Biochar-assisted phytoextraction of arsenic in soil using Pteris vittata L
Abstract The alkaline nature of biochar provides a potential for soil arsenic (As) mobilization and, hence, enhancing efficiency of As phytoextraction by combining with As hyperaccumulator. To testify the feasibility and potential risk of the above strategy, biochar effect on As transfer in a paddy...
Ausführliche Beschreibung
Autor*in: |
Zheng, Chujing [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Environmental science and pollution research - Springer Berlin Heidelberg, 1994, 26(2019), 36 vom: 18. Nov., Seite 36688-36697 |
---|---|
Übergeordnetes Werk: |
volume:26 ; year:2019 ; number:36 ; day:18 ; month:11 ; pages:36688-36697 |
Links: |
---|
DOI / URN: |
10.1007/s11356-019-06688-5 |
---|
Katalog-ID: |
OLC2040567429 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2040567429 | ||
003 | DE-627 | ||
005 | 20230606195124.0 | ||
007 | tu | ||
008 | 200820s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11356-019-06688-5 |2 doi | |
035 | |a (DE-627)OLC2040567429 | ||
035 | |a (DE-He213)s11356-019-06688-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |a 360 |a 333.7 |q VZ |
082 | 0 | 4 | |a 690 |a 333.7 |a 540 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
100 | 1 | |a Zheng, Chujing |e verfasserin |4 aut | |
245 | 1 | 0 | |a Biochar-assisted phytoextraction of arsenic in soil using Pteris vittata L |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag GmbH Germany, part of Springer Nature 2019 | ||
520 | |a Abstract The alkaline nature of biochar provides a potential for soil arsenic (As) mobilization and, hence, enhancing efficiency of As phytoextraction by combining with As hyperaccumulator. To testify the feasibility and potential risk of the above strategy, biochar effect on As transfer in a paddy soil and accumulation in P. vittata was investigated in a pot experiment. By leaching soil (total As concentration 141.17 mg/kg) with simulated acid rain (pH 4.2), As the concentration in leaching eluate increased proportionally with increasing biochar ratio. Coincident with elevated soil As mobility, apparent enhancement in As uptake and translocation in P. vittata was determined with 1–5% biochar amendment after 40 days of plant growth. Furthermore, diffusive gradients in thin film (DGT) technique were employed to characterize any potential risk in vertical downward migration of As at 2-mm resolution. A significantly increasing profile of DGT-As ranging from on average 20 μg/L in CK to 50–100 μg/L in 1–3% biochar treatments was recorded over 0–60 mm depth, with 25–71% lower labile As in the rhizosphere than non-rhizosphere zone with few exceptions. As compared to Chinese quality standard for groundwater (Class IV 50 μg/L), biochar ratio at ≤ 1% was suggested for local water safety while actual application should take the physicochemical characteristic of tested soil into account. Our results demonstrated the biochar-assisted P. vittata phytoremediation can serve as an emerging pathway to enhance efficiency of soil As phytoextraction. The combination of DGT techniques and greenhouse assay provided a powerful tool for evaluating the gradient distribution of heavy metal in rhizosphere and accessing corresponding ecological risk at more precise scale. | ||
650 | 4 | |a Arsenic | |
650 | 4 | |a Hyperaccumulator | |
650 | 4 | |a L. | |
650 | 4 | |a phytoextraction | |
650 | 4 | |a Biochar | |
650 | 4 | |a Diffusive gradients in thin films (DGT) | |
700 | 1 | |a Wang, Xin |4 aut | |
700 | 1 | |a Liu, Jing |4 aut | |
700 | 1 | |a Ji, Xionghui |4 aut | |
700 | 1 | |a Huang, Bojun |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Environmental science and pollution research |d Springer Berlin Heidelberg, 1994 |g 26(2019), 36 vom: 18. Nov., Seite 36688-36697 |w (DE-627)171335805 |w (DE-600)1178791-0 |w (DE-576)038875101 |x 0944-1344 |7 nnns |
773 | 1 | 8 | |g volume:26 |g year:2019 |g number:36 |g day:18 |g month:11 |g pages:36688-36697 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11356-019-06688-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-ARC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-FOR | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_252 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 26 |j 2019 |e 36 |b 18 |c 11 |h 36688-36697 |
author_variant |
c z cz x w xw j l jl x j xj b h bh |
---|---|
matchkey_str |
