A representation for coordination fault detection in large-scale multi-agent systems
Abstract Teamwork requires that team members coordinate their actions. The representation of the coordination is a key requirement since it influences the complexity and flexibility of reasoning team-members. One aspect of this requirement is detecting coordination faults as a result of intermittent...
Ausführliche Beschreibung
Autor*in: |
Lindner, Michael [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2009 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media B.V. 2009 |
---|
Übergeordnetes Werk: |
Enthalten in: Annals of mathematics and artificial intelligence - Springer Netherlands, 1990, 56(2009), 2 vom: Juni, Seite 153-186 |
---|---|
Übergeordnetes Werk: |
volume:56 ; year:2009 ; number:2 ; month:06 ; pages:153-186 |
Links: |
---|
DOI / URN: |
10.1007/s10472-009-9165-2 |
---|
Katalog-ID: |
OLC2041503793 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2041503793 | ||
003 | DE-627 | ||
005 | 20230502200247.0 | ||
007 | tu | ||
008 | 200820s2009 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10472-009-9165-2 |2 doi | |
035 | |a (DE-627)OLC2041503793 | ||
035 | |a (DE-He213)s10472-009-9165-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |a 004 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Lindner, Michael |e verfasserin |4 aut | |
245 | 1 | 0 | |a A representation for coordination fault detection in large-scale multi-agent systems |
264 | 1 | |c 2009 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media B.V. 2009 | ||
520 | |a Abstract Teamwork requires that team members coordinate their actions. The representation of the coordination is a key requirement since it influences the complexity and flexibility of reasoning team-members. One aspect of this requirement is detecting coordination faults as a result of intermittent failures of sensors, communication failures, etc. Detection of such faults, based on observations of the behavior of agents, is of prime importance. Though different solutions have been presented thus far, none has presented a comprehensive and efficient resolution for large-scale teams. This paper presents a formal approach to representing multi-agent coordination, and multi-agent observations, using matrix structures. This representation facilitates easy representation of coordination requirements, modularity, flexibility and reuse of existing systems. Based on this representation, we present a novel solution for fault-detection that is both generic and efficient for large-scale teams. We demonstrate the modularity of the representation by presenting a reuse of existing systems and by importing other models (e.g. hierarchical systems) into the new representation. Finally, we extend the representation to support dynamical aspects of complex systems. | ||
650 | 4 | |a Large-scale multi-agent systems | |
650 | 4 | |a Coordination fault detection | |
650 | 4 | |a Teamwork | |
700 | 1 | |a Kalech, Meir |4 aut | |
700 | 1 | |a Kaminka, Gal A. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Annals of mathematics and artificial intelligence |d Springer Netherlands, 1990 |g 56(2009), 2 vom: Juni, Seite 153-186 |w (DE-627)130904104 |w (DE-600)1045926-1 |w (DE-576)02499622X |x 1012-2443 |7 nnns |
773 | 1 | 8 | |g volume:56 |g year:2009 |g number:2 |g month:06 |g pages:153-186 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10472-009-9165-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 56 |j 2009 |e 2 |c 06 |h 153-186 |
author_variant |
m l ml m k mk g a k ga gak |
---|---|
matchkey_str |
article:10122443:2009----::rpeettofroriainaldtcinnagsa |
hierarchy_sort_str |
2009 |
publishDate |
2009 |
allfields |
10.1007/s10472-009-9165-2 doi (DE-627)OLC2041503793 (DE-He213)s10472-009-9165-2-p DE-627 ger DE-627 rakwb eng 510 004 VZ 17,1 ssgn Lindner, Michael verfasserin aut A representation for coordination fault detection in large-scale multi-agent systems 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2009 Abstract Teamwork requires that team members coordinate their actions. The representation of the coordination is a key requirement since it influences the complexity and flexibility of reasoning team-members. One aspect of this requirement is detecting coordination faults as a result of intermittent failures of sensors, communication failures, etc. Detection of such faults, based on observations of the behavior of agents, is of prime importance. Though different solutions have been presented thus far, none has presented a comprehensive and efficient resolution for large-scale teams. This paper presents a formal approach to representing multi-agent coordination, and multi-agent observations, using matrix structures. This representation facilitates easy representation of coordination requirements, modularity, flexibility and reuse of existing systems. Based on this representation, we present a novel solution for fault-detection that is both generic and efficient for large-scale teams. We demonstrate the modularity of the representation by presenting a reuse of existing systems and by importing other models (e.g. hierarchical systems) into the new representation. Finally, we extend the representation to support dynamical aspects of complex systems. Large-scale multi-agent systems Coordination fault detection Teamwork Kalech, Meir aut Kaminka, Gal A. aut Enthalten in Annals of mathematics and artificial intelligence Springer Netherlands, 1990 56(2009), 2 vom: Juni, Seite 153-186 (DE-627)130904104 (DE-600)1045926-1 (DE-576)02499622X 1012-2443 nnns volume:56 year:2009 number:2 month:06 pages:153-186 https://doi.org/10.1007/s10472-009-9165-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 AR 56 2009 2 06 153-186 |
spelling |
