Sources and transformations of nitrate constrained by nitrate isotopes and Bayesian model in karst surface water, Guilin, Southwest China
Abstract Surface water suffering from nitrate ($ NO_{3} $−) contamination in karst area is not only harmful to human health as drinking water but can also affect the process of carbonate rock weathering, so it is crucial to trace the sources and transformations of $ NO_{3} $− in karst surface water....
Ausführliche Beschreibung
Autor*in: |
Zhao, Haijuan [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Environmental science and pollution research - Springer Berlin Heidelberg, 1994, 27(2020), 17 vom: 08. Apr., Seite 21299-21310 |
---|---|
Übergeordnetes Werk: |
volume:27 ; year:2020 ; number:17 ; day:08 ; month:04 ; pages:21299-21310 |
Links: |
---|
DOI / URN: |
10.1007/s11356-020-08612-8 |
---|
Katalog-ID: |
OLC2040586083 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2040586083 | ||
003 | DE-627 | ||
005 | 20230606195151.0 | ||
007 | tu | ||
008 | 200819s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11356-020-08612-8 |2 doi | |
035 | |a (DE-627)OLC2040586083 | ||
035 | |a (DE-He213)s11356-020-08612-8-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |a 360 |a 333.7 |q VZ |
082 | 0 | 4 | |a 690 |a 333.7 |a 540 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
100 | 1 | |a Zhao, Haijuan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Sources and transformations of nitrate constrained by nitrate isotopes and Bayesian model in karst surface water, Guilin, Southwest China |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag GmbH Germany, part of Springer Nature 2020 | ||
520 | |a Abstract Surface water suffering from nitrate ($ NO_{3} $−) contamination in karst area is not only harmful to human health as drinking water but can also affect the process of carbonate rock weathering, so it is crucial to trace the sources and transformations of $ NO_{3} $− in karst surface water. In this study, an investigation of water chemical data and $ NO_{3} $− isotopes ($ δ^{15} $N and $ δ^{18} $O) was used to elucidate the transformations of $ NO_{3} $− and quantify a proportional apportionment of $ NO_{3} $− sources of individual potential sources (incl. soil organic nitrogen (SON), atmospheric precipitation (AP), manure and sewage wastes (M&S), and chemical fertilizer (CF)) in the Lijiang River (typical karst surface water), Guilin, Southwest China. $ δ^{15} $N-$ NO_{3} $− and $ δ^{18} $O-$ NO_{3} $− values of water samples from the Lijiang River range from 2.14 to 13.50‰ (mean, 6.59‰) and from − 2.44 to 6.97‰ (mean, 3.76‰), respectively. A positive correlation between $ Cl^{−} $ and $ NO_{3} $− but no correlations between $ NO_{3} $− and $ δ^{15} $N-$ NO_{3} $− or $ δ^{18} $O-$ NO_{3} $− are found and the $ δ^{18} $O-$ NO_{3} $− values fitted the theoretical $ δ^{18} $O-$ NO_{3} $− values produced from nitrification, suggesting that the genesis of $ NO_{3} $− in waters of the Lijiang River is affected by nitrification processes and the mixing process has a major effect on $ NO_{3} $− transportation. Results of the Bayesian stable isotope mixing model show that the M&S and SON are the main $ NO_{3} $− source through the whole year (accounting for ~ 61% and 65% of the total $ NO_{3} $− in the wet and dry season, respectively), followed by CF (~ 29%). Furthermore, we find that nitrification of nitrogen in fertilizers, soil, and manure and sewage can promote the carbonate rock weathering. The estimated contribution of such nitrification to the weathering of carbonate rocks accounts for about 11% of the total carbonate rock weathering flux (calculated by $ HCO_{3} $−) in the Lijiang River. This finding indicates that the weathering of carbonate rock is probably affected by nitrogen nitrification processes in karst catchment. | ||
650 | 4 | |a NO | |
650 | 4 | |a isotopes | |
650 | 4 | |a Bayesian isotope mixing model | |
650 | 4 | |a Nitrification | |
650 | 4 | |a Carbonate rock weathering | |
650 | 4 | |a Lijiang River | |
650 | 4 | |a Karst surface water | |
700 | 1 | |a Xiao, Qiong |4 aut | |
700 | 1 | |a Miao, Ying |4 aut | |
700 | 1 | |a Wang, Zhijun |4 aut | |
700 | 1 | |a Wang, Qigang |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Environmental science and pollution research |d Springer Berlin Heidelberg, 1994 |g 27(2020), 17 vom: 08. Apr., Seite 21299-21310 |w (DE-627)171335805 |w (DE-600)1178791-0 |w (DE-576)038875101 |x 0944-1344 |7 nnns |
773 | 1 | 8 | |g volume:27 |g year:2020 |g number:17 |g day:08 |g month:04 |g pages:21299-21310 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11356-020-08612-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-ARC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-FOR | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_252 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 27 |j 2020 |e 17 |b 08 |c 04 |h 21299-21310 |
author_variant |
h z hz q x qx y m ym z w zw q w qw |
---|---|
matchkey_str |