article:09441344:2019----::icaassepyoxrcinfreiisiui |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s11356-019-06688-5 doi (DE-627)OLC2040567429 (DE-He213)s11356-019-06688-5-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Zheng, Chujing verfasserin aut Biochar-assisted phytoextraction of arsenic in soil using Pteris vittata L 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The alkaline nature of biochar provides a potential for soil arsenic (As) mobilization and, hence, enhancing efficiency of As phytoextraction by combining with As hyperaccumulator. To testify the feasibility and potential risk of the above strategy, biochar effect on As transfer in a paddy soil and accumulation in P. vittata was investigated in a pot experiment. By leaching soil (total As concentration 141.17 mg/kg) with simulated acid rain (pH 4.2), As the concentration in leaching eluate increased proportionally with increasing biochar ratio. Coincident with elevated soil As mobility, apparent enhancement in As uptake and translocation in P. vittata was determined with 1–5% biochar amendment after 40 days of plant growth. Furthermore, diffusive gradients in thin film (DGT) technique were employed to characterize any potential risk in vertical downward migration of As at 2-mm resolution. A significantly increasing profile of DGT-As ranging from on average 20 μg/L in CK to 50–100 μg/L in 1–3% biochar treatments was recorded over 0–60 mm depth, with 25–71% lower labile As in the rhizosphere than non-rhizosphere zone with few exceptions. As compared to Chinese quality standard for groundwater (Class IV 50 μg/L), biochar ratio at ≤ 1% was suggested for local water safety while actual application should take the physicochemical characteristic of tested soil into account. Our results demonstrated the biochar-assisted P. vittata phytoremediation can serve as an emerging pathway to enhance efficiency of soil As phytoextraction. The combination of DGT techniques and greenhouse assay provided a powerful tool for evaluating the gradient distribution of heavy metal in rhizosphere and accessing corresponding ecological risk at more precise scale. Arsenic Hyperaccumulator L. phytoextraction Biochar Diffusive gradients in thin films (DGT) Wang, Xin aut Liu, Jing aut Ji, Xionghui aut Huang, Bojun aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 26(2019), 36 vom: 18. Nov., Seite 36688-36697 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:26 year:2019 number:36 day:18 month:11 pages:36688-36697 https://doi.org/10.1007/s11356-019-06688-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 26 2019 36 18 11 36688-36697 |
spelling |
10.1007/s11356-019-06688-5 doi (DE-627)OLC2040567429 (DE-He213)s11356-019-06688-5-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Zheng, Chujing verfasserin aut Biochar-assisted phytoextraction of arsenic in soil using Pteris vittata L 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The alkaline nature of biochar provides a potential for soil arsenic (As) mobilization and, hence, enhancing efficiency of As phytoextraction by combining with As hyperaccumulator. To testify the feasibility and potential risk of the above strategy, biochar effect on As transfer in a paddy soil and accumulation in P. vittata was investigated in a pot experiment. By leaching soil (total As concentration 141.17 mg/kg) with simulated acid rain (pH 4.2), As the concentration in leaching eluate increased proportionally with increasing biochar ratio. Coincident with elevated soil As mobility, apparent enhancement in As uptake and translocation in P. vittata was determined with 1–5% biochar amendment after 40 days of plant growth. Furthermore, diffusive gradients in thin film (DGT) technique were employed to characterize any potential risk in vertical downward migration of As at 2-mm resolution. A significantly increasing profile of DGT-As ranging from on average 20 μg/L in CK to 50–100 μg/L in 1–3% biochar treatments was recorded over 0–60 mm depth, with 25–71% lower labile As in the rhizosphere than non-rhizosphere zone with few exceptions. As compared to Chinese quality standard for groundwater (Class IV 50 μg/L), biochar ratio at ≤ 1% was suggested for local water safety while actual application should take the physicochemical characteristic of tested soil into account. Our results demonstrated the biochar-assisted P. vittata phytoremediation can serve as an emerging pathway to enhance efficiency of soil As phytoextraction. The combination of DGT techniques and greenhouse assay provided a powerful tool for evaluating the gradient distribution of heavy metal in rhizosphere and accessing corresponding ecological risk at more precise scale. Arsenic Hyperaccumulator L. phytoextraction Biochar Diffusive gradients in thin films (DGT) Wang, Xin aut Liu, Jing aut Ji, Xionghui aut Huang, Bojun aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 26(2019), 36 vom: 18. Nov., Seite 36688-36697 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:26 year:2019 number:36 day:18 month:11 pages:36688-36697 https://doi.org/10.1007/s11356-019-06688-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 26 2019 36 18 11 36688-36697 |
allfields_unstemmed |
