A combination method for multicriteria uncertainty analysis and parameter estimation: a case study of Chaohu Lake in Eastern China
Abstract Eutrophication models are of great importance and are valuable tools for the development of policy and legislation. However, the parameter uncertainty and substantial computational cost lead to difficulties in decision-making, especially for complex models with multiple indicators. A multic...
Ausführliche Beschreibung
Autor*in: |
Wang, Yulin [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Environmental science and pollution research - Springer Berlin Heidelberg, 1994, 27(2020), 17 vom: 06. Apr., Seite 20934-20949 |
---|---|
Übergeordnetes Werk: |
volume:27 ; year:2020 ; number:17 ; day:06 ; month:04 ; pages:20934-20949 |
Links: |
---|
DOI / URN: |
10.1007/s11356-020-08287-1 |
---|
Katalog-ID: |
OLC2040585273 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2040585273 | ||
003 | DE-627 | ||
005 | 20230606195150.0 | ||
007 | tu | ||
008 | 200819s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11356-020-08287-1 |2 doi | |
035 | |a (DE-627)OLC2040585273 | ||
035 | |a (DE-He213)s11356-020-08287-1-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |a 360 |a 333.7 |q VZ |
082 | 0 | 4 | |a 690 |a 333.7 |a 540 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
100 | 1 | |a Wang, Yulin |e verfasserin |4 aut | |
245 | 1 | 0 | |a A combination method for multicriteria uncertainty analysis and parameter estimation: a case study of Chaohu Lake in Eastern China |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag GmbH Germany, part of Springer Nature 2020 | ||
520 | |a Abstract Eutrophication models are of great importance and are valuable tools for the development of policy and legislation. However, the parameter uncertainty and substantial computational cost lead to difficulties in decision-making, especially for complex models with multiple indicators. A multicriteria uncertainty analysis and parameter estimation (MUAPE) method, which selected behavioral parameters combined with Pareto domination and simultaneously obtained acceptable values for modeling by the maximum likelihood concept and kernel density estimation, was shown. This method, which did not assign thresholds and weights, was applied to analyze the uncertainty of the Chaohu Lake eutrophication model and estimate parameters. The results of the behavioral parameters were compared using different criterion sets, the relative error (RE) and the root mean square error (RMSE), and the results showed little discrepancy in terms of the effects on parameter uncertainty represented by the marginal probability density. The uncertainties of the parameters related to algal kinetics (i.e., BMR, PM, and KESS) were smaller than those of nutrient- and temperature-related parameters (i.e., KDN, Nitm, KTB, and KTHDR) for both sets of criteria. However, the reduction in the joint uncertainty of the two parameters was greater when RE was used than when RMSE was used. The acceptable values for the key parameters of the Chaohu Lake eutrophication model were also obtained by the RE criterion. The results strongly agreed with the observed values, and parameters could be applied for model prediction. This result indicated that the combination method was not only practical for reducing parameter uncertainty but also useful for determining parameter values. This method provides a basis for multicriteria uncertainty analysis and parameter estimation in eutrophication modeling. | ||
650 | 4 | |a Multicriteria uncertainty analysis | |
650 | 4 | |a Behavioral parameters | |
650 | 4 | |a Acceptable parameter values | |
650 | 4 | |a Chaohu Lake | |
650 | 4 | |a Eutrophication modeling | |
700 | 1 | |a Cheng, Haomiao |4 aut | |
700 | 1 | |a Wang, Liang |4 aut | |
700 | 1 | |a Hua, Zulin |4 aut | |
700 | 1 | |a He, Chengda |4 aut | |
700 | 1 | |a Cheng, Jilin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Environmental science and pollution research |d Springer Berlin Heidelberg, 1994 |g 27(2020), 17 vom: 06. Apr., Seite 20934-20949 |w (DE-627)171335805 |w (DE-600)1178791-0 |w (DE-576)038875101 |x 0944-1344 |7 nnns |
773 | 1 | 8 | |g volume:27 |g year:2020 |g number:17 |g day:06 |g month:04 |g pages:20934-20949 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11356-020-08287-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-ARC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-FOR | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_252 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 27 |j 2020 |e 17 |b 06 |c 04 |h 20934-20949 |
author_variant |
y w yw h c hc l w lw z h zh c h ch j c jc |
---|---|
matchkey_str |
