0 | 4 | |a 690 |a 333.7 |a 540 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
100 | 1 | |a Zanello, Sônia |e verfasserin |4 aut | |
245 | 1 | 0 | |a Study of different environmental matrices to access the extension of metal contamination along highways |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag GmbH Germany, part of Springer Nature 2017 | ||
520 | |a Abstract Metals are indicators of contamination by anthropic activities, such as road traffic. To assess the extent of the metal contamination, more comprehensive studies analyzing different environmental matrices, such as soils, dust, and plants, collected in different sites that are potential sources of these pollutants along the highways, must be prioritized. Samples of soils, dust, and plants were collected alongside the highways of Brazil at 20 sites selected in strategic locations of metal accumulation (Cr, Pb, Zn, As, and Sb) or different situations of the high ways during two rain conditions (wet and dry weeks of sampling): nearby gutters and water supplies, tolls, petrol stations, a federal road police station, and areas associated with agriculture (yearly culture planting upstream of the highway). The geoaccumulation index (metal concentration in the sample of interest/background) varied from 0 to 6, and the decreasing order of contamination by metals during the wet and dry periods were, respectively: Zn > As > Pb = Sb > Cr and Zn > As > Pb > Cr > Sb. In the soils near the highways, the highest concentrations of metals were as follows (mg $ kg^{−1} $): As = 15.6, Cr = 81.9, Pb = 39.7, Sb = 5.0, and Zn = 379.3. The highest amounts of these elements in the most superficial layer in soils indicated their addition through atmospheric emissions. The most prominent metal was Sb, whose concentration was greater than the quality limits for soils. The concentration of Sb in soils was higher in the wet week than in the dry week. The emissions from road traffic promoted the increase in metals in the dust on the track, especially Zn and Pb. The highest metal concentrations in grasses (Brachiaria) were found in the roots, except for Sb and Zn, which suggests leaf absorption of atmospheric deposition. Metal contamination was widespread in all studied matrices along the highways. | ||
650 | 4 | |a Road traffic | |
650 | 4 | |a Anthropic soils | |
650 | 4 | |a Soil contamination | |
650 | 4 | |a Dust contamination | |
650 | 4 | |a Geoaccumulation index | |
700 | 1 | |a Melo, Vander Freitas |4 aut | |
700 | 1 | |a Nagata, Noemi |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Environmental science and pollution research |d Springer Berlin Heidelberg, 1994 |g 25(2017), 6 vom: 13. Dez., Seite 5969-5979 |w (DE-627)171335805 |w (DE-600)1178791-0 |w (DE-576)038875101 |x 0944-1344 |7 nnns |
773 | 1 | 8 | |g volume:25 |g year:2017 |g number:6 |g day:13 |g month:12 |g pages:5969-5979 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11356-017-0908-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-ARC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-FOR | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_252 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4219 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 25 |j 2017 |e 6 |b 13 |c 12 |h 5969-5979 |
author_variant |
s z sz v f m vf vfm n n nn |
---|---|
matchkey_str |
article:09441344:2017----::tdodfeetniomnamtietacstexesoomtlo |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1007/s11356-017-0908-z doi (DE-627)OLC2040508392 (DE-He213)s11356-017-0908-z-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Zanello, Sônia verfasserin aut Study of different environmental matrices to access the extension of metal contamination along highways 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2017 Abstract Metals are indicators of contamination by anthropic activities, such as road traffic. To assess the extent of the metal contamination, more comprehensive studies analyzing different environmental matrices, such as soils, dust, and plants, collected in different sites that are potential sources of these pollutants along the highways, must be prioritized. Samples of soils, dust, and plants were collected alongside the highways of Brazil at 20 sites selected in strategic locations of metal accumulation (Cr, Pb, Zn, As, and Sb) or different situations of the high ways during two rain conditions (wet and dry weeks of sampling): nearby gutters and water supplies, tolls, petrol stations, a federal road police station, and areas associated with agriculture (yearly culture planting upstream of the highway). The geoaccumulation index (metal concentration in the sample of interest/background) varied from 0 to 6, and the decreasing order of contamination by metals during the wet and dry periods were, respectively: Zn > As > Pb = Sb > Cr and Zn > As > Pb > Cr > Sb. In the soils near the highways, the highest concentrations of metals were as follows (mg $ kg^{−1} $): As = 15.6, Cr = 81.9, Pb = 39.7, Sb = 5.0, and Zn = 379.3. The highest