article:09441344:2020----::oreadrnfrainontaeosriebntaestpsnbysamdlnass |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s11356-020-08612-8 doi (DE-627)OLC2040586083 (DE-He213)s11356-020-08612-8-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Zhao, Haijuan verfasserin aut Sources and transformations of nitrate constrained by nitrate isotopes and Bayesian model in karst surface water, Guilin, Southwest China 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Surface water suffering from nitrate ($ NO_{3} $−) contamination in karst area is not only harmful to human health as drinking water but can also affect the process of carbonate rock weathering, so it is crucial to trace the sources and transformations of $ NO_{3} $− in karst surface water. In this study, an investigation of water chemical data and $ NO_{3} $− isotopes ($ δ^{15} $N and $ δ^{18} $O) was used to elucidate the transformations of $ NO_{3} $− and quantify a proportional apportionment of $ NO_{3} $− sources of individual potential sources (incl. soil organic nitrogen (SON), atmospheric precipitation (AP), manure and sewage wastes (M&S), and chemical fertilizer (CF)) in the Lijiang River (typical karst surface water), Guilin, Southwest China. $ δ^{15} $N-$ NO_{3} $− and $ δ^{18} $O-$ NO_{3} $− values of water samples from the Lijiang River range from 2.14 to 13.50‰ (mean, 6.59‰) and from − 2.44 to 6.97‰ (mean, 3.76‰), respectively. A positive correlation between $ Cl^{−} $ and $ NO_{3} $− but no correlations between $ NO_{3} $− and $ δ^{15} $N-$ NO_{3} $− or $ δ^{18} $O-$ NO_{3} $− are found and the $ δ^{18} $O-$ NO_{3} $− values fitted the theoretical $ δ^{18} $O-$ NO_{3} $− values produced from nitrification, suggesting that the genesis of $ NO_{3} $− in waters of the Lijiang River is affected by nitrification processes and the mixing process has a major effect on $ NO_{3} $− transportation. Results of the Bayesian stable isotope mixing model show that the M&S and SON are the main $ NO_{3} $− source through the whole year (accounting for ~ 61% and 65% of the total $ NO_{3} $− in the wet and dry season, respectively), followed by CF (~ 29%). Furthermore, we find that nitrification of nitrogen in fertilizers, soil, and manure and sewage can promote the carbonate rock weathering. The estimated contribution of such nitrification to the weathering of carbonate rocks accounts for about 11% of the total carbonate rock weathering flux (calculated by $ HCO_{3} $−) in the Lijiang River. This finding indicates that the weathering of carbonate rock is probably affected by nitrogen nitrification processes in karst catchment. NO isotopes Bayesian isotope mixing model Nitrification Carbonate rock weathering Lijiang River Karst surface water Xiao, Qiong aut Miao, Ying aut Wang, Zhijun aut Wang, Qigang aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 27(2020), 17 vom: 08. Apr., Seite 21299-21310 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:27 year:2020 number:17 day:08 month:04 pages:21299-21310 https://doi.org/10.1007/s11356-020-08612-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 27 2020 17 08 04 21299-21310 |
spelling |
10.1007/s11356-020-08612-8 doi (DE-627)OLC2040586083 (DE-He213)s11356-020-08612-8-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Zhao, Haijuan verfasserin aut Sources and transformations of nitrate constrained by nitrate isotopes and Bayesian model in karst surface water, Guilin, Southwest China 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Surface water suffering from nitrate ($ NO_{3} $−) contamination in karst area is not only harmful to human health as drinking water but can also affect the process of carbonate rock weathering, so it is crucial to trace the sources and transformations of $ NO_{3} $− in karst surface water. In this study, an investigation of water chemical data and $ NO_{3} $− isotopes ($ δ^{15} $N and $ δ^{18} $O) was used to elucidate the transformations of $ NO_{3} $− and quantify a proportional apportionment of $ NO_{3} $− sources of individual potential sources (incl. soil organic nitrogen (SON), atmospheric precipitation (AP), manure and sewage wastes (M&S), and chemical fertilizer (CF)) in the Lijiang River (typical karst surface water), Guilin, Southwest China. $ δ^{15} $N-$ NO_{3} $− and $ δ^{18} $O-$ NO_{3} $− values of water samples from the Lijiang River range from 2.14 to 13.50‰ (mean, 6.59‰) and from − 2.44 to 6.97‰ (mean, 3.76‰), respectively. A positive correlation between $ Cl^{−} $ and $ NO_{3} $− but no correlations between $ NO_{3} $− and $ δ^{15} $N-$ NO_{3} $− or $ δ^{18} $O-$ NO_{3} $− are found and the $ δ^{18} $O-$ NO_{3} $− values fitted the theoretical $ δ^{18} $O-$ NO_{3} $− values produced from nitrification, suggesting that the genesis of $ NO_{3} $− in waters of the Lijiang River is affected by nitrification processes and the mixing process has a major effect on $ NO_{3} $− transportation. Results of the Bayesian stable isotope mixing model show that the M&S and SON are the main $ NO_{3} $− source through the whole year (accounting for ~ 61% and 65% of the total $ NO_{3} $− in the wet and dry season, respectively), followed by