10.1007/s11356-019-06688-5 doi (DE-627)OLC2040567429 (DE-He213)s11356-019-06688-5-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Zheng, Chujing verfasserin aut Biochar-assisted phytoextraction of arsenic in soil using Pteris vittata L 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The alkaline nature of biochar provides a potential for soil arsenic (As) mobilization and, hence, enhancing efficiency of As phytoextraction by combining with As hyperaccumulator. To testify the feasibility and potential risk of the above strategy, biochar effect on As transfer in a paddy soil and accumulation in P. vittata was investigated in a pot experiment. By leaching soil (total As concentration 141.17 mg/kg) with simulated acid rain (pH 4.2), As the concentration in leaching eluate increased proportionally with increasing biochar ratio. Coincident with elevated soil As mobility, apparent enhancement in As uptake and translocation in P. vittata was determined with 1–5% biochar amendment after 40 days of plant growth. Furthermore, diffusive gradients in thin film (DGT) technique were employed to characterize any potential risk in vertical downward migration of As at 2-mm resolution. A significantly increasing profile of DGT-As ranging from on average 20 μg/L in CK to 50–100 μg/L in 1–3% biochar treatments was recorded over 0–60 mm depth, with 25–71% lower labile As in the rhizosphere than non-rhizosphere zone with few exceptions. As compared to Chinese quality standard for groundwater (Class IV 50 μg/L), biochar ratio at ≤ 1% was suggested for local water safety while actual application should take the physicochemical characteristic of tested soil into account. Our results demonstrated the biochar-assisted P. vittata phytoremediation can serve as an emerging pathway to enhance efficiency of soil As phytoextraction. The combination of DGT techniques and greenhouse assay provided a powerful tool for evaluating the gradient distribution of heavy metal in rhizosphere and accessing corresponding ecological risk at more precise scale. Arsenic Hyperaccumulator L. phytoextraction Biochar Diffusive gradients in thin films (DGT) Wang, Xin aut Liu, Jing aut Ji, Xionghui aut Huang, Bojun aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 26(2019), 36 vom: 18. Nov., Seite 36688-36697 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:26 year:2019 number:36 day:18 month:11 pages:36688-36697 https://doi.org/10.1007/s11356-019-06688-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 26 2019 36 18 11 36688-36697 |
allfieldsGer |
10.1007/s11356-019-06688-5 doi (DE-627)OLC2040567429 (DE-He213)s11356-019-06688-5-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Zheng, Chujing verfasserin aut Biochar-assisted phytoextraction of arsenic in soil using Pteris vittata L 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The alkaline nature of biochar provides a potential for soil arsenic (As) mobilization and, hence, enhancing efficiency of As phytoextraction by combining with As hyperaccumulator. To testify the feasibility and potential risk of the above strategy, biochar effect on As transfer in a paddy soil and accumulation in P. vittata was investigated in a pot experiment. By leaching soil (total As concentration 141.17 mg/kg) with simulated acid rain (pH 4.2), As the concentration in leaching eluate increased proportionally with increasing biochar ratio. Coincident with elevated soil As mobility, apparent enhancement in As uptake and translocation in P. vittata was determined with 1–5% biochar amendment after 40 days of plant growth. Furthermore, diffusive gradients in thin film (DGT) technique were employed to characterize any potential risk in vertical downward migration of As at 2-mm resolution. A significantly increasing profile of DGT-As ranging from on average 20 μg/L in CK to 50–100 μg/L in 1–3% biochar treatments was recorded over 0–60 mm depth, with 25–71% lower labile As in the rhizosphere than non-rhizosphere zone with few exceptions. As compared to Chinese quality standard for groundwater (Class IV 50 μg/L), biochar ratio at ≤ 1% was suggested for local water safety while actual application should take the physicochemical characteristic of tested soil into account. Our results demonstrated the biochar-assisted P. vittata phytoremediation can serve as an emerging pathway to enhance efficiency of soil As phytoextraction. The combination of DGT techniques and greenhouse assay provided a powerful tool for evaluating the gradient distribution of heavy metal in rhizosphere and accessing corresponding ecological risk at more precise scale. Arsenic Hyperaccumulator L. phytoextraction Biochar Diffusive gradients in thin films (DGT) Wang, Xin aut Liu, Jing aut Ji, Xionghui aut Huang, Bojun aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 26(2019), 36 vom: 18. Nov., Seite 36688-36697 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:26 year:2019 number:36 day:18 month:11 pages:36688-36697 https://doi.org/10.1007/s11356-019-06688-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 26 2019 36 18 11 36688-36697 |
allfieldsSound |