10.1007/s10472-009-9165-2 doi (DE-627)OLC2041503793 (DE-He213)s10472-009-9165-2-p DE-627 ger DE-627 rakwb eng 510 004 VZ 17,1 ssgn Lindner, Michael verfasserin aut A representation for coordination fault detection in large-scale multi-agent systems 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2009 Abstract Teamwork requires that team members coordinate their actions. The representation of the coordination is a key requirement since it influences the complexity and flexibility of reasoning team-members. One aspect of this requirement is detecting coordination faults as a result of intermittent failures of sensors, communication failures, etc. Detection of such faults, based on observations of the behavior of agents, is of prime importance. Though different solutions have been presented thus far, none has presented a comprehensive and efficient resolution for large-scale teams. This paper presents a formal approach to representing multi-agent coordination, and multi-agent observations, using matrix structures. This representation facilitates easy representation of coordination requirements, modularity, flexibility and reuse of existing systems. Based on this representation, we present a novel solution for fault-detection that is both generic and efficient for large-scale teams. We demonstrate the modularity of the representation by presenting a reuse of existing systems and by importing other models (e.g. hierarchical systems) into the new representation. Finally, we extend the representation to support dynamical aspects of complex systems. Large-scale multi-agent systems Coordination fault detection Teamwork Kalech, Meir aut Kaminka, Gal A. aut Enthalten in Annals of mathematics and artificial intelligence Springer Netherlands, 1990 56(2009), 2 vom: Juni, Seite 153-186 (DE-627)130904104 (DE-600)1045926-1 (DE-576)02499622X 1012-2443 nnns volume:56 year:2009 number:2 month:06 pages:153-186 https://doi.org/10.1007/s10472-009-9165-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 AR 56 2009 2 06 153-186 |
allfields_unstemmed |
10.1007/s10472-009-9165-2 doi (DE-627)OLC2041503793 (DE-He213)s10472-009-9165-2-p DE-627 ger DE-627 rakwb eng 510 004 VZ 17,1 ssgn Lindner, Michael verfasserin aut A representation for coordination fault detection in large-scale multi-agent systems 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2009 Abstract Teamwork requires that team members coordinate their actions. The representation of the coordination is a key requirement since it influences the complexity and flexibility of reasoning team-members. One aspect of this requirement is detecting coordination faults as a result of intermittent failures of sensors, communication failures, etc. Detection of such faults, based on observations of the behavior of agents, is of prime importance. Though different solutions have been presented thus far, none has presented a comprehensive and efficient resolution for large-scale teams. This paper presents a formal approach to representing multi-agent coordination, and multi-agent observations, using matrix structures. This representation facilitates easy representation of coordination requirements, modularity, flexibility and reuse of existing systems. Based on this representation, we present a novel solution for fault-detection that is both generic and efficient for large-scale teams. We demonstrate the modularity of the representation by presenting a reuse of existing systems and by importing other models (e.g. hierarchical systems) into the new representation. Finally, we extend the representation to support dynamical aspects of complex systems. Large-scale multi-agent systems Coordination fault detection Teamwork Kalech, Meir aut Kaminka, Gal A. aut Enthalten in Annals of mathematics and artificial intelligence Springer Netherlands, 1990 56(2009), 2 vom: Juni, Seite 153-186 (DE-627)130904104 (DE-600)1045926-1 (DE-576)02499622X 1012-2443 nnns volume:56 year:2009 number:2 month:06 pages:153-186 https://doi.org/10.1007/s10472-009-9165-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 AR 56 2009 2 06 153-186 |
allfieldsGer |
10.1007/s10472-009-9165-2 doi (DE-627)OLC2041503793 (DE-He213)s10472-009-9165-2-p DE-627 ger DE-627 rakwb eng 510 004 VZ 17,1 ssgn Lindner, Michael verfasserin aut A representation for coordination fault detection in large-scale multi-agent systems 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2009 Abstract Teamwork requires that team members coordinate their actions. The representation of the coordination is a key requirement since it influences the complexity and flexibility of reasoning team-members. One aspect of this requirement is detecting coordination faults as a result of intermittent failures of sensors, communication failures, etc. Detection of such faults, based on observations of the behavior of agents, is of prime importance. Though different solutions have been presented thus far, none has presented a comprehensive and efficient resolution for large-scale teams. This paper presents a formal approach to representing multi-agent coordination, and multi-agent observations, using matrix structures. This representation facilitates easy representation of coordination requirements, modularity, flexibility and reuse of existing systems. Based on this representation, we present a novel solution for fault-detection that is both generic and efficient for large-scale teams. We demonstrate the modularity of the representation by presenting a reuse of existing systems and by importing other models (e.g. hierarchical systems) into the new representation. Finally, we extend the representation to support dynamical aspects of complex systems. Large-scale multi-agent systems Coordination fault detection Teamwork Kalech, Meir aut Kaminka, Gal A. aut Enthalten in Annals of mathematics and artificial intelligence Springer Netherlands, 1990 56(2009), 2 vom: Juni, Seite 153-186 (DE-627)130904104 (DE-600)1045926-1 (DE-576)02499622X 1012-2443 nnns volume:56 year:2009 number:2 month:06 pages:153-186 https://doi.org/10.1007/s10472-009-9165-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 AR 56 2009 2 06 153-186 |