amounts of these elements in the most superficial layer in soils indicated their addition through atmospheric emissions. The most prominent metal was Sb, whose concentration was greater than the quality limits for soils. The concentration of Sb in soils was higher in the wet week than in the dry week. The emissions from road traffic promoted the increase in metals in the dust on the track, especially Zn and Pb. The highest metal concentrations in grasses (Brachiaria) were found in the roots, except for Sb and Zn, which suggests leaf absorption of atmospheric deposition. Metal contamination was widespread in all studied matrices along the highways. Road traffic Anthropic soils Soil contamination Dust contamination Geoaccumulation index Melo, Vander Freitas aut Nagata, Noemi aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 25(2017), 6 vom: 13. Dez., Seite 5969-5979 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:25 year:2017 number:6 day:13 month:12 pages:5969-5979 https://doi.org/10.1007/s11356-017-0908-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4219 GBV_ILN_4277 AR 25 2017 6 13 12 5969-5979 |
spelling |
10.1007/s11356-017-0908-z doi (DE-627)OLC2040508392 (DE-He213)s11356-017-0908-z-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Zanello, Sônia verfasserin aut Study of different environmental matrices to access the extension of metal contamination along highways 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2017 Abstract Metals are indicators of contamination by anthropic activities, such as road traffic. To assess the extent of the metal contamination, more comprehensive studies analyzing different environmental matrices, such as soils, dust, and plants, collected in different sites that are potential sources of these pollutants along the highways, must be prioritized. Samples of soils, dust, and plants were collected alongside the highways of Brazil at 20 sites selected in strategic locations of metal accumulation (Cr, Pb, Zn, As, and Sb) or different situations of the high ways during two rain conditions (wet and dry weeks of sampling): nearby gutters and water supplies, tolls, petrol stations, a federal road police station, and areas associated with agriculture (yearly culture planting upstream of the highway). The geoaccumulation index (metal concentration in the sample of interest/background) varied from 0 to 6, and the decreasing order of contamination by metals during the wet and dry periods were, respectively: Zn > As > Pb = Sb > Cr and Zn > As > Pb > Cr > Sb. In the soils near the highways, the highest concentrations of metals were as follows (mg $ kg^{−1} $): As = 15.6, Cr = 81.9, Pb = 39.7, Sb = 5.0, and Zn = 379.3. The highest amounts of these elements in the most superficial layer in soils indicated their addition through atmospheric emissions. The most prominent metal was Sb, whose concentration was greater than the quality limits for soils. The concentration of Sb in soils was higher in the wet week than in the dry week. The emissions from road traffic promoted the increase in metals in the dust on the track, especially Zn and Pb. The highest metal concentrations in grasses (Brachiaria) were found in the roots, except for Sb and Zn, which suggests leaf absorption of atmospheric deposition. Metal contamination was widespread in all studied matrices along the highways. Road traffic Anthropic soils Soil contamination Dust contamination Geoaccumulation index Melo, Vander Freitas aut Nagata, Noemi aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 25(2017), 6 vom: 13. Dez., Seite 5969-5979 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:25 year:2017 number:6 day:13 month:12 pages:5969-5979 https://doi.org/10.1007/s11356-017-0908-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4219 GBV_ILN_4277 AR 25 2017 6 13 12 5969-5979 |
allfields_unstemmed |
10.1007/s11356-017-0908-z doi (DE-627)OLC2040508392 (DE-He213)s11356-017-0908-z-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Zanello, Sônia verfasserin aut Study of different environmental matrices to access the extension of metal contamination along highways 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2017 Abstract Metals are indicators of contamination by anthropic activities, such as road traffic. To assess the extent of the metal contamination, more comprehensive studies analyzing different environmental matrices, such as soils, dust, and plants, collected in different sites that are potential sources of these pollutants along the highways, must be prioritized. Samples of soils, dust, and plants were collected alongside the highways of Brazil at 20 sites selected in strategic locations of metal accumulation (Cr, Pb, Zn, As, and Sb) or different situations of the high ways during two rain conditions (wet and dry weeks of sampling): nearby gutters and water supplies, tolls, petrol stations, a federal road police station, and areas associated with agriculture (yearly culture planting upstream of the highway). The geoaccumulation index (metal concentration in the sample of interest/background) varied from 0 to 6, and the decreasing order of contamination by metals during the wet and dry periods were, respectively: Zn > As > Pb = Sb > Cr and Zn > As > Pb > Cr > Sb. In the soils near the highways, the highest concentrations of metals were as follows (mg $ kg^{−1} $): As = 15.6, Cr = 81.9, Pb = 39.7, Sb = 5.0, and Zn = 379.3. The highest amounts of these elements in the most superficial layer in soils indicated their addition through atmospheric emissions. The most prominent metal was Sb, whose concentration was greater than the quality limits for soils. The concentration of Sb in soils was higher in the wet week than in the dry week. The emissions from road traffic promoted the increase in metals in the dust on the track, especially Zn and Pb. The highest metal concentrations in grasses (Brachiaria) were found in the roots, except for Sb and Zn, which suggests leaf absorption of atmospheric deposition. Metal contamination was widespread in all studied matrices along the highways. Road traffic Anthropic soils Soil contamination Dust contamination Geoaccumulation index Melo, Vander Freitas aut Nagata, Noemi aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 25(2017), 6 vom: 13. Dez., Seite 5969-5979 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:25 year:2017 number:6 day:13 month:12 pages:5969-5979 https://doi.org/10.1007/s11356-017-0908-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4219 GBV_ILN_4277 AR 25 2017 6 13 12 5969-5979 |
allfieldsGer |
10.1007/s11356-017-0908-z doi (DE-627)OLC2040508392 (DE-He213)s11356-017-0908-z-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Zanello, Sônia verfasserin aut Study of different environmental matrices to access the extension of metal contamination along highways 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2017 Abstract Metals are indicators of contamination by anthropic activities, such as road traffic. To assess the extent of the metal contamination, more comprehensive studies analyzing different environmental matrices, such as soils, dust, and plants, collected in different sites that are potential sources of these pollutants along the highways, must be prioritized. Samples of soils, dust, and plants were collected alongside the highways of Brazil at 20 sites selected in strategic locations of metal accumulation (Cr, Pb, Zn, As, and Sb) or different situations of the high ways during two rain conditions (wet and dry weeks of sampling): nearby gutters and water supplies, tolls, petrol stations, a federal road police station, and areas associated with agriculture (yearly culture planting upstream of the highway). The geoaccumulation index (metal concentration in the sample of interest/background) varied from 0 to 6, and the decreasing order of contamination by metals during the wet and dry periods were, respectively: Zn > As > Pb = Sb > Cr and Zn > As > Pb > Cr > Sb. In the soils near the highways, the highest concentrations of metals were as follows (mg $ kg^{−1} $): As = 15.6, Cr = 81.9, Pb = 39.7, Sb = 5.0, and Zn = 379.3. The highest amounts of these elements in the most superficial layer in soils indicated their addition through atmospheric emissions. The most prominent metal was Sb, whose concentration was greater than the quality limits for soils. The concentration of Sb in soils was higher in the wet week than in the dry week. The emissions from road traffic promoted the increase in metals in the dust on the track, especially Zn and Pb. The highest metal concentrations in grasses (Brachiaria) were found in the roots, except for Sb and Zn, which suggests leaf absorption of atmospheric deposition. Metal contamination was widespread in all studied matrices along the highways. Road traffic Anthropic soils Soil contamination Dust contamination Geoaccumulation index Melo, Vander Freitas aut Nagata, Noemi aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 25(2017), 6 vom: 13. Dez., Seite 5969-5979 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:25 year:2017 number:6 day:13 month:12 pages:5969-5979 https://doi.org/10.1007/s11356-017-0908-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4219 GBV_ILN_4277 AR 25 2017 6 13 12 5969-5979 |
allfieldsSound |
10.1007/s11356-017-0908-z doi (DE-627)OLC2040508392 (DE-He213)s11356-017-0908-z-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Zanello, Sônia verfasserin aut Study of different environmental matrices to access the extension of metal contamination along highways 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2017 Abstract Metals are indicators of contamination by anthropic activities, such as road traffic. To assess the extent of the metal contamination, more comprehensive studies analyzing different environmental matrices, such as soils, dust, and plants, collected in different sites that are potential sources of these pollutants along the highways, must be prioritized. Samples of soils, dust, and plants were collected alongside the highways of