10.1007/s11356-019-06688-5 doi (DE-627)OLC2040567429 (DE-He213)s11356-019-06688-5-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Zheng, Chujing verfasserin aut Biochar-assisted phytoextraction of arsenic in soil using Pteris vittata L 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The alkaline nature of biochar provides a potential for soil arsenic (As) mobilization and, hence, enhancing efficiency of As phytoextraction by combining with As hyperaccumulator. To testify the feasibility and potential risk of the above strategy, biochar effect on As transfer in a paddy soil and accumulation in P. vittata was investigated in a pot experiment. By leaching soil (total As concentration 141.17 mg/kg) with simulated acid rain (pH 4.2), As the concentration in leaching eluate increased proportionally with increasing biochar ratio. Coincident with elevated soil As mobility, apparent enhancement in As uptake and translocation in P. vittata was determined with 1–5% biochar amendment after 40 days of plant growth. Furthermore, diffusive gradients in thin film (DGT) technique were employed to characterize any potential risk in vertical downward migration of As at 2-mm resolution. A significantly increasing profile of DGT-As ranging from on average 20 μg/L in CK to 50–100 μg/L in 1–3% biochar treatments was recorded over 0–60 mm depth, with 25–71% lower labile As in the rhizosphere than non-rhizosphere zone with few exceptions. As compared to Chinese quality standard for groundwater (Class IV 50 μg/L), biochar ratio at ≤ 1% was suggested for local water safety while actual application should take the physicochemical characteristic of tested soil into account. Our results demonstrated the biochar-assisted P. vittata phytoremediation can serve as an emerging pathway to enhance efficiency of soil As phytoextraction. The combination of DGT techniques and greenhouse assay provided a powerful tool for evaluating the gradient distribution of heavy metal in rhizosphere and accessing corresponding ecological risk at more precise scale. Arsenic Hyperaccumulator L. phytoextraction Biochar Diffusive gradients in thin films (DGT) Wang, Xin aut Liu, Jing aut Ji, Xionghui aut Huang, Bojun aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 26(2019), 36 vom: 18. Nov., Seite 36688-36697 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:26 year:2019 number:36 day:18 month:11 pages:36688-36697 https://doi.org/10.1007/s11356-019-06688-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 26 2019 36 18 11 36688-36697 |
language |
English |
source |
Enthalten in Environmental science and pollution research 26(2019), 36 vom: 18. Nov., Seite 36688-36697 volume:26 year:2019 number:36 day:18 month:11 pages:36688-36697 |
sourceStr |
Enthalten in Environmental science and pollution research 26(2019), 36 vom: 18. Nov., Seite 36688-36697 volume:26 year:2019 number:36 day:18 month:11 pages:36688-36697 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Arsenic Hyperaccumulator L. phytoextraction Biochar Diffusive gradients in thin films (DGT) |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Environmental science and pollution research |
authorswithroles_txt_mv |
Zheng, Chujing @@aut@@ Wang, Xin @@aut@@ Liu, Jing @@aut@@ Ji, Xionghui @@aut@@ Huang, Bojun @@aut@@ |
publishDateDaySort_date |
2019-11-18T00:00:00Z |
hierarchy_top_id |
171335805 |
dewey-sort |
3570 |
id |
OLC2040567429 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2040567429</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230606195124.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11356-019-06688-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2040567429</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11356-019-06688-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">360</subfield><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="a">333.7</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zheng, Chujing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Biochar-assisted phytoextraction of arsenic in soil using Pteris vittata L</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The alkaline nature of biochar provides a potential for soil arsenic (As) mobilization and, hence, enhancing efficiency of As phytoextraction by combining with As hyperaccumulator. To testify the feasibility and potential risk of the above strategy, biochar effect on As transfer in a paddy soil and accumulation in P. vittata was investigated in a pot experiment. By leaching soil (total As concentration 141.17 mg/kg) with simulated acid rain (pH 4.2), As the concentration in leaching eluate increased proportionally with increasing biochar ratio. Coincident with elevated soil As mobility, apparent enhancement in As uptake and translocation in P. vittata was determined with 1–5% biochar amendment after 40 days of plant growth. Furthermore, diffusive gradients in thin film (DGT) technique were employed to characterize any potential risk in vertical downward migration of As at 2-mm resolution. A significantly increasing profile of DGT-As ranging from on average 20 μg/L in CK to 50–100 μg/L in 1–3% biochar treatments was recorded over 0–60 mm depth, with 25–71% lower labile As in the rhizosphere than non-rhizosphere zone with few exceptions. As compared to Chinese quality standard for groundwater (Class IV 50 μg/L), biochar ratio at ≤ 1% was suggested for local water safety while actual application should take the physicochemical characteristic of tested soil into account. Our results demonstrated the biochar-assisted P. vittata phytoremediation can serve as an emerging pathway to enhance efficiency of soil As phytoextraction. The combination of DGT techniques and greenhouse assay provided a powerful tool for evaluating the gradient distribution of heavy metal in rhizosphere and accessing corresponding ecological risk at more precise scale.