Electrical breakdown in solid dielectrics
Abstract The mechanism of electrical breakdown in solid dielectrics is analyzed using the results of our investigations performed in this direction over a period of several decades. It is shown that the electrical breakdown in solid dielectrics involves interrelated prebreakdown processes, such as h...
Ausführliche Beschreibung
Autor*in: |
Vorob’ev, G. A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2005 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Pleiades Publishing, Inc. 2005 |
---|
Übergeordnetes Werk: |
Enthalten in: Physics of the solid state - Nauka/Interperiodica, 1993, 47(2005), 6 vom: Juni, Seite 1083-1087 |
---|---|
Übergeordnetes Werk: |
volume:47 ; year:2005 ; number:6 ; month:06 ; pages:1083-1087 |
Links: |
---|
DOI / URN: |
10.1134/1.1946860 |
---|
Katalog-ID: |
OLC2040703047 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2040703047 | ||
003 | DE-627 | ||
005 | 20230504111005.0 | ||
007 | tu | ||
008 | 200820s2005 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1134/1.1946860 |2 doi | |
035 | |a (DE-627)OLC2040703047 | ||
035 | |a (DE-He213)1.1946860-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Vorob’ev, G. A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Electrical breakdown in solid dielectrics |
264 | 1 | |c 2005 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Pleiades Publishing, Inc. 2005 | ||
520 | |a Abstract The mechanism of electrical breakdown in solid dielectrics is analyzed using the results of our investigations performed in this direction over a period of several decades. It is shown that the electrical breakdown in solid dielectrics involves interrelated prebreakdown processes, such as high-voltage polarization, defect formation, electron impact excitation and electron impact ionization of luminescence centers and ions in the host crystal lattice, etc. The electrical breakdown is initiated by electric-field and thermal generation of defects in the crystal. In turn, the generation of defects leads to the formation of defect regions and channels that provide an assisted transfer of charge carriers. Electron currents flow (and electrons are accelerated by the electric field to energies sufficient to induce impact ionization) in these regions of the crystal with a lattice distorted by defects. In this respect, the known approaches to the elaboration of the breakdown theory for alkali halide and other dielectric crystals on the basis of analyzing the motion and acceleration of electrons in an ideal crystal structure have appeared to be incorrect. | ||
650 | 4 | |a Halide | |
650 | 4 | |a Electron Impact | |
650 | 4 | |a Impact Ionization | |
650 | 4 | |a Defect Formation | |
650 | 4 | |a Electron Impact Ionization | |
700 | 1 | |a Ekhanin, S. G. |4 aut | |
700 | 1 | |a Nesmelov, N. S. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Physics of the solid state |d Nauka/Interperiodica, 1993 |g 47(2005), 6 vom: Juni, Seite 1083-1087 |w (DE-627)16567332X |w (DE-600)1159011-7 |w (DE-576)038490706 |x 1063-7834 |7 nnns |
773 | 1 | 8 | |g volume:47 |g year:2005 |g number:6 |g month:06 |g pages:1083-1087 |
856 | 4 | 1 | |u https://doi.org/10.1134/1.1946860 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 47 |j 2005 |e 6 |c 06 |h 1083-1087 |
author_variant |
g a v ga gav s g e sg sge n s n ns nsn |
---|---|
matchkey_str |
article:10637834:2005----::lcrclradwisld |
hierarchy_sort_str |
2005 |
publishDate |
2005 |
allfields |
10.1134/1.1946860 doi (DE-627)OLC2040703047 (DE-He213)1.1946860-p DE-627 ger DE-627 rakwb eng 530 VZ Vorob’ev, G. A. verfasserin aut Electrical breakdown in solid dielectrics 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Inc. 2005 Abstract The mechanism of electrical breakdown in solid dielectrics is analyzed using the results of our investigations performed in this direction over a period of several decades. It is shown that the electrical breakdown in solid dielectrics involves interrelated prebreakdown processes, such as high-voltage polarization, defect formation, electron impact excitation and electron impact ionization of luminescence centers and ions in the host crystal lattice, etc. The electrical breakdown is initiated by electric-field and thermal generation of defects in the crystal. In turn, the generation of defects leads to the formation of defect regions and channels that provide an assisted transfer of charge carriers. Electron currents flow (and electrons are accelerated by the electric field to energies sufficient to induce impact ionization) in these regions of the crystal with a lattice distorted by defects. In this respect, the known approaches to the elaboration of the breakdown theory for alkali halide and other dielectric crystals on the basis of analyzing the motion and acceleration of electrons in an ideal crystal structure have appeared to be incorrect. Halide Electron Impact Impact Ionization Defect Formation Electron Impact Ionization Ekhanin, S. G. aut Nesmelov, N. S. aut Enthalten in Physics of the solid state Nauka/Interperiodica, 1993 47(2005), 6 vom: Juni, Seite 1083-1087 (DE-627)16567332X (DE-600)1159011-7 (DE-576)038490706 1063-7834 nnns volume:47 year:2005 number:6 month:06 pages:1083-1087 https://doi.org/10.1134/1.1946860 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_40 GBV_ILN_70 GBV_ILN_4700 AR 47 2005 6 06 1083-1087 |