article:09441344:2020----::cmiainehdomlirtranetitaayiadaaeeetmtoaae |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s11356-020-08287-1 doi (DE-627)OLC2040585273 (DE-He213)s11356-020-08287-1-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Wang, Yulin verfasserin aut A combination method for multicriteria uncertainty analysis and parameter estimation: a case study of Chaohu Lake in Eastern China 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Eutrophication models are of great importance and are valuable tools for the development of policy and legislation. However, the parameter uncertainty and substantial computational cost lead to difficulties in decision-making, especially for complex models with multiple indicators. A multicriteria uncertainty analysis and parameter estimation (MUAPE) method, which selected behavioral parameters combined with Pareto domination and simultaneously obtained acceptable values for modeling by the maximum likelihood concept and kernel density estimation, was shown. This method, which did not assign thresholds and weights, was applied to analyze the uncertainty of the Chaohu Lake eutrophication model and estimate parameters. The results of the behavioral parameters were compared using different criterion sets, the relative error (RE) and the root mean square error (RMSE), and the results showed little discrepancy in terms of the effects on parameter uncertainty represented by the marginal probability density. The uncertainties of the parameters related to algal kinetics (i.e., BMR, PM, and KESS) were smaller than those of nutrient- and temperature-related parameters (i.e., KDN, Nitm, KTB, and KTHDR) for both sets of criteria. However, the reduction in the joint uncertainty of the two parameters was greater when RE was used than when RMSE was used. The acceptable values for the key parameters of the Chaohu Lake eutrophication model were also obtained by the RE criterion. The results strongly agreed with the observed values, and parameters could be applied for model prediction. This result indicated that the combination method was not only practical for reducing parameter uncertainty but also useful for determining parameter values. This method provides a basis for multicriteria uncertainty analysis and parameter estimation in eutrophication modeling. Multicriteria uncertainty analysis Behavioral parameters Acceptable parameter values Chaohu Lake Eutrophication modeling Cheng, Haomiao aut Wang, Liang aut Hua, Zulin aut He, Chengda aut Cheng, Jilin aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 27(2020), 17 vom: 06. Apr., Seite 20934-20949 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:27 year:2020 number:17 day:06 month:04 pages:20934-20949 https://doi.org/10.1007/s11356-020-08287-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 27 2020 17 06 04 20934-20949 |
spelling |
10.1007/s11356-020-08287-1 doi (DE-627)OLC2040585273 (DE-He213)s11356-020-08287-1-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Wang, Yulin verfasserin aut A combination method for multicriteria uncertainty analysis and parameter estimation: a case study of Chaohu Lake in Eastern China 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Eutrophication models are of great importance and are valuable tools for the development of policy and legislation. However, the parameter uncertainty and substantial computational cost lead to difficulties in decision-making, especially for complex models with multiple indicators. A multicriteria uncertainty analysis and parameter estimation (MUAPE) method, which selected behavioral parameters combined with Pareto domination and simultaneously obtained acceptable values for modeling by the maximum likelihood concept and kernel density estimation, was shown. This method, which did not assign thresholds and weights, was applied to analyze the uncertainty of the Chaohu Lake eutrophication model and estimate parameters. The results of the behavioral parameters were compared using different criterion sets, the relative error (RE) and the root mean square error (RMSE), and the results showed little discrepancy in terms of the effects on parameter uncertainty represented by the marginal probability density. The uncertainties of the parameters related to algal kinetics (i.e., BMR, PM, and KESS) were smaller than those of nutrient- and temperature-related parameters (i.e., KDN, Nitm, KTB, and KTHDR) for both sets of criteria. However, the reduction in the joint uncertainty of the two parameters was greater when RE was used than when RMSE was used. The acceptable values for the key parameters of the Chaohu Lake eutrophication model were also obtained by the RE criterion. The results strongly agreed with the observed values, and parameters could be applied for model prediction. This result indicated that the combination method was not only practical for reducing parameter uncertainty but also useful for determining parameter values. This method provides a basis for multicriteria uncertainty analysis and parameter estimation in eutrophication modeling. Multicriteria uncertainty analysis Behavioral parameters Acceptable parameter values Chaohu Lake Eutrophication modeling Cheng, Haomiao aut Wang, Liang aut Hua, Zulin aut He, Chengda aut Cheng, Jilin aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 27(2020), 17 vom: 06. Apr., Seite 20934-20949 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:27 year:2020 number:17 day:06 month:04 pages:20934-20949 https://doi.org/10.1007/s11356-020-08287-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 27 2020 17 06 04 20934-20949 |
allfields_unstemmed |