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arsenic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hyperaccumulator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">L.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phytoextraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biochar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffusive gradients in thin films (DGT)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Jing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ji, Xionghui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Bojun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Environmental science and pollution research</subfield><subfield code="d">Springer Berlin Heidelberg, 1994</subfield><subfield code="g">26(2019), 36 vom: 18. Nov., Seite 36688-36697</subfield><subfield code="w">(DE-627)171335805</subfield><subfield code="w">(DE-600)1178791-0</subfield><subfield code="w">(DE-576)038875101</subfield><subfield code="x">0944-1344</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:36</subfield><subfield code="g">day:18</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:36688-36697</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11356-019-06688-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2019</subfield><subfield code="e">36</subfield><subfield code="b">18</subfield><subfield code="c">11</subfield><subfield code="h">36688-36697</subfield></datafield></record></collection>
|
author |
Zheng, Chujing |
spellingShingle |
Zheng, Chujing ddc 570 ddc 690 fid BIODIV misc Arsenic misc Hyperaccumulator misc L. misc phytoextraction misc Biochar misc Diffusive gradients in thin films (DGT) Biochar-assisted phytoextraction of arsenic in soil using Pteris vittata L |
authorStr |
Zheng, Chujing |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)171335805 |
format |
Article |
dewey-ones |
570 - Life sciences; biology 360 - Social problems & services; associations 333 - Economics of land & energy 690 - Buildings 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0944-1344 |
topic_title |
570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Biochar-assisted phytoextraction of arsenic in soil using Pteris vittata L Arsenic Hyperaccumulator L. phytoextraction Biochar Diffusive gradients in thin films (DGT) |
topic |
ddc 570 ddc 690 fid BIODIV misc Arsenic misc Hyperaccumulator misc L. misc phytoextraction misc Biochar misc Diffusive gradients in thin films (DGT) |
topic_unstemmed |
ddc 570 ddc 690 fid BIODIV misc Arsenic misc Hyperaccumulator misc L. misc phytoextraction misc Biochar misc Diffusive gradients in thin films (DGT) |
topic_browse |
ddc 570 ddc 690 fid BIODIV misc Arsenic misc Hyperaccumulator misc L. misc phytoextraction misc Biochar misc Diffusive gradients in thin films (DGT) |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Environmental science and pollution research |
hierarchy_parent_id |
171335805 |
dewey-tens |
570 - Life sciences; biology 360 - Social problems & social services 330 - Economics 690 - Building & construction 540 - Chemistry |
hierarchy_top_title |
Environmental science and pollution research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 |
title |
Biochar-assisted phytoextraction of arsenic in soil using Pteris vittata L |
ctrlnum |
(DE-627)OLC2040567429 (DE-He213)s11356-019-06688-5-p |
title_full |
Biochar-assisted phytoextraction of arsenic in soil using Pteris vittata L |
author_sort |
Zheng, Chujing |
journal |
Environmental science and pollution research |
journalStr |
Environmental science and pollution research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 300 - Social sciences 600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
36688 |
author_browse |
Zheng, Chujing Wang, Xin Liu, Jing Ji, Xionghui Huang, Bojun |
container_volume |
26 |
class |
570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid |
format_se |
Aufsätze |
author-letter |
Zheng, Chujing |
doi_str_mv |
10.1007/s11356-019-06688-5 |
dewey-full |
570 360 333.7 690 540 |
title_sort |
biochar-assisted phytoextraction of arsenic in soil using pteris vittata l |
title_auth |
Biochar-assisted phytoextraction of arsenic in soil using Pteris vittata L |
abstract |