Brazil at 20 sites selected in strategic locations of metal accumulation (Cr, Pb, Zn, As, and Sb) or different situations of the high ways during two rain conditions (wet and dry weeks of sampling): nearby gutters and water supplies, tolls, petrol stations, a federal road police station, and areas associated with agriculture (yearly culture planting upstream of the highway). The geoaccumulation index (metal concentration in the sample of interest/background) varied from 0 to 6, and the decreasing order of contamination by metals during the wet and dry periods were, respectively: Zn > As > Pb = Sb > Cr and Zn > As > Pb > Cr > Sb. In the soils near the highways, the highest concentrations of metals were as follows (mg $ kg^{−1} $): As = 15.6, Cr = 81.9, Pb = 39.7, Sb = 5.0, and Zn = 379.3. The highest amounts of these elements in the most superficial layer in soils indicated their addition through atmospheric emissions. The most prominent metal was Sb, whose concentration was greater than the quality limits for soils. The concentration of Sb in soils was higher in the wet week than in the dry week. The emissions from road traffic promoted the increase in metals in the dust on the track, especially Zn and Pb. The highest metal concentrations in grasses (Brachiaria) were found in the roots, except for Sb and Zn, which suggests leaf absorption of atmospheric deposition. Metal contamination was widespread in all studied matrices along the highways. Road traffic Anthropic soils Soil contamination Dust contamination Geoaccumulation index Melo, Vander Freitas aut Nagata, Noemi aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 25(2017), 6 vom: 13. Dez., Seite 5969-5979 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:25 year:2017 number:6 day:13 month:12 pages:5969-5979 https://doi.org/10.1007/s11356-017-0908-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4219 GBV_ILN_4277 AR 25 2017 6 13 12 5969-5979 |
language |
English |
source |
Enthalten in Environmental science and pollution research 25(2017), 6 vom: 13. Dez., Seite 5969-5979 volume:25 year:2017 number:6 day:13 month:12 pages:5969-5979 |
sourceStr |
Enthalten in Environmental science and pollution research 25(2017), 6 vom: 13. Dez., Seite 5969-5979 volume:25 year:2017 number:6 day:13 month:12 pages:5969-5979 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Road traffic Anthropic soils Soil contamination Dust contamination Geoaccumulation index |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Environmental science and pollution research |
authorswithroles_txt_mv |
Zanello, Sônia @@aut@@ Melo, Vander Freitas @@aut@@ Nagata, Noemi @@aut@@ |
publishDateDaySort_date |
2017-12-13T00:00:00Z |
hierarchy_top_id |
171335805 |
dewey-sort |
3570 |
id |
OLC2040508392 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2040508392</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230606194959.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11356-017-0908-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2040508392</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11356-017-0908-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">360</subfield><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="a">333.7</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zanello, Sônia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study of different environmental matrices to access the extension of metal contamination along highways</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Metals are indicators of contamination by anthropic activities, such as road traffic. To assess the extent of the metal contamination, more comprehensive studies analyzing different environmental matrices, such as soils, dust, and plants, collected in different sites that are potential sources of these pollutants along the highways, must be prioritized. Samples of soils, dust, and plants were collected alongside the highways of Brazil at 20 sites selected in strategic locations of metal accumulation (Cr, Pb, Zn, As, and Sb) or different situations of the high ways during two rain conditions (wet and dry weeks of sampling): nearby gutters and water supplies, tolls, petrol stations, a federal road police station, and areas associated with agriculture (yearly culture planting upstream of the highway). The geoaccumulation index (metal concentration in the sample of interest/background) varied from 0 to 6, and the decreasing order of contamination by metals during the wet and dry periods were, respectively: Zn > As > Pb = Sb > Cr and Zn > As > Pb > Cr > Sb. In the soils near the highways, the highest concentrations of metals were as follows (mg $ kg^{−1} $): As = 15.6, Cr = 81.9, Pb = 39.7, Sb = 5.0, and Zn = 379.3. The highest amounts of these elements in the most superficial layer in soils indicated their addition through atmospheric emissions. The most prominent metal was Sb, whose concentration was greater than the quality limits for soils. The concentration of Sb in soils was higher in the wet week than in the dry week. The emissions from road traffic promoted the increase in metals in the dust on the track, especially Zn and Pb. The highest metal concentrations in grasses (Brachiaria) were found in the roots, except for Sb and Zn, which suggests leaf absorption of atmospheric deposition. Metal contamination was widespread in all studied matrices along the highways.