10.1007/s11356-020-08287-1 doi (DE-627)OLC2040585273 (DE-He213)s11356-020-08287-1-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Wang, Yulin verfasserin aut A combination method for multicriteria uncertainty analysis and parameter estimation: a case study of Chaohu Lake in Eastern China 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Eutrophication models are of great importance and are valuable tools for the development of policy and legislation. However, the parameter uncertainty and substantial computational cost lead to difficulties in decision-making, especially for complex models with multiple indicators. A multicriteria uncertainty analysis and parameter estimation (MUAPE) method, which selected behavioral parameters combined with Pareto domination and simultaneously obtained acceptable values for modeling by the maximum likelihood concept and kernel density estimation, was shown. This method, which did not assign thresholds and weights, was applied to analyze the uncertainty of the Chaohu Lake eutrophication model and estimate parameters. The results of the behavioral parameters were compared using different criterion sets, the relative error (RE) and the root mean square error (RMSE), and the results showed little discrepancy in terms of the effects on parameter uncertainty represented by the marginal probability density. The uncertainties of the parameters related to algal kinetics (i.e., BMR, PM, and KESS) were smaller than those of nutrient- and temperature-related parameters (i.e., KDN, Nitm, KTB, and KTHDR) for both sets of criteria. However, the reduction in the joint uncertainty of the two parameters was greater when RE was used than when RMSE was used. The acceptable values for the key parameters of the Chaohu Lake eutrophication model were also obtained by the RE criterion. The results strongly agreed with the observed values, and parameters could be applied for model prediction. This result indicated that the combination method was not only practical for reducing parameter uncertainty but also useful for determining parameter values. This method provides a basis for multicriteria uncertainty analysis and parameter estimation in eutrophication modeling. Multicriteria uncertainty analysis Behavioral parameters Acceptable parameter values Chaohu Lake Eutrophication modeling Cheng, Haomiao aut Wang, Liang aut Hua, Zulin aut He, Chengda aut Cheng, Jilin aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 27(2020), 17 vom: 06. Apr., Seite 20934-20949 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:27 year:2020 number:17 day:06 month:04 pages:20934-20949 https://doi.org/10.1007/s11356-020-08287-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 27 2020 17 06 04 20934-20949 |
allfieldsGer |
10.1007/s11356-020-08287-1 doi (DE-627)OLC2040585273 (DE-He213)s11356-020-08287-1-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Wang, Yulin verfasserin aut A combination method for multicriteria uncertainty analysis and parameter estimation: a case study of Chaohu Lake in Eastern China 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Eutrophication models are of great importance and are valuable tools for the development of policy and legislation. However, the parameter uncertainty and substantial computational cost lead to difficulties in decision-making, especially for complex models with multiple indicators. A multicriteria uncertainty analysis and parameter estimation (MUAPE) method, which selected behavioral parameters combined with Pareto domination and simultaneously obtained acceptable values for modeling by the maximum likelihood concept and kernel density estimation, was shown. This method, which did not assign thresholds and weights, was applied to analyze the uncertainty of the Chaohu Lake eutrophication model and estimate parameters. The results of the behavioral parameters were compared using different criterion sets, the relative error (RE) and the root mean square error (RMSE), and the results showed little discrepancy in terms of the effects on parameter uncertainty represented by the marginal probability density. The uncertainties of the parameters related to algal kinetics (i.e., BMR, PM, and KESS) were smaller than those of nutrient- and temperature-related parameters (i.e., KDN, Nitm, KTB, and KTHDR) for both sets of criteria. However, the reduction in the joint uncertainty of the two parameters was greater when RE was used than when RMSE was used. The acceptable values for the key parameters of the Chaohu Lake eutrophication model were also obtained by the RE criterion. The results strongly agreed with the observed values, and parameters could be applied for model prediction. This result indicated that the combination method was not only practical for reducing parameter uncertainty but also useful for determining parameter values. This method provides a basis for multicriteria uncertainty analysis and parameter estimation in eutrophication modeling. Multicriteria uncertainty analysis Behavioral parameters Acceptable parameter values Chaohu Lake Eutrophication modeling Cheng, Haomiao aut Wang, Liang aut Hua, Zulin aut He, Chengda aut Cheng, Jilin aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 27(2020), 17 vom: 06. Apr., Seite 20934-20949 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:27 year:2020 number:17 day:06 month:04 pages:20934-20949 https://doi.org/10.1007/s11356-020-08287-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 27 2020 17 06 04 20934-20949 |
allfieldsSound |