Abstract The alkaline nature of biochar provides a potential for soil arsenic (As) mobilization and, hence, enhancing efficiency of As phytoextraction by combining with As hyperaccumulator. To testify the feasibility and potential risk of the above strategy, biochar effect on As transfer in a paddy soil and accumulation in P. vittata was investigated in a pot experiment. By leaching soil (total As concentration 141.17 mg/kg) with simulated acid rain (pH 4.2), As the concentration in leaching eluate increased proportionally with increasing biochar ratio. Coincident with elevated soil As mobility, apparent enhancement in As uptake and translocation in P. vittata was determined with 1–5% biochar amendment after 40 days of plant growth. Furthermore, diffusive gradients in thin film (DGT) technique were employed to characterize any potential risk in vertical downward migration of As at 2-mm resolution. A significantly increasing profile of DGT-As ranging from on average 20 μg/L in CK to 50–100 μg/L in 1–3% biochar treatments was recorded over 0–60 mm depth, with 25–71% lower labile As in the rhizosphere than non-rhizosphere zone with few exceptions. As compared to Chinese quality standard for groundwater (Class IV 50 μg/L), biochar ratio at ≤ 1% was suggested for local water safety while actual application should take the physicochemical characteristic of tested soil into account. Our results demonstrated the biochar-assisted P. vittata phytoremediation can serve as an emerging pathway to enhance efficiency of soil As phytoextraction. The combination of DGT techniques and greenhouse assay provided a powerful tool for evaluating the gradient distribution of heavy metal in rhizosphere and accessing corresponding ecological risk at more precise scale. © Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
abstractGer |
Abstract The alkaline nature of biochar provides a potential for soil arsenic (As) mobilization and, hence, enhancing efficiency of As phytoextraction by combining with As hyperaccumulator. To testify the feasibility and potential risk of the above strategy, biochar effect on As transfer in a paddy soil and accumulation in P. vittata was investigated in a pot experiment. By leaching soil (total As concentration 141.17 mg/kg) with simulated acid rain (pH 4.2), As the concentration in leaching eluate increased proportionally with increasing biochar ratio. Coincident with elevated soil As mobility, apparent enhancement in As uptake and translocation in P. vittata was determined with 1–5% biochar amendment after 40 days of plant growth. Furthermore, diffusive gradients in thin film (DGT) technique were employed to characterize any potential risk in vertical downward migration of As at 2-mm resolution. A significantly increasing profile of DGT-As ranging from on average 20 μg/L in CK to 50–100 μg/L in 1–3% biochar treatments was recorded over 0–60 mm depth, with 25–71% lower labile As in the rhizosphere than non-rhizosphere zone with few exceptions. As compared to Chinese quality standard for groundwater (Class IV 50 μg/L), biochar ratio at ≤ 1% was suggested for local water safety while actual application should take the physicochemical characteristic of tested soil into account. Our results demonstrated the biochar-assisted P. vittata phytoremediation can serve as an emerging pathway to enhance efficiency of soil As phytoextraction. The combination of DGT techniques and greenhouse assay provided a powerful tool for evaluating the gradient distribution of heavy metal in rhizosphere and accessing corresponding ecological risk at more precise scale. © Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
abstract_unstemmed |
Abstract The alkaline nature of biochar provides a potential for soil arsenic (As) mobilization and, hence, enhancing efficiency of As phytoextraction by combining with As hyperaccumulator. To testify the feasibility and potential risk of the above strategy, biochar effect on As transfer in a paddy soil and accumulation in P. vittata was investigated in a pot experiment. By leaching soil (total As concentration 141.17 mg/kg) with simulated acid rain (pH 4.2), As the concentration in leaching eluate increased proportionally with increasing biochar ratio. Coincident with elevated soil As mobility, apparent enhancement in As uptake and translocation in P. vittata was determined with 1–5% biochar amendment after 40 days of plant growth. Furthermore, diffusive gradients in thin film (DGT) technique were employed to characterize any potential risk in vertical downward migration of As at 2-mm resolution. A significantly increasing profile of DGT-As ranging from on average 20 μg/L in CK to 50–100 μg/L in 1–3% biochar treatments was recorded over 0–60 mm depth, with 25–71% lower labile As in the rhizosphere than non-rhizosphere zone with few exceptions. As compared to Chinese quality standard for groundwater (Class IV 50 μg/L), biochar ratio at ≤ 1% was suggested for local water safety while actual application should take the physicochemical characteristic of tested soil into account. Our results demonstrated the biochar-assisted P. vittata phytoremediation can serve as an emerging pathway to enhance efficiency of soil As phytoextraction. The combination of DGT techniques and greenhouse assay provided a powerful tool for evaluating the gradient distribution of heavy metal in rhizosphere and accessing corresponding ecological risk at more precise scale. © Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_70 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