CF (~ 29%). Furthermore, we find that nitrification of nitrogen in fertilizers, soil, and manure and sewage can promote the carbonate rock weathering. The estimated contribution of such nitrification to the weathering of carbonate rocks accounts for about 11% of the total carbonate rock weathering flux (calculated by $ HCO_{3} $−) in the Lijiang River. This finding indicates that the weathering of carbonate rock is probably affected by nitrogen nitrification processes in karst catchment. NO isotopes Bayesian isotope mixing model Nitrification Carbonate rock weathering Lijiang River Karst surface water Xiao, Qiong aut Miao, Ying aut Wang, Zhijun aut Wang, Qigang aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 27(2020), 17 vom: 08. Apr., Seite 21299-21310 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:27 year:2020 number:17 day:08 month:04 pages:21299-21310 https://doi.org/10.1007/s11356-020-08612-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 27 2020 17 08 04 21299-21310 |
allfields_unstemmed |
10.1007/s11356-020-08612-8 doi (DE-627)OLC2040586083 (DE-He213)s11356-020-08612-8-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Zhao, Haijuan verfasserin aut Sources and transformations of nitrate constrained by nitrate isotopes and Bayesian model in karst surface water, Guilin, Southwest China 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Surface water suffering from nitrate ($ NO_{3} $−) contamination in karst area is not only harmful to human health as drinking water but can also affect the process of carbonate rock weathering, so it is crucial to trace the sources and transformations of $ NO_{3} $− in karst surface water. In this study, an investigation of water chemical data and $ NO_{3} $− isotopes ($ δ^{15} $N and $ δ^{18} $O) was used to elucidate the transformations of $ NO_{3} $− and quantify a proportional apportionment of $ NO_{3} $− sources of individual potential sources (incl. soil organic nitrogen (SON), atmospheric precipitation (AP), manure and sewage wastes (M&S), and chemical fertilizer (CF)) in the Lijiang River (typical karst surface water), Guilin, Southwest China. $ δ^{15} $N-$ NO_{3} $− and $ δ^{18} $O-$ NO_{3} $− values of water samples from the Lijiang River range from 2.14 to 13.50‰ (mean, 6.59‰) and from − 2.44 to 6.97‰ (mean, 3.76‰), respectively. A positive correlation between $ Cl^{−} $ and $ NO_{3} $− but no correlations between $ NO_{3} $− and $ δ^{15} $N-$ NO_{3} $− or $ δ^{18} $O-$ NO_{3} $− are found and the $ δ^{18} $O-$ NO_{3} $− values fitted the theoretical $ δ^{18} $O-$ NO_{3} $− values produced from nitrification, suggesting that the genesis of $ NO_{3} $− in waters of the Lijiang River is affected by nitrification processes and the mixing process has a major effect on $ NO_{3} $− transportation. Results of the Bayesian stable isotope mixing model show that the M&S and SON are the main $ NO_{3} $− source through the whole year (accounting for ~ 61% and 65% of the total $ NO_{3} $− in the wet and dry season, respectively), followed by CF (~ 29%). Furthermore, we find that nitrification of nitrogen in fertilizers, soil, and manure and sewage can promote the carbonate rock weathering. The estimated contribution of such nitrification to the weathering of carbonate rocks accounts for about 11% of the total carbonate rock weathering flux (calculated by $ HCO_{3} $−) in the Lijiang River. This finding indicates that the weathering of carbonate rock is probably affected by nitrogen nitrification processes in karst catchment. NO isotopes Bayesian isotope mixing model Nitrification Carbonate rock weathering Lijiang River Karst surface water Xiao, Qiong aut Miao, Ying aut Wang, Zhijun aut Wang, Qigang aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 27(2020), 17 vom: 08. Apr., Seite 21299-21310 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:27 year:2020 number:17 day:08 month:04 pages:21299-21310 https://doi.org/10.1007/s11356-020-08612-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 27 2020 17 08 04 21299-21310 |
allfieldsGer |
10.1007/s11356-020-08612-8 doi (DE-627)OLC2040586083 (DE-He213)s11356-020-08612-8-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Zhao, Haijuan verfasserin aut Sources and transformations of nitrate constrained by nitrate isotopes and Bayesian model in karst surface water, Guilin, Southwest China 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Surface water suffering from nitrate ($ NO_{3} $−) contamination in karst area is not only harmful to human health as drinking water but can also affect the process of carbonate rock weathering, so it is crucial to trace the sources and transformations of $ NO_{3} $− in karst surface water. In this study, an investigation of water chemical data and $ NO_{3} $− isotopes ($ δ^{15} $N and $ δ^{18} $O) was used to elucidate the transformations of $ NO_{3} $− and quantify a proportional apportionment of $ NO_{3} $− sources of individual potential sources (incl. soil organic nitrogen (SON), atmospheric precipitation (AP), manure and sewage wastes (M&S), and