spelling |
10.1134/1.1946860 doi (DE-627)OLC2040703047 (DE-He213)1.1946860-p DE-627 ger DE-627 rakwb eng 530 VZ Vorob’ev, G. A. verfasserin aut Electrical breakdown in solid dielectrics 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Inc. 2005 Abstract The mechanism of electrical breakdown in solid dielectrics is analyzed using the results of our investigations performed in this direction over a period of several decades. It is shown that the electrical breakdown in solid dielectrics involves interrelated prebreakdown processes, such as high-voltage polarization, defect formation, electron impact excitation and electron impact ionization of luminescence centers and ions in the host crystal lattice, etc. The electrical breakdown is initiated by electric-field and thermal generation of defects in the crystal. In turn, the generation of defects leads to the formation of defect regions and channels that provide an assisted transfer of charge carriers. Electron currents flow (and electrons are accelerated by the electric field to energies sufficient to induce impact ionization) in these regions of the crystal with a lattice distorted by defects. In this respect, the known approaches to the elaboration of the breakdown theory for alkali halide and other dielectric crystals on the basis of analyzing the motion and acceleration of electrons in an ideal crystal structure have appeared to be incorrect. Halide Electron Impact Impact Ionization Defect Formation Electron Impact Ionization Ekhanin, S. G. aut Nesmelov, N. S. aut Enthalten in Physics of the solid state Nauka/Interperiodica, 1993 47(2005), 6 vom: Juni, Seite 1083-1087 (DE-627)16567332X (DE-600)1159011-7 (DE-576)038490706 1063-7834 nnns volume:47 year:2005 number:6 month:06 pages:1083-1087 https://doi.org/10.1134/1.1946860 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_40 GBV_ILN_70 GBV_ILN_4700 AR 47 2005 6 06 1083-1087 |
allfields_unstemmed |
10.1134/1.1946860 doi (DE-627)OLC2040703047 (DE-He213)1.1946860-p DE-627 ger DE-627 rakwb eng 530 VZ Vorob’ev, G. A. verfasserin aut Electrical breakdown in solid dielectrics 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Inc. 2005 Abstract The mechanism of electrical breakdown in solid dielectrics is analyzed using the results of our investigations performed in this direction over a period of several decades. It is shown that the electrical breakdown in solid dielectrics involves interrelated prebreakdown processes, such as high-voltage polarization, defect formation, electron impact excitation and electron impact ionization of luminescence centers and ions in the host crystal lattice, etc. The electrical breakdown is initiated by electric-field and thermal generation of defects in the crystal. In turn, the generation of defects leads to the formation of defect regions and channels that provide an assisted transfer of charge carriers. Electron currents flow (and electrons are accelerated by the electric field to energies sufficient to induce impact ionization) in these regions of the crystal with a lattice distorted by defects. In this respect, the known approaches to the elaboration of the breakdown theory for alkali halide and other dielectric crystals on the basis of analyzing the motion and acceleration of electrons in an ideal crystal structure have appeared to be incorrect. Halide Electron Impact Impact Ionization Defect Formation Electron Impact Ionization Ekhanin, S. G. aut Nesmelov, N. S. aut Enthalten in Physics of the solid state Nauka/Interperiodica, 1993 47(2005), 6 vom: Juni, Seite 1083-1087 (DE-627)16567332X (DE-600)1159011-7 (DE-576)038490706 1063-7834 nnns volume:47 year:2005 number:6 month:06 pages:1083-1087 https://doi.org/10.1134/1.1946860 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_40 GBV_ILN_70 GBV_ILN_4700 AR 47 2005 6 06 1083-1087 |
allfieldsGer |
10.1134/1.1946860 doi (DE-627)OLC2040703047 (DE-He213)1.1946860-p DE-627 ger DE-627 rakwb eng 530 VZ Vorob’ev, G. A. verfasserin aut Electrical breakdown in solid dielectrics 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Inc. 2005 Abstract The mechanism of electrical breakdown in solid dielectrics is analyzed using the results of our investigations performed in this direction over a period of several decades. It is shown that the electrical breakdown in solid dielectrics involves interrelated prebreakdown processes, such as high-voltage polarization, defect formation, electron impact excitation and electron impact ionization of luminescence centers and ions in the host crystal lattice, etc. The electrical breakdown is initiated by electric-field and thermal generation of defects in the crystal. In turn, the generation of defects leads to the formation of defect regions and channels that provide an assisted transfer of charge carriers. Electron currents flow (and electrons are accelerated by the electric field to energies sufficient to induce impact ionization) in these regions of the crystal with a lattice distorted by defects. In this respect, the known approaches to the elaboration of the breakdown theory for alkali halide and other dielectric crystals on the basis of analyzing the motion and acceleration of electrons in an ideal crystal structure have appeared to be incorrect. Halide Electron Impact Impact Ionization Defect Formation Electron Impact Ionization Ekhanin, S. G. aut Nesmelov, N. S. aut Enthalten in Physics of the solid state Nauka/Interperiodica, 1993 47(2005), 6 vom: Juni, Seite 1083-1087 (DE-627)16567332X (DE-600)1159011-7 (DE-576)038490706 1063-7834 nnns volume:47 year:2005 number:6 month:06 pages:1083-1087 https://doi.org/10.1134/1.1946860 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_40 GBV_ILN_70 GBV_ILN_4700 AR 47 2005 6 06 1083-1087 |