36 |
title_short |
Biochar-assisted phytoextraction of arsenic in soil using Pteris vittata L |
url |
https://doi.org/10.1007/s11356-019-06688-5 |
remote_bool |
false |
author2 |
Wang, Xin Liu, Jing Ji, Xionghui Huang, Bojun |
author2Str |
Wang, Xin Liu, Jing Ji, Xionghui Huang, Bojun |
ppnlink |
171335805 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11356-019-06688-5 |
up_date |
2024-07-04T02:38:46.510Z |
_version_ |
1803614396367241216 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2040567429</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230606195124.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11356-019-06688-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2040567429</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11356-019-06688-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">360</subfield><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="a">333.7</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zheng, Chujing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Biochar-assisted phytoextraction of arsenic in soil using Pteris vittata L</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The alkaline nature of biochar provides a potential for soil arsenic (As) mobilization and, hence, enhancing efficiency of As phytoextraction by combining with As hyperaccumulator. To testify the feasibility and potential risk of the above strategy, biochar effect on As transfer in a paddy soil and accumulation in P. vittata was investigated in a pot experiment. By leaching soil (total As concentration 141.17 mg/kg) with simulated acid rain (pH 4.2), As the concentration in leaching eluate increased proportionally with increasing biochar ratio. Coincident with elevated soil As mobility, apparent enhancement in As uptake and translocation in P. vittata was determined with 1–5% biochar amendment after 40 days of plant growth. Furthermore, diffusive gradients in thin film (DGT) technique were employed to characterize any potential risk in vertical downward migration of As at 2-mm resolution. A significantly increasing profile of DGT-As ranging from on average 20 μg/L in CK to 50–100 μg/L in 1–3% biochar treatments was recorded over 0–60 mm depth, with 25–71% lower labile As in the rhizosphere than non-rhizosphere zone with few exceptions. As compared to Chinese quality standard for groundwater (Class IV 50 μg/L), biochar ratio at ≤ 1% was suggested for local water safety while actual application should take the physicochemical characteristic of tested soil into account. Our results demonstrated the biochar-assisted P. vittata phytoremediation can serve as an emerging pathway to enhance efficiency of soil As phytoextraction. The combination of DGT techniques and greenhouse assay provided a powerful tool for evaluating the gradient distribution of heavy metal in rhizosphere and accessing corresponding ecological risk at more precise scale.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arsenic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hyperaccumulator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">L.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phytoextraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biochar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffusive gradients in thin films (DGT)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Jing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ji, Xionghui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Bojun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Environmental science and pollution research</subfield><subfield code="d">Springer Berlin Heidelberg, 1994</subfield><subfield code="g">26(2019), 36 vom: 18. Nov., Seite 36688-36697</subfield><subfield code="w">(DE-627)171335805</subfield><subfield code="w">(DE-600)1178791-0</subfield><subfield code="w">(DE-576)038875101</subfield><subfield code="x">0944-1344</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:36</subfield><subfield code="g">day:18</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:36688-36697</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11356-019-06688-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2019</subfield><subfield code="e">36</subfield><subfield code="b">18</subfield><subfield code="c">11</subfield><subfield code="h">36688-36697</subfield></datafield></record></collection>
|
score |
7.4019604 |