chemical fertilizer (CF)) in the Lijiang River (typical karst surface water), Guilin, Southwest China. $ δ^{15} $N-$ NO_{3} $− and $ δ^{18} $O-$ NO_{3} $− values of water samples from the Lijiang River range from 2.14 to 13.50‰ (mean, 6.59‰) and from − 2.44 to 6.97‰ (mean, 3.76‰), respectively. A positive correlation between $ Cl^{−} $ and $ NO_{3} $− but no correlations between $ NO_{3} $− and $ δ^{15} $N-$ NO_{3} $− or $ δ^{18} $O-$ NO_{3} $− are found and the $ δ^{18} $O-$ NO_{3} $− values fitted the theoretical $ δ^{18} $O-$ NO_{3} $− values produced from nitrification, suggesting that the genesis of $ NO_{3} $− in waters of the Lijiang River is affected by nitrification processes and the mixing process has a major effect on $ NO_{3} $− transportation. Results of the Bayesian stable isotope mixing model show that the M&S and SON are the main $ NO_{3} $− source through the whole year (accounting for ~ 61% and 65% of the total $ NO_{3} $− in the wet and dry season, respectively), followed by CF (~ 29%). Furthermore, we find that nitrification of nitrogen in fertilizers, soil, and manure and sewage can promote the carbonate rock weathering. The estimated contribution of such nitrification to the weathering of carbonate rocks accounts for about 11% of the total carbonate rock weathering flux (calculated by $ HCO_{3} $−) in the Lijiang River. This finding indicates that the weathering of carbonate rock is probably affected by nitrogen nitrification processes in karst catchment. NO isotopes Bayesian isotope mixing model Nitrification Carbonate rock weathering Lijiang River Karst surface water Xiao, Qiong aut Miao, Ying aut Wang, Zhijun aut Wang, Qigang aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 27(2020), 17 vom: 08. Apr., Seite 21299-21310 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:27 year:2020 number:17 day:08 month:04 pages:21299-21310 https://doi.org/10.1007/s11356-020-08612-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 27 2020 17 08 04 21299-21310 |
allfieldsSound |
10.1007/s11356-020-08612-8 doi (DE-627)OLC2040586083 (DE-He213)s11356-020-08612-8-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Zhao, Haijuan verfasserin aut Sources and transformations of nitrate constrained by nitrate isotopes and Bayesian model in karst surface water, Guilin, Southwest China 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Surface water suffering from nitrate ($ NO_{3} $−) contamination in karst area is not only harmful to human health as drinking water but can also affect the process of carbonate rock weathering, so it is crucial to trace the sources and transformations of $ NO_{3} $− in karst surface water. In this study, an investigation of water chemical data and $ NO_{3} $− isotopes ($ δ^{15} $N and $ δ^{18} $O) was used to elucidate the transformations of $ NO_{3} $− and quantify a proportional apportionment of $ NO_{3} $− sources of individual potential sources (incl. soil organic nitrogen (SON), atmospheric precipitation (AP), manure and sewage wastes (M&S), and chemical fertilizer (CF)) in the Lijiang River (typical karst surface water), Guilin, Southwest China. $ δ^{15} $N-$ NO_{3} $− and $ δ^{18} $O-$ NO_{3} $− values of water samples from the Lijiang River range from 2.14 to 13.50‰ (mean, 6.59‰) and from − 2.44 to 6.97‰ (mean, 3.76‰), respectively. A positive correlation between $ Cl^{−} $ and $ NO_{3} $− but no correlations between $ NO_{3} $− and $ δ^{15} $N-$ NO_{3} $− or $ δ^{18} $O-$ NO_{3} $− are found and the $ δ^{18} $O-$ NO_{3} $− values fitted the theoretical $ δ^{18} $O-$ NO_{3} $− values produced from nitrification, suggesting that the genesis of $ NO_{3} $− in waters of the Lijiang River is affected by nitrification processes and the mixing process has a major effect on $ NO_{3} $− transportation. Results of the Bayesian stable isotope mixing model show that the M&S and SON are the main $ NO_{3} $− source through the whole year (accounting for ~ 61% and 65% of the total $ NO_{3} $− in the wet and dry season, respectively), followed by CF (~ 29%). Furthermore, we find that nitrification of nitrogen in fertilizers, soil, and manure and sewage can promote the carbonate rock weathering. The estimated contribution of such nitrification to the weathering of carbonate rocks accounts for about 11% of the total carbonate rock weathering flux (calculated by $ HCO_{3} $−) in the Lijiang River. This finding indicates that the weathering of carbonate rock is probably affected by nitrogen nitrification processes in karst catchment. NO isotopes Bayesian isotope mixing model Nitrification Carbonate rock weathering Lijiang River Karst surface water Xiao, Qiong aut Miao, Ying aut Wang, Zhijun aut Wang, Qigang aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 27(2020), 17 vom: 08. Apr., Seite 21299-21310 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:27 year:2020 number:17 day:08 month:04 pages:21299-21310 https://doi.org/10.1007/s11356-020-08612-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 27 2020 17 08 04 21299-21310 |
language |
English |
source |