10.1007/s11356-020-08287-1 doi (DE-627)OLC2040585273 (DE-He213)s11356-020-08287-1-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Wang, Yulin verfasserin aut A combination method for multicriteria uncertainty analysis and parameter estimation: a case study of Chaohu Lake in Eastern China 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Eutrophication models are of great importance and are valuable tools for the development of policy and legislation. However, the parameter uncertainty and substantial computational cost lead to difficulties in decision-making, especially for complex models with multiple indicators. A multicriteria uncertainty analysis and parameter estimation (MUAPE) method, which selected behavioral parameters combined with Pareto domination and simultaneously obtained acceptable values for modeling by the maximum likelihood concept and kernel density estimation, was shown. This method, which did not assign thresholds and weights, was applied to analyze the uncertainty of the Chaohu Lake eutrophication model and estimate parameters. The results of the behavioral parameters were compared using different criterion sets, the relative error (RE) and the root mean square error (RMSE), and the results showed little discrepancy in terms of the effects on parameter uncertainty represented by the marginal probability density. The uncertainties of the parameters related to algal kinetics (i.e., BMR, PM, and KESS) were smaller than those of nutrient- and temperature-related parameters (i.e., KDN, Nitm, KTB, and KTHDR) for both sets of criteria. However, the reduction in the joint uncertainty of the two parameters was greater when RE was used than when RMSE was used. The acceptable values for the key parameters of the Chaohu Lake eutrophication model were also obtained by the RE criterion. The results strongly agreed with the observed values, and parameters could be applied for model prediction. This result indicated that the combination method was not only practical for reducing parameter uncertainty but also useful for determining parameter values. This method provides a basis for multicriteria uncertainty analysis and parameter estimation in eutrophication modeling. Multicriteria uncertainty analysis Behavioral parameters Acceptable parameter values Chaohu Lake Eutrophication modeling Cheng, Haomiao aut Wang, Liang aut Hua, Zulin aut He, Chengda aut Cheng, Jilin aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 27(2020), 17 vom: 06. Apr., Seite 20934-20949 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:27 year:2020 number:17 day:06 month:04 pages:20934-20949 https://doi.org/10.1007/s11356-020-08287-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 27 2020 17 06 04 20934-20949 |
language |
English |
source |
Enthalten in Environmental science and pollution research 27(2020), 17 vom: 06. Apr., Seite 20934-20949 volume:27 year:2020 number:17 day:06 month:04 pages:20934-20949 |
sourceStr |
Enthalten in Environmental science and pollution research 27(2020), 17 vom: 06. Apr., Seite 20934-20949 volume:27 year:2020 number:17 day:06 month:04 pages:20934-20949 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Multicriteria uncertainty analysis Behavioral parameters Acceptable parameter values Chaohu Lake Eutrophication modeling |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Environmental science and pollution research |
authorswithroles_txt_mv |
Wang, Yulin @@aut@@ Cheng, Haomiao @@aut@@ Wang, Liang @@aut@@ Hua, Zulin @@aut@@ He, Chengda @@aut@@ Cheng, Jilin @@aut@@ |
publishDateDaySort_date |
2020-04-06T00:00:00Z |
hierarchy_top_id |
171335805 |
dewey-sort |
3570 |
id |
OLC2040585273 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2040585273</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230606195150.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11356-020-08287-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2040585273</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11356-020-08287-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">360</subfield><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="a">333.7</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Yulin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A combination method for multicriteria uncertainty analysis and parameter estimation: a case study of Chaohu Lake in Eastern China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Eutrophication models are of great importance and are valuable tools for the development of policy and legislation. However, the parameter uncertainty and substantial computational cost lead to difficulties in decision-making, especially for complex models with multiple indicators. A multicriteria uncertainty analysis and parameter estimation (MUAPE) method, which selected behavioral parameters combined with Pareto domination and simultaneously obtained acceptable values for modeling by the maximum likelihood concept and kernel density estimation, was shown. This method, which did not assign thresholds and weights, was applied to analyze the uncertainty of the Chaohu Lake eutrophication model and estimate parameters. The results of the behavioral parameters were compared using different criterion sets, the relative error (RE) and the root mean square error (RMSE), and the results showed little discrepancy in terms of the effects on parameter uncertainty represented by the marginal probability density. The uncertainties of the parameters related to algal kinetics (i.e., BMR, PM, and KESS) were smaller than those of nutrient- and temperature-related parameters (i.e., KDN, Nitm, KTB, and KTHDR) for both sets of criteria. However, the reduction in the joint uncertainty of the two parameters was greater when RE was used than when RMSE was used. The acceptable values for the key parameters of the Chaohu Lake eutrophication model were also obtained by the RE criterion. The results strongly agreed with the observed values, and parameters could be applied for model prediction. This result indicated that the combination method was not only practical for reducing parameter uncertainty but also useful for determining parameter values. This method provides a basis for multicriteria uncertainty analysis and parameter estimation in eutrophication modeling.