allfieldsSound |
10.1134/1.1946860 doi (DE-627)OLC2040703047 (DE-He213)1.1946860-p DE-627 ger DE-627 rakwb eng 530 VZ Vorob’ev, G. A. verfasserin aut Electrical breakdown in solid dielectrics 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Inc. 2005 Abstract The mechanism of electrical breakdown in solid dielectrics is analyzed using the results of our investigations performed in this direction over a period of several decades. It is shown that the electrical breakdown in solid dielectrics involves interrelated prebreakdown processes, such as high-voltage polarization, defect formation, electron impact excitation and electron impact ionization of luminescence centers and ions in the host crystal lattice, etc. The electrical breakdown is initiated by electric-field and thermal generation of defects in the crystal. In turn, the generation of defects leads to the formation of defect regions and channels that provide an assisted transfer of charge carriers. Electron currents flow (and electrons are accelerated by the electric field to energies sufficient to induce impact ionization) in these regions of the crystal with a lattice distorted by defects. In this respect, the known approaches to the elaboration of the breakdown theory for alkali halide and other dielectric crystals on the basis of analyzing the motion and acceleration of electrons in an ideal crystal structure have appeared to be incorrect. Halide Electron Impact Impact Ionization Defect Formation Electron Impact Ionization Ekhanin, S. G. aut Nesmelov, N. S. aut Enthalten in Physics of the solid state Nauka/Interperiodica, 1993 47(2005), 6 vom: Juni, Seite 1083-1087 (DE-627)16567332X (DE-600)1159011-7 (DE-576)038490706 1063-7834 nnns volume:47 year:2005 number:6 month:06 pages:1083-1087 https://doi.org/10.1134/1.1946860 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_40 GBV_ILN_70 GBV_ILN_4700 AR 47 2005 6 06 1083-1087 |
language |
English |
source |
Enthalten in Physics of the solid state 47(2005), 6 vom: Juni, Seite 1083-1087 volume:47 year:2005 number:6 month:06 pages:1083-1087 |
sourceStr |
Enthalten in Physics of the solid state 47(2005), 6 vom: Juni, Seite 1083-1087 volume:47 year:2005 number:6 month:06 pages:1083-1087 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Halide Electron Impact Impact Ionization Defect Formation Electron Impact Ionization |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Physics of the solid state |
authorswithroles_txt_mv |
Vorob’ev, G. A. @@aut@@ Ekhanin, S. G. @@aut@@ Nesmelov, N. S. @@aut@@ |
publishDateDaySort_date |
2005-06-01T00:00:00Z |
hierarchy_top_id |
16567332X |
dewey-sort |
3530 |
id |
OLC2040703047 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2040703047</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504111005.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2005 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/1.1946860</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2040703047</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)1.1946860-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vorob’ev, G. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Electrical breakdown in solid dielectrics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Inc. 2005</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The mechanism of electrical breakdown in solid dielectrics is analyzed using the results of our investigations performed in this direction over a period of several decades. It is shown that the electrical breakdown in solid dielectrics involves interrelated prebreakdown processes, such as high-voltage polarization, defect formation, electron impact excitation and electron impact ionization of luminescence centers and ions in the host crystal lattice, etc. The electrical breakdown is initiated by electric-field and thermal generation of defects in the crystal. In turn, the generation of defects leads to the formation of defect regions and channels that provide an assisted transfer of charge carriers. Electron currents flow (and electrons are accelerated by the electric field to energies sufficient to induce impact ionization) in these regions of the crystal with a lattice distorted by defects. In this respect, the known approaches to the elaboration of the breakdown theory for alkali halide and other dielectric crystals on the basis of analyzing the motion and acceleration of electrons in an ideal crystal structure have appeared to be incorrect.