Enthalten in Environmental science and pollution research 27(2020), 17 vom: 08. Apr., Seite 21299-21310 volume:27 year:2020 number:17 day:08 month:04 pages:21299-21310 |
sourceStr |
Enthalten in Environmental science and pollution research 27(2020), 17 vom: 08. Apr., Seite 21299-21310 volume:27 year:2020 number:17 day:08 month:04 pages:21299-21310 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
NO isotopes Bayesian isotope mixing model Nitrification Carbonate rock weathering Lijiang River Karst surface water |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Environmental science and pollution research |
authorswithroles_txt_mv |
Zhao, Haijuan @@aut@@ Xiao, Qiong @@aut@@ Miao, Ying @@aut@@ Wang, Zhijun @@aut@@ Wang, Qigang @@aut@@ |
publishDateDaySort_date |
2020-04-08T00:00:00Z |
hierarchy_top_id |
171335805 |
dewey-sort |
3570 |
id |
OLC2040586083 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2040586083</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230606195151.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11356-020-08612-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2040586083</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11356-020-08612-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">360</subfield><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="a">333.7</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhao, Haijuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sources and transformations of nitrate constrained by nitrate isotopes and Bayesian model in karst surface water, Guilin, Southwest China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Surface water suffering from nitrate ($ NO_{3} $−) contamination in karst area is not only harmful to human health as drinking water but can also affect the process of carbonate rock weathering, so it is crucial to trace the sources and transformations of $ NO_{3} $− in karst surface water. In this study, an investigation of water chemical data and $ NO_{3} $− isotopes ($ δ^{15} $N and $ δ^{18} $O) was used to elucidate the transformations of $ NO_{3} $− and quantify a proportional apportionment of $ NO_{3} $− sources of individual potential sources (incl. soil organic nitrogen (SON), atmospheric precipitation (AP), manure and sewage wastes (M&S), and chemical fertilizer (CF)) in the Lijiang River (typical karst surface water), Guilin, Southwest China. $ δ^{15} $N-$ NO_{3} $− and $ δ^{18} $O-$ NO_{3} $− values of water samples from the Lijiang River range from 2.14 to 13.50‰ (mean, 6.59‰) and from − 2.44 to 6.97‰ (mean, 3.76‰), respectively. A positive correlation between $ Cl^{−} $ and $ NO_{3} $− but no correlations between $ NO_{3} $− and $ δ^{15} $N-$ NO_{3} $− or $ δ^{18} $O-$ NO_{3} $− are found and the $ δ^{18} $O-$ NO_{3} $− values fitted the theoretical $ δ^{18} $O-$ NO_{3} $− values produced from nitrification, suggesting that the genesis of $ NO_{3} $− in waters of the Lijiang River is affected by nitrification processes and the mixing process has a major effect on $ NO_{3} $− transportation. Results of the Bayesian stable isotope mixing model show that the M&S and SON are the main $ NO_{3} $− source through the whole year (accounting for ~ 61% and 65% of the total $ NO_{3} $− in the wet and dry season, respectively), followed by CF (~ 29%). Furthermore, we find that nitrification of nitrogen in fertilizers, soil, and manure and sewage can promote the carbonate rock weathering. The estimated contribution of such nitrification to the weathering of carbonate rocks accounts for about 11% of the total carbonate rock weathering flux (calculated by $ HCO_{3} $−) in the Lijiang River. This finding indicates that the weathering of carbonate rock is probably affected by nitrogen nitrification processes in karst catchment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">isotopes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian isotope mixing model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nitrification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbonate rock weathering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lijiang River</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Karst surface water</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiao, Qiong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miao, Ying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Zhijun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Qigang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Environmental science and pollution research</subfield><subfield code="d">Springer Berlin Heidelberg, 1994</subfield><subfield code="g">27(2020), 17 vom: 08. Apr., Seite 21299-21310</subfield><subfield code="w">(DE-627)171335805</subfield><subfield code="w">(DE-600)1178791-0</subfield><subfield code="w">(DE-576)038875101</subfield><subfield code="x">0944-1344</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:17</subfield><subfield code="g">day:08</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:21299-21310</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11356-020-08612-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">2020</subfield><subfield code="e">17</subfield><subfield code="b">08</subfield><subfield code="c">04</subfield><subfield code="h">21299-21310</subfield></datafield></record></collection>