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multicriteria uncertainty analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Behavioral parameters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acceptable parameter values</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chaohu Lake</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eutrophication modeling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Haomiao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Liang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hua, Zulin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Chengda</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Jilin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Environmental science and pollution research</subfield><subfield code="d">Springer Berlin Heidelberg, 1994</subfield><subfield code="g">27(2020), 17 vom: 06. Apr., Seite 20934-20949</subfield><subfield code="w">(DE-627)171335805</subfield><subfield code="w">(DE-600)1178791-0</subfield><subfield code="w">(DE-576)038875101</subfield><subfield code="x">0944-1344</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:17</subfield><subfield code="g">day:06</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:20934-20949</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11356-020-08287-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">2020</subfield><subfield code="e">17</subfield><subfield code="b">06</subfield><subfield code="c">04</subfield><subfield code="h">20934-20949</subfield></datafield></record></collection>
|
author |
Wang, Yulin |
spellingShingle |
Wang, Yulin ddc 570 ddc 690 fid BIODIV misc Multicriteria uncertainty analysis misc Behavioral parameters misc Acceptable parameter values misc Chaohu Lake misc Eutrophication modeling A combination method for multicriteria uncertainty analysis and parameter estimation: a case study of Chaohu Lake in Eastern China |
authorStr |
Wang, Yulin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)171335805 |
format |
Article |
dewey-ones |
570 - Life sciences; biology 360 - Social problems & services; associations 333 - Economics of land & energy 690 - Buildings 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0944-1344 |
topic_title |
570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid A combination method for multicriteria uncertainty analysis and parameter estimation: a case study of Chaohu Lake in Eastern China Multicriteria uncertainty analysis Behavioral parameters Acceptable parameter values Chaohu Lake Eutrophication modeling |
topic |
ddc 570 ddc 690 fid BIODIV misc Multicriteria uncertainty analysis misc Behavioral parameters misc Acceptable parameter values misc Chaohu Lake misc Eutrophication modeling |
topic_unstemmed |
ddc 570 ddc 690 fid BIODIV misc Multicriteria uncertainty analysis misc Behavioral parameters misc Acceptable parameter values misc Chaohu Lake misc Eutrophication modeling |
topic_browse |
ddc 570 ddc 690 fid BIODIV misc Multicriteria uncertainty analysis misc Behavioral parameters misc Acceptable parameter values misc Chaohu Lake misc Eutrophication modeling |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Environmental science and pollution research |
hierarchy_parent_id |
171335805 |
dewey-tens |
570 - Life sciences; biology 360 - Social problems & social services 330 - Economics 690 - Building & construction 540 - Chemistry |
hierarchy_top_title |
Environmental science and pollution research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 |
title |
A combination method for multicriteria uncertainty analysis and parameter estimation: a case study of Chaohu Lake in Eastern China |
ctrlnum |
(DE-627)OLC2040585273 (DE-He213)s11356-020-08287-1-p |
title_full |
A combination method for multicriteria uncertainty analysis and parameter estimation: a case study of Chaohu Lake in Eastern China |
author_sort |
Wang, Yulin |
journal |
Environmental science and pollution research |
journalStr |
Environmental science and pollution research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 300 - Social sciences 600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
20934 |
author_browse |
Wang, Yulin Cheng, Haomiao Wang, Liang Hua, Zulin He, Chengda Cheng, Jilin |
container_volume |
27 |
class |
570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid |
format_se |
Aufsätze |
author-letter |
Wang, Yulin |
doi_str_mv |
10.1007/s11356-020-08287-1 |
dewey-full |
570 360 333.7 690 540 |
title_sort |
a combination method for multicriteria uncertainty analysis and parameter estimation: a case study of chaohu lake in eastern china |
title_auth |