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Halide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electron Impact</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Impact Ionization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Defect Formation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electron Impact Ionization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ekhanin, S. G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nesmelov, N. S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physics of the solid state</subfield><subfield code="d">Nauka/Interperiodica, 1993</subfield><subfield code="g">47(2005), 6 vom: Juni, Seite 1083-1087</subfield><subfield code="w">(DE-627)16567332X</subfield><subfield code="w">(DE-600)1159011-7</subfield><subfield code="w">(DE-576)038490706</subfield><subfield code="x">1063-7834</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:47</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:6</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:1083-1087</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/1.1946860</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">47</subfield><subfield code="j">2005</subfield><subfield code="e">6</subfield><subfield code="c">06</subfield><subfield code="h">1083-1087</subfield></datafield></record></collection>
|
author |
Vorob’ev, G. A. |
spellingShingle |
Vorob’ev, G. A. ddc 530 misc Halide misc Electron Impact misc Impact Ionization misc Defect Formation misc Electron Impact Ionization Electrical breakdown in solid dielectrics |
authorStr |
Vorob’ev, G. A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)16567332X |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1063-7834 |
topic_title |
530 VZ Electrical breakdown in solid dielectrics Halide Electron Impact Impact Ionization Defect Formation Electron Impact Ionization |
topic |
ddc 530 misc Halide misc Electron Impact misc Impact Ionization misc Defect Formation misc Electron Impact Ionization |
topic_unstemmed |
ddc 530 misc Halide misc Electron Impact misc Impact Ionization misc Defect Formation misc Electron Impact Ionization |
topic_browse |
ddc 530 misc Halide misc Electron Impact misc Impact Ionization misc Defect Formation misc Electron Impact Ionization |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Physics of the solid state |
hierarchy_parent_id |
16567332X |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Physics of the solid state |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)16567332X (DE-600)1159011-7 (DE-576)038490706 |
title |
Electrical breakdown in solid dielectrics |
ctrlnum |
(DE-627)OLC2040703047 (DE-He213)1.1946860-p |
title_full |
Electrical breakdown in solid dielectrics |
author_sort |
Vorob’ev, G. A. |
journal |
Physics of the solid state |
journalStr |
Physics of the solid state |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2005 |
contenttype_str_mv |
txt |
container_start_page |
1083 |
author_browse |
Vorob’ev, G. A. Ekhanin, S. G. Nesmelov, N. S. |
container_volume |
47 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Vorob’ev, G. A. |
doi_str_mv |
10.1134/1.1946860 |
dewey-full |
530 |
title_sort |
electrical breakdown in solid dielectrics |
title_auth |
Electrical breakdown in solid dielectrics |
abstract |
Abstract The mechanism of electrical breakdown in solid dielectrics is analyzed using the results of our investigations performed in this direction over a period of several decades. It is shown that the electrical breakdown in solid dielectrics involves interrelated prebreakdown processes, such as high-voltage polarization, defect formation, electron impact excitation and electron impact ionization of luminescence centers and ions in the host crystal lattice, etc. The electrical breakdown is initiated by electric-field and thermal generation of defects in the crystal. In turn, the generation of defects leads to the formation of defect regions and channels that provide an assisted transfer of charge carriers. Electron currents flow (and electrons are accelerated by the electric field to energies sufficient to induce impact ionization) in these regions of the crystal with a lattice distorted by defects. In this respect, the known approaches to the elaboration of the breakdown theory for alkali halide and other dielectric crystals on the basis of analyzing the motion and acceleration of electrons in an ideal crystal structure have appeared to be incorrect. © Pleiades Publishing, Inc. 2005 |
abstractGer |
Abstract The mechanism of electrical breakdown in solid dielectrics is analyzed using the results of our investigations performed in this direction over a period of several decades. It is shown that the electrical breakdown in solid dielectrics involves interrelated prebreakdown processes, such as high-voltage polarization, defect formation, electron impact excitation and electron impact ionization of luminescence centers and ions in the host crystal lattice, etc. The electrical breakdown is initiated by electric-field and thermal generation of defects in the crystal. In turn, the generation of defects leads to the formation of defect regions and channels that provide an assisted transfer of charge carriers. Electron currents flow (and electrons are accelerated by the electric field to energies sufficient to induce impact ionization) in these regions of the crystal with a lattice distorted by defects. In this respect, the known approaches to the elaboration of the breakdown theory for alkali halide and other dielectric crystals on the basis of analyzing the motion and acceleration of electrons in an ideal crystal structure have appeared to be incorrect. © Pleiades Publishing, Inc. 2005 |