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Road traffic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anthropic soils</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil contamination</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dust contamination</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geoaccumulation index</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Melo, Vander Freitas</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nagata, Noemi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Environmental science and pollution research</subfield><subfield code="d">Springer Berlin Heidelberg, 1994</subfield><subfield code="g">25(2017), 6 vom: 13. Dez., Seite 5969-5979</subfield><subfield code="w">(DE-627)171335805</subfield><subfield code="w">(DE-600)1178791-0</subfield><subfield code="w">(DE-576)038875101</subfield><subfield code="x">0944-1344</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:6</subfield><subfield code="g">day:13</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:5969-5979</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11356-017-0908-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2017</subfield><subfield code="e">6</subfield><subfield code="b">13</subfield><subfield code="c">12</subfield><subfield code="h">5969-5979</subfield></datafield></record></collection>
|
author |
Zanello, Sônia |
spellingShingle |
Zanello, Sônia ddc 570 ddc 690 fid BIODIV misc Road traffic misc Anthropic soils misc Soil contamination misc Dust contamination misc Geoaccumulation index Study of different environmental matrices to access the extension of metal contamination along highways |
authorStr |
Zanello, Sônia |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)171335805 |
format |
Article |
dewey-ones |
570 - Life sciences; biology 360 - Social problems & services; associations 333 - Economics of land & energy 690 - Buildings 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0944-1344 |
topic_title |
570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Study of different environmental matrices to access the extension of metal contamination along highways Road traffic Anthropic soils Soil contamination Dust contamination Geoaccumulation index |
topic |
ddc 570 ddc 690 fid BIODIV misc Road traffic misc Anthropic soils misc Soil contamination misc Dust contamination misc Geoaccumulation index |
topic_unstemmed |
ddc 570 ddc 690 fid BIODIV misc Road traffic misc Anthropic soils misc Soil contamination misc Dust contamination misc Geoaccumulation index |
topic_browse |
ddc 570 ddc 690 fid BIODIV misc Road traffic misc Anthropic soils misc Soil contamination misc Dust contamination misc Geoaccumulation index |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Environmental science and pollution research |
hierarchy_parent_id |
171335805 |
dewey-tens |
570 - Life sciences; biology 360 - Social problems & social services 330 - Economics 690 - Building & construction 540 - Chemistry |
hierarchy_top_title |
Environmental science and pollution research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 |
title |
Study of different environmental matrices to access the extension of metal contamination along highways |
ctrlnum |
(DE-627)OLC2040508392 (DE-He213)s11356-017-0908-z-p |
title_full |
Study of different environmental matrices to access the extension of metal contamination along highways |
author_sort |
Zanello, Sônia |
journal |
Environmental science and pollution research |
journalStr |
Environmental science and pollution research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 300 - Social sciences 600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
5969 |
author_browse |
Zanello, Sônia Melo, Vander Freitas Nagata, Noemi |
container_volume |
25 |
class |
570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid |
format_se |
Aufsätze |
author-letter |
Zanello, Sônia |
doi_str_mv |
10.1007/s11356-017-0908-z |
dewey-full |
570 360 333.7 690 540 |
title_sort |
study of different environmental matrices to access the extension of metal contamination along highways |
title_auth |
Study of different environmental matrices to access the extension of metal contamination along highways |
abstract |