A combination method for multicriteria uncertainty analysis and parameter estimation: a case study of Chaohu Lake in Eastern China |
abstract |
Abstract Eutrophication models are of great importance and are valuable tools for the development of policy and legislation. However, the parameter uncertainty and substantial computational cost lead to difficulties in decision-making, especially for complex models with multiple indicators. A multicriteria uncertainty analysis and parameter estimation (MUAPE) method, which selected behavioral parameters combined with Pareto domination and simultaneously obtained acceptable values for modeling by the maximum likelihood concept and kernel density estimation, was shown. This method, which did not assign thresholds and weights, was applied to analyze the uncertainty of the Chaohu Lake eutrophication model and estimate parameters. The results of the behavioral parameters were compared using different criterion sets, the relative error (RE) and the root mean square error (RMSE), and the results showed little discrepancy in terms of the effects on parameter uncertainty represented by the marginal probability density. The uncertainties of the parameters related to algal kinetics (i.e., BMR, PM, and KESS) were smaller than those of nutrient- and temperature-related parameters (i.e., KDN, Nitm, KTB, and KTHDR) for both sets of criteria. However, the reduction in the joint uncertainty of the two parameters was greater when RE was used than when RMSE was used. The acceptable values for the key parameters of the Chaohu Lake eutrophication model were also obtained by the RE criterion. The results strongly agreed with the observed values, and parameters could be applied for model prediction. This result indicated that the combination method was not only practical for reducing parameter uncertainty but also useful for determining parameter values. This method provides a basis for multicriteria uncertainty analysis and parameter estimation in eutrophication modeling. © Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
abstractGer |
Abstract Eutrophication models are of great importance and are valuable tools for the development of policy and legislation. However, the parameter uncertainty and substantial computational cost lead to difficulties in decision-making, especially for complex models with multiple indicators. A multicriteria uncertainty analysis and parameter estimation (MUAPE) method, which selected behavioral parameters combined with Pareto domination and simultaneously obtained acceptable values for modeling by the maximum likelihood concept and kernel density estimation, was shown. This method, which did not assign thresholds and weights, was applied to analyze the uncertainty of the Chaohu Lake eutrophication model and estimate parameters. The results of the behavioral parameters were compared using different criterion sets, the relative error (RE) and the root mean square error (RMSE), and the results showed little discrepancy in terms of the effects on parameter uncertainty represented by the marginal probability density. The uncertainties of the parameters related to algal kinetics (i.e., BMR, PM, and KESS) were smaller than those of nutrient- and temperature-related parameters (i.e., KDN, Nitm, KTB, and KTHDR) for both sets of criteria. However, the reduction in the joint uncertainty of the two parameters was greater when RE was used than when RMSE was used. The acceptable values for the key parameters of the Chaohu Lake eutrophication model were also obtained by the RE criterion. The results strongly agreed with the observed values, and parameters could be applied for model prediction. This result indicated that the combination method was not only practical for reducing parameter uncertainty but also useful for determining parameter values. This method provides a basis for multicriteria uncertainty analysis and parameter estimation in eutrophication modeling. © Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
abstract_unstemmed |
Abstract Eutrophication models are of great importance and are valuable tools for the development of policy and legislation. However, the parameter uncertainty and substantial computational cost lead to difficulties in decision-making, especially for complex models with multiple indicators. A multicriteria uncertainty analysis and parameter estimation (MUAPE) method, which selected behavioral parameters combined with Pareto domination and simultaneously obtained acceptable values for modeling by the maximum likelihood concept and kernel density estimation, was shown. This method, which did not assign thresholds and weights, was applied to analyze the uncertainty of the Chaohu Lake eutrophication model and estimate parameters. The results of the behavioral parameters were compared using different criterion sets, the relative error (RE) and the root mean square error (RMSE), and the results showed little discrepancy in terms of the effects on parameter uncertainty represented by the marginal probability density. The uncertainties of the parameters related to algal kinetics (i.e., BMR, PM, and KESS) were smaller than those of nutrient- and temperature-related parameters (i.e., KDN, Nitm, KTB, and KTHDR) for both sets of criteria. However, the reduction in the joint uncertainty of the two parameters was greater when RE was used than when RMSE was used. The acceptable values for the key parameters of the Chaohu Lake eutrophication model were also obtained by the RE criterion. The results strongly agreed with the observed values, and parameters could be applied for model prediction. This result indicated that the combination method was not only practical for reducing parameter uncertainty but also useful for determining parameter values. This method provides a basis for multicriteria uncertainty analysis and parameter estimation in eutrophication modeling. © Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