|
author |
Zhao, Haijuan |
spellingShingle |
Zhao, Haijuan ddc 570 ddc 690 fid BIODIV misc NO misc isotopes misc Bayesian isotope mixing model misc Nitrification misc Carbonate rock weathering misc Lijiang River misc Karst surface water Sources and transformations of nitrate constrained by nitrate isotopes and Bayesian model in karst surface water, Guilin, Southwest China |
authorStr |
Zhao, Haijuan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)171335805 |
format |
Article |
dewey-ones |
570 - Life sciences; biology 360 - Social problems & services; associations 333 - Economics of land & energy 690 - Buildings 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0944-1344 |
topic_title |
570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Sources and transformations of nitrate constrained by nitrate isotopes and Bayesian model in karst surface water, Guilin, Southwest China NO isotopes Bayesian isotope mixing model Nitrification Carbonate rock weathering Lijiang River Karst surface water |
topic |
ddc 570 ddc 690 fid BIODIV misc NO misc isotopes misc Bayesian isotope mixing model misc Nitrification misc Carbonate rock weathering misc Lijiang River misc Karst surface water |
topic_unstemmed |
ddc 570 ddc 690 fid BIODIV misc NO misc isotopes misc Bayesian isotope mixing model misc Nitrification misc Carbonate rock weathering misc Lijiang River misc Karst surface water |
topic_browse |
ddc 570 ddc 690 fid BIODIV misc NO misc isotopes misc Bayesian isotope mixing model misc Nitrification misc Carbonate rock weathering misc Lijiang River misc Karst surface water |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Environmental science and pollution research |
hierarchy_parent_id |
171335805 |
dewey-tens |
570 - Life sciences; biology 360 - Social problems & social services 330 - Economics 690 - Building & construction 540 - Chemistry |
hierarchy_top_title |
Environmental science and pollution research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 |
title |
Sources and transformations of nitrate constrained by nitrate isotopes and Bayesian model in karst surface water, Guilin, Southwest China |
ctrlnum |
(DE-627)OLC2040586083 (DE-He213)s11356-020-08612-8-p |
title_full |
Sources and transformations of nitrate constrained by nitrate isotopes and Bayesian model in karst surface water, Guilin, Southwest China |
author_sort |
Zhao, Haijuan |
journal |
Environmental science and pollution research |
journalStr |
Environmental science and pollution research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 300 - Social sciences 600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
21299 |
author_browse |
Zhao, Haijuan Xiao, Qiong Miao, Ying Wang, Zhijun Wang, Qigang |
container_volume |
27 |
class |
570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid |
format_se |
Aufsätze |
author-letter |
Zhao, Haijuan |
doi_str_mv |
10.1007/s11356-020-08612-8 |
dewey-full |
570 360 333.7 690 540 |
title_sort |
sources and transformations of nitrate constrained by nitrate isotopes and bayesian model in karst surface water, guilin, southwest china |
title_auth |
Sources and transformations of nitrate constrained by nitrate isotopes and Bayesian model in karst surface water, Guilin, Southwest China |
abstract |
Abstract Surface water suffering from nitrate ($ NO_{3} $−) contamination in karst area is not only harmful to human health as drinking water but can also affect the process of carbonate rock weathering, so it is crucial to trace the sources and transformations of $ NO_{3} $− in karst surface water. In this study, an investigation of water chemical data and $ NO_{3} $− isotopes ($ δ^{15} $N and $ δ^{18} $O) was used to elucidate the transformations of $ NO_{3} $− and quantify a proportional apportionment of $ NO_{3} $− sources of individual potential sources (incl. soil organic nitrogen (SON), atmospheric precipitation (AP), manure and sewage wastes (M&S), and chemical fertilizer (CF)) in the Lijiang River (typical karst surface water), Guilin, Southwest China. $ δ^{15} $N-$ NO_{3} $− and $ δ^{18} $O-$ NO_{3} $− values of water samples from the Lijiang River range from 2.14 to 13.50‰ (mean, 6.59‰) and from − 2.44 to 6.97‰ (mean, 3.76‰), respectively. A positive correlation between $ Cl^{−} $ and $ NO_{3} $− but no correlations between $ NO_{3} $− and $ δ^{15} $N-$ NO_{3} $− or $ δ^{18} $O-$ NO_{3} $− are found and the $ δ^{18} $O-$ NO_{3} $− values fitted the theoretical $ δ^{18} $O-$ NO_{3} $− values produced from nitrification, suggesting that the genesis of $ NO_{3} $− in waters of the Lijiang River is affected by nitrification processes and the mixing process has a major effect on $ NO_{3} $− transportation. Results of the Bayesian stable isotope mixing model show that the M&S and SON are the main $ NO_{3} $− source through the whole year (accounting for ~ 61% and 65% of the total $ NO_{3} $− in the wet and dry season, respectively), followed by CF (~ 29%). Furthermore, we find that nitrification of nitrogen in fertilizers, soil, and manure and sewage can promote the carbonate rock weathering. The estimated contribution of such nitrification to the weathering of carbonate rocks accounts for about 11% of the total carbonate rock weathering flux (calculated by $ HCO_{3} $−) in the Lijiang River. This finding indicates that the weathering of carbonate rock is probably affected by nitrogen nitrification processes in karst catchment. © Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