Abstract Metals are indicators of contamination by anthropic activities, such as road traffic. To assess the extent of the metal contamination, more comprehensive studies analyzing different environmental matrices, such as soils, dust, and plants, collected in different sites that are potential sources of these pollutants along the highways, must be prioritized. Samples of soils, dust, and plants were collected alongside the highways of Brazil at 20 sites selected in strategic locations of metal accumulation (Cr, Pb, Zn, As, and Sb) or different situations of the high ways during two rain conditions (wet and dry weeks of sampling): nearby gutters and water supplies, tolls, petrol stations, a federal road police station, and areas associated with agriculture (yearly culture planting upstream of the highway). The geoaccumulation index (metal concentration in the sample of interest/background) varied from 0 to 6, and the decreasing order of contamination by metals during the wet and dry periods were, respectively: Zn > As > Pb = Sb > Cr and Zn > As > Pb > Cr > Sb. In the soils near the highways, the highest concentrations of metals were as follows (mg $ kg^{−1} $): As = 15.6, Cr = 81.9, Pb = 39.7, Sb = 5.0, and Zn = 379.3. The highest amounts of these elements in the most superficial layer in soils indicated their addition through atmospheric emissions. The most prominent metal was Sb, whose concentration was greater than the quality limits for soils. The concentration of Sb in soils was higher in the wet week than in the dry week. The emissions from road traffic promoted the increase in metals in the dust on the track, especially Zn and Pb. The highest metal concentrations in grasses (Brachiaria) were found in the roots, except for Sb and Zn, which suggests leaf absorption of atmospheric deposition. Metal contamination was widespread in all studied matrices along the highways. © Springer-Verlag GmbH Germany, part of Springer Nature 2017 |
abstractGer |
Abstract Metals are indicators of contamination by anthropic activities, such as road traffic. To assess the extent of the metal contamination, more comprehensive studies analyzing different environmental matrices, such as soils, dust, and plants, collected in different sites that are potential sources of these pollutants along the highways, must be prioritized. Samples of soils, dust, and plants were collected alongside the highways of Brazil at 20 sites selected in strategic locations of metal accumulation (Cr, Pb, Zn, As, and Sb) or different situations of the high ways during two rain conditions (wet and dry weeks of sampling): nearby gutters and water supplies, tolls, petrol stations, a federal road police station, and areas associated with agriculture (yearly culture planting upstream of the highway). The geoaccumulation index (metal concentration in the sample of interest/background) varied from 0 to 6, and the decreasing order of contamination by metals during the wet and dry periods were, respectively: Zn > As > Pb = Sb > Cr and Zn > As > Pb > Cr > Sb. In the soils near the highways, the highest concentrations of metals were as follows (mg $ kg^{−1} $): As = 15.6, Cr = 81.9, Pb = 39.7, Sb = 5.0, and Zn = 379.3. The highest amounts of these elements in the most superficial layer in soils indicated their addition through atmospheric emissions. The most prominent metal was Sb, whose concentration was greater than the quality limits for soils. The concentration of Sb in soils was higher in the wet week than in the dry week. The emissions from road traffic promoted the increase in metals in the dust on the track, especially Zn and Pb. The highest metal concentrations in grasses (Brachiaria) were found in the roots, except for Sb and Zn, which suggests leaf absorption of atmospheric deposition. Metal contamination was widespread in all studied matrices along the highways. © Springer-Verlag GmbH Germany, part of Springer Nature 2017 |
abstract_unstemmed |
Abstract Metals are indicators of contamination by anthropic activities, such as road traffic. To assess the extent of the metal contamination, more comprehensive studies analyzing different environmental matrices, such as soils, dust, and plants, collected in different sites that are potential sources of these pollutants along the highways, must be prioritized. Samples of soils, dust, and plants were collected alongside the highways of Brazil at 20 sites selected in strategic locations of metal accumulation (Cr, Pb, Zn, As, and Sb) or different situations of the high ways during two rain conditions (wet and dry weeks of sampling): nearby gutters and water supplies, tolls, petrol stations, a federal road police station, and areas associated with agriculture (yearly culture planting upstream of the highway). The geoaccumulation index (metal concentration in the sample of interest/background) varied from 0 to 6, and the decreasing order of contamination by metals during the wet and dry periods were, respectively: Zn > As > Pb = Sb > Cr and Zn > As > Pb > Cr > Sb. In the soils near the highways, the highest concentrations of metals were as follows (mg $ kg^{−1} $): As = 15.6, Cr = 81.9, Pb = 39.7, Sb = 5.0, and Zn = 379.3. The highest amounts of these elements in the most superficial layer in soils indicated their addition through atmospheric emissions. The most prominent metal was Sb, whose concentration was greater than the quality limits for soils. The concentration of Sb in soils was higher in the wet week than in the dry week. The emissions from road traffic promoted the increase in metals in the dust on the track, especially Zn and Pb. The highest metal concentrations in grasses (Brachiaria) were found in the roots, except for Sb and Zn, which suggests leaf absorption of atmospheric deposition. Metal contamination was widespread in all studied matrices along the highways. © Springer-Verlag GmbH Germany, part of Springer Nature 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4219 GBV_ILN_4277 |