17 |
title_short |
A combination method for multicriteria uncertainty analysis and parameter estimation: a case study of Chaohu Lake in Eastern China |
url |
https://doi.org/10.1007/s11356-020-08287-1 |
remote_bool |
false |
author2 |
Cheng, Haomiao Wang, Liang Hua, Zulin He, Chengda Cheng, Jilin |
author2Str |
Cheng, Haomiao Wang, Liang Hua, Zulin He, Chengda Cheng, Jilin |
ppnlink |
171335805 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11356-020-08287-1 |
up_date |
2024-07-04T02:42:02.207Z |
_version_ |
1803614601569370112 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2040585273</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230606195150.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11356-020-08287-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2040585273</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11356-020-08287-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">360</subfield><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="a">333.7</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Yulin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A combination method for multicriteria uncertainty analysis and parameter estimation: a case study of Chaohu Lake in Eastern China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Eutrophication models are of great importance and are valuable tools for the development of policy and legislation. However, the parameter uncertainty and substantial computational cost lead to difficulties in decision-making, especially for complex models with multiple indicators. A multicriteria uncertainty analysis and parameter estimation (MUAPE) method, which selected behavioral parameters combined with Pareto domination and simultaneously obtained acceptable values for modeling by the maximum likelihood concept and kernel density estimation, was shown. This method, which did not assign thresholds and weights, was applied to analyze the uncertainty of the Chaohu Lake eutrophication model and estimate parameters. The results of the behavioral parameters were compared using different criterion sets, the relative error (RE) and the root mean square error (RMSE), and the results showed little discrepancy in terms of the effects on parameter uncertainty represented by the marginal probability density. The uncertainties of the parameters related to algal kinetics (i.e., BMR, PM, and KESS) were smaller than those of nutrient- and temperature-related parameters (i.e., KDN, Nitm, KTB, and KTHDR) for both sets of criteria. However, the reduction in the joint uncertainty of the two parameters was greater when RE was used than when RMSE was used. The acceptable values for the key parameters of the Chaohu Lake eutrophication model were also obtained by the RE criterion. The results strongly agreed with the observed values, and parameters could be applied for model prediction. This result indicated that the combination method was not only practical for reducing parameter uncertainty but also useful for determining parameter values. This method provides a basis for multicriteria uncertainty analysis and parameter estimation in eutrophication modeling.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multicriteria uncertainty analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Behavioral parameters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acceptable parameter values</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chaohu Lake</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eutrophication modeling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Haomiao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Liang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hua, Zulin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Chengda</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Jilin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Environmental science and pollution research</subfield><subfield code="d">Springer Berlin Heidelberg, 1994</subfield><subfield code="g">27(2020), 17 vom: 06. Apr., Seite 20934-20949</subfield><subfield code="w">(DE-627)171335805</subfield><subfield code="w">(DE-600)1178791-0</subfield><subfield code="w">(DE-576)038875101</subfield><subfield code="x">0944-1344</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:17</subfield><subfield code="g">day:06</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:20934-20949</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11356-020-08287-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">2020</subfield><subfield code="e">17</subfield><subfield code="b">06</subfield><subfield code="c">04</subfield><subfield code="h">20934-20949</subfield></datafield></record></collection>
|
score |
7.401846 |