abstractGer |
Abstract Surface water suffering from nitrate ($ NO_{3} $−) contamination in karst area is not only harmful to human health as drinking water but can also affect the process of carbonate rock weathering, so it is crucial to trace the sources and transformations of $ NO_{3} $− in karst surface water. In this study, an investigation of water chemical data and $ NO_{3} $− isotopes ($ δ^{15} $N and $ δ^{18} $O) was used to elucidate the transformations of $ NO_{3} $− and quantify a proportional apportionment of $ NO_{3} $− sources of individual potential sources (incl. soil organic nitrogen (SON), atmospheric precipitation (AP), manure and sewage wastes (M&S), and chemical fertilizer (CF)) in the Lijiang River (typical karst surface water), Guilin, Southwest China. $ δ^{15} $N-$ NO_{3} $− and $ δ^{18} $O-$ NO_{3} $− values of water samples from the Lijiang River range from 2.14 to 13.50‰ (mean, 6.59‰) and from − 2.44 to 6.97‰ (mean, 3.76‰), respectively. A positive correlation between $ Cl^{−} $ and $ NO_{3} $− but no correlations between $ NO_{3} $− and $ δ^{15} $N-$ NO_{3} $− or $ δ^{18} $O-$ NO_{3} $− are found and the $ δ^{18} $O-$ NO_{3} $− values fitted the theoretical $ δ^{18} $O-$ NO_{3} $− values produced from nitrification, suggesting that the genesis of $ NO_{3} $− in waters of the Lijiang River is affected by nitrification processes and the mixing process has a major effect on $ NO_{3} $− transportation. Results of the Bayesian stable isotope mixing model show that the M&S and SON are the main $ NO_{3} $− source through the whole year (accounting for ~ 61% and 65% of the total $ NO_{3} $− in the wet and dry season, respectively), followed by CF (~ 29%). Furthermore, we find that nitrification of nitrogen in fertilizers, soil, and manure and sewage can promote the carbonate rock weathering. The estimated contribution of such nitrification to the weathering of carbonate rocks accounts for about 11% of the total carbonate rock weathering flux (calculated by $ HCO_{3} $−) in the Lijiang River. This finding indicates that the weathering of carbonate rock is probably affected by nitrogen nitrification processes in karst catchment. © Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
abstract_unstemmed |
Abstract Surface water suffering from nitrate ($ NO_{3} $−) contamination in karst area is not only harmful to human health as drinking water but can also affect the process of carbonate rock weathering, so it is crucial to trace the sources and transformations of $ NO_{3} $− in karst surface water. In this study, an investigation of water chemical data and $ NO_{3} $− isotopes ($ δ^{15} $N and $ δ^{18} $O) was used to elucidate the transformations of $ NO_{3} $− and quantify a proportional apportionment of $ NO_{3} $− sources of individual potential sources (incl. soil organic nitrogen (SON), atmospheric precipitation (AP), manure and sewage wastes (M&S), and chemical fertilizer (CF)) in the Lijiang River (typical karst surface water), Guilin, Southwest China. $ δ^{15} $N-$ NO_{3} $− and $ δ^{18} $O-$ NO_{3} $− values of water samples from the Lijiang River range from 2.14 to 13.50‰ (mean, 6.59‰) and from − 2.44 to 6.97‰ (mean, 3.76‰), respectively. A positive correlation between $ Cl^{−} $ and $ NO_{3} $− but no correlations between $ NO_{3} $− and $ δ^{15} $N-$ NO_{3} $− or $ δ^{18} $O-$ NO_{3} $− are found and the $ δ^{18} $O-$ NO_{3} $− values fitted the theoretical $ δ^{18} $O-$ NO_{3} $− values produced from nitrification, suggesting that the genesis of $ NO_{3} $− in waters of the Lijiang River is affected by nitrification processes and the mixing process has a major effect on $ NO_{3} $− transportation. Results of the Bayesian stable isotope mixing model show that the M&S and SON are the main $ NO_{3} $− source through the whole year (accounting for ~ 61% and 65% of the total $ NO_{3} $− in the wet and dry season, respectively), followed by CF (~ 29%). Furthermore, we find that nitrification of nitrogen in fertilizers, soil, and manure and sewage can promote the carbonate rock weathering. The estimated contribution of such nitrification to the weathering of carbonate rocks accounts for about 11% of the total carbonate rock weathering flux (calculated by $ HCO_{3} $−) in the Lijiang River. This finding indicates that the weathering of carbonate rock is probably affected by nitrogen nitrification processes in karst catchment. © Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