container_issue |
6 |
title_short |
Study of different environmental matrices to access the extension of metal contamination along highways |
url |
https://doi.org/10.1007/s11356-017-0908-z |
remote_bool |
false |
author2 |
Melo, Vander Freitas Nagata, Noemi |
author2Str |
Melo, Vander Freitas Nagata, Noemi |
ppnlink |
171335805 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11356-017-0908-z |
up_date |
2024-07-04T02:27:51.522Z |
_version_ |
1803613709558349824 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2040508392</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230606194959.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11356-017-0908-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2040508392</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11356-017-0908-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">360</subfield><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="a">333.7</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zanello, Sônia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study of different environmental matrices to access the extension of metal contamination along highways</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Metals are indicators of contamination by anthropic activities, such as road traffic. To assess the extent of the metal contamination, more comprehensive studies analyzing different environmental matrices, such as soils, dust, and plants, collected in different sites that are potential sources of these pollutants along the highways, must be prioritized. Samples of soils, dust, and plants were collected alongside the highways of Brazil at 20 sites selected in strategic locations of metal accumulation (Cr, Pb, Zn, As, and Sb) or different situations of the high ways during two rain conditions (wet and dry weeks of sampling): nearby gutters and water supplies, tolls, petrol stations, a federal road police station, and areas associated with agriculture (yearly culture planting upstream of the highway). The geoaccumulation index (metal concentration in the sample of interest/background) varied from 0 to 6, and the decreasing order of contamination by metals during the wet and dry periods were, respectively: Zn > As > Pb = Sb > Cr and Zn > As > Pb > Cr > Sb. In the soils near the highways, the highest concentrations of metals were as follows (mg $ kg^{−1} $): As = 15.6, Cr = 81.9, Pb = 39.7, Sb = 5.0, and Zn = 379.3. The highest amounts of these elements in the most superficial layer in soils indicated their addition through atmospheric emissions. The most prominent metal was Sb, whose concentration was greater than the quality limits for soils. The concentration of Sb in soils was higher in the wet week than in the dry week. The emissions from road traffic promoted the increase in metals in the dust on the track, especially Zn and Pb. The highest metal concentrations in grasses (Brachiaria) were found in the roots, except for Sb and Zn, which suggests leaf absorption of atmospheric deposition. Metal contamination was widespread in all studied matrices along the highways.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Road traffic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anthropic soils</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil contamination</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dust contamination</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geoaccumulation index</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Melo, Vander Freitas</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nagata, Noemi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Environmental science and pollution research</subfield><subfield code="d">Springer Berlin Heidelberg, 1994</subfield><subfield code="g">25(2017), 6 vom: 13. Dez., Seite 5969-5979</subfield><subfield code="w">(DE-627)171335805</subfield><subfield code="w">(DE-600)1178791-0</subfield><subfield code="w">(DE-576)038875101</subfield><subfield code="x">0944-1344</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:6</subfield><subfield code="g">day:13</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:5969-5979</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11356-017-0908-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2017</subfield><subfield code="e">6</subfield><subfield code="b">13</subfield><subfield code="c">12</subfield><subfield code="h">5969-5979</subfield></datafield></record></collection>
|
score |
7.39989 |