abstract_unstemmed |
Abstract The mechanism of electrical breakdown in solid dielectrics is analyzed using the results of our investigations performed in this direction over a period of several decades. It is shown that the electrical breakdown in solid dielectrics involves interrelated prebreakdown processes, such as high-voltage polarization, defect formation, electron impact excitation and electron impact ionization of luminescence centers and ions in the host crystal lattice, etc. The electrical breakdown is initiated by electric-field and thermal generation of defects in the crystal. In turn, the generation of defects leads to the formation of defect regions and channels that provide an assisted transfer of charge carriers. Electron currents flow (and electrons are accelerated by the electric field to energies sufficient to induce impact ionization) in these regions of the crystal with a lattice distorted by defects. In this respect, the known approaches to the elaboration of the breakdown theory for alkali halide and other dielectric crystals on the basis of analyzing the motion and acceleration of electrons in an ideal crystal structure have appeared to be incorrect. © Pleiades Publishing, Inc. 2005 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_40 GBV_ILN_70 GBV_ILN_4700 |
container_issue |
6 |
title_short |
Electrical breakdown in solid dielectrics |
url |
https://doi.org/10.1134/1.1946860 |
remote_bool |
false |
author2 |
Ekhanin, S. G. Nesmelov, N. S. |
author2Str |
Ekhanin, S. G. Nesmelov, N. S. |
ppnlink |
16567332X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/1.1946860 |
up_date |
2024-07-04T02:57:10.824Z |
_version_ |
1803615554331738112 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2040703047</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504111005.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2005 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/1.1946860</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2040703047</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)1.1946860-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vorob’ev, G. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Electrical breakdown in solid dielectrics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Inc. 2005</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The mechanism of electrical breakdown in solid dielectrics is analyzed using the results of our investigations performed in this direction over a period of several decades. It is shown that the electrical breakdown in solid dielectrics involves interrelated prebreakdown processes, such as high-voltage polarization, defect formation, electron impact excitation and electron impact ionization of luminescence centers and ions in the host crystal lattice, etc. The electrical breakdown is initiated by electric-field and thermal generation of defects in the crystal. In turn, the generation of defects leads to the formation of defect regions and channels that provide an assisted transfer of charge carriers. Electron currents flow (and electrons are accelerated by the electric field to energies sufficient to induce impact ionization) in these regions of the crystal with a lattice distorted by defects. In this respect, the known approaches to the elaboration of the breakdown theory for alkali halide and other dielectric crystals on the basis of analyzing the motion and acceleration of electrons in an ideal crystal structure have appeared to be incorrect.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Halide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electron Impact</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Impact Ionization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Defect Formation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electron Impact Ionization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ekhanin, S. G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nesmelov, N. S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physics of the solid state</subfield><subfield code="d">Nauka/Interperiodica, 1993</subfield><subfield code="g">47(2005), 6 vom: Juni, Seite 1083-1087</subfield><subfield code="w">(DE-627)16567332X</subfield><subfield code="w">(DE-600)1159011-7</subfield><subfield code="w">(DE-576)038490706</subfield><subfield code="x">1063-7834</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:47</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:6</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:1083-1087</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/1.1946860</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">47</subfield><subfield code="j">2005</subfield><subfield code="e">6</subfield><subfield code="c">06</subfield><subfield code="h">1083-1087</subfield></datafield></record></collection>
|
score |
7.401309 |