17 |
title_short |
Sources and transformations of nitrate constrained by nitrate isotopes and Bayesian model in karst surface water, Guilin, Southwest China |
url |
https://doi.org/10.1007/s11356-020-08612-8 |
remote_bool |
false |
author2 |
Xiao, Qiong Miao, Ying Wang, Zhijun Wang, Qigang |
author2Str |
Xiao, Qiong Miao, Ying Wang, Zhijun Wang, Qigang |
ppnlink |
171335805 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11356-020-08612-8 |
up_date |
2024-07-04T02:42:10.855Z |
_version_ |
1803614610634309632 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2040586083</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230606195151.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11356-020-08612-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2040586083</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11356-020-08612-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">360</subfield><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="a">333.7</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhao, Haijuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sources and transformations of nitrate constrained by nitrate isotopes and Bayesian model in karst surface water, Guilin, Southwest China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Surface water suffering from nitrate ($ NO_{3} $−) contamination in karst area is not only harmful to human health as drinking water but can also affect the process of carbonate rock weathering, so it is crucial to trace the sources and transformations of $ NO_{3} $− in karst surface water. In this study, an investigation of water chemical data and $ NO_{3} $− isotopes ($ δ^{15} $N and $ δ^{18} $O) was used to elucidate the transformations of $ NO_{3} $− and quantify a proportional apportionment of $ NO_{3} $− sources of individual potential sources (incl. soil organic nitrogen (SON), atmospheric precipitation (AP), manure and sewage wastes (M&S), and chemical fertilizer (CF)) in the Lijiang River (typical karst surface water), Guilin, Southwest China. $ δ^{15} $N-$ NO_{3} $− and $ δ^{18} $O-$ NO_{3} $− values of water samples from the Lijiang River range from 2.14 to 13.50‰ (mean, 6.59‰) and from − 2.44 to 6.97‰ (mean, 3.76‰), respectively. A positive correlation between $ Cl^{−} $ and $ NO_{3} $− but no correlations between $ NO_{3} $− and $ δ^{15} $N-$ NO_{3} $− or $ δ^{18} $O-$ NO_{3} $− are found and the $ δ^{18} $O-$ NO_{3} $− values fitted the theoretical $ δ^{18} $O-$ NO_{3} $− values produced from nitrification, suggesting that the genesis of $ NO_{3} $− in waters of the Lijiang River is affected by nitrification processes and the mixing process has a major effect on $ NO_{3} $− transportation. Results of the Bayesian stable isotope mixing model show that the M&S and SON are the main $ NO_{3} $− source through the whole year (accounting for ~ 61% and 65% of the total $ NO_{3} $− in the wet and dry season, respectively), followed by CF (~ 29%). Furthermore, we find that nitrification of nitrogen in fertilizers, soil, and manure and sewage can promote the carbonate rock weathering. The estimated contribution of such nitrification to the weathering of carbonate rocks accounts for about 11% of the total carbonate rock weathering flux (calculated by $ HCO_{3} $−) in the Lijiang River. This finding indicates that the weathering of carbonate rock is probably affected by nitrogen nitrification processes in karst catchment.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">isotopes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian isotope mixing model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nitrification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbonate rock weathering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lijiang River</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Karst surface water</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiao, Qiong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miao, Ying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Zhijun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Qigang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Environmental science and pollution research</subfield><subfield code="d">Springer Berlin Heidelberg, 1994</subfield><subfield code="g">27(2020), 17 vom: 08. Apr., Seite 21299-21310</subfield><subfield code="w">(DE-627)171335805</subfield><subfield code="w">(DE-600)1178791-0</subfield><subfield code="w">(DE-576)038875101</subfield><subfield code="x">0944-1344</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:17</subfield><subfield code="g">day:08</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:21299-21310</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11356-020-08612-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">2020</subfield><subfield code="e">17</subfield><subfield code="b">08</subfield><subfield code="c">04</subfield><subfield code="h">21299-21310</subfield></datafield></record></collection>
|
score |
7.4015303 |