allfieldsSound |
10.1007/s10472-009-9165-2 doi (DE-627)OLC2041503793 (DE-He213)s10472-009-9165-2-p DE-627 ger DE-627 rakwb eng 510 004 VZ 17,1 ssgn Lindner, Michael verfasserin aut A representation for coordination fault detection in large-scale multi-agent systems 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2009 Abstract Teamwork requires that team members coordinate their actions. The representation of the coordination is a key requirement since it influences the complexity and flexibility of reasoning team-members. One aspect of this requirement is detecting coordination faults as a result of intermittent failures of sensors, communication failures, etc. Detection of such faults, based on observations of the behavior of agents, is of prime importance. Though different solutions have been presented thus far, none has presented a comprehensive and efficient resolution for large-scale teams. This paper presents a formal approach to representing multi-agent coordination, and multi-agent observations, using matrix structures. This representation facilitates easy representation of coordination requirements, modularity, flexibility and reuse of existing systems. Based on this representation, we present a novel solution for fault-detection that is both generic and efficient for large-scale teams. We demonstrate the modularity of the representation by presenting a reuse of existing systems and by importing other models (e.g. hierarchical systems) into the new representation. Finally, we extend the representation to support dynamical aspects of complex systems. Large-scale multi-agent systems Coordination fault detection Teamwork Kalech, Meir aut Kaminka, Gal A. aut Enthalten in Annals of mathematics and artificial intelligence Springer Netherlands, 1990 56(2009), 2 vom: Juni, Seite 153-186 (DE-627)130904104 (DE-600)1045926-1 (DE-576)02499622X 1012-2443 nnns volume:56 year:2009 number:2 month:06 pages:153-186 https://doi.org/10.1007/s10472-009-9165-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 AR 56 2009 2 06 153-186 |
language |
English |
source |
Enthalten in Annals of mathematics and artificial intelligence 56(2009), 2 vom: Juni, Seite 153-186 volume:56 year:2009 number:2 month:06 pages:153-186 |
sourceStr |
Enthalten in Annals of mathematics and artificial intelligence 56(2009), 2 vom: Juni, Seite 153-186 volume:56 year:2009 number:2 month:06 pages:153-186 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Large-scale multi-agent systems Coordination fault detection Teamwork |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Annals of mathematics and artificial intelligence |
authorswithroles_txt_mv |
Lindner, Michael @@aut@@ Kalech, Meir @@aut@@ Kaminka, Gal A. @@aut@@ |
publishDateDaySort_date |
2009-06-01T00:00:00Z |
hierarchy_top_id |
130904104 |
dewey-sort |
3510 |
id |
OLC2041503793 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2041503793</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502200247.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2009 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10472-009-9165-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2041503793</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10472-009-9165-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lindner, Michael</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A representation for coordination fault detection in large-scale multi-agent systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media B.V. 2009</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Teamwork requires that team members coordinate their actions. The representation of the coordination is a key requirement since it influences the complexity and flexibility of reasoning team-members. One aspect of this requirement is detecting coordination faults as a result of intermittent failures of sensors, communication failures, etc. Detection of such faults, based on observations of the behavior of agents, is of prime importance. Though different solutions have been presented thus far, none has presented a comprehensive and efficient resolution for large-scale teams. This paper presents a formal approach to representing multi-agent coordination, and multi-agent observations, using matrix structures. This representation facilitates easy representation of coordination requirements, modularity, flexibility and reuse of existing systems. Based on this representation, we present a novel solution for fault-detection that is both generic and efficient for large-scale teams. We demonstrate the modularity of the representation by presenting a reuse of existing systems and by importing other models (e.g. hierarchical systems) into the new representation. Finally, we extend the representation to support dynamical aspects of complex systems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Large-scale multi-agent systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coordination fault detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Teamwork</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kalech, Meir</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaminka, Gal A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of mathematics and artificial intelligence</subfield><subfield code="d">Springer Netherlands, 1990</subfield><subfield code="g">56(2009), 2 vom: Juni, Seite 153-186</subfield><subfield code="w">(DE-627)130904104</subfield><subfield code="w">(DE-600)1045926-1</subfield><subfield code="w">(DE-576)02499622X</subfield><subfield code="x">1012-2443</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:2</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:153-186</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10472-009-9165-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2009</subfield><subfield code="e">2</subfield><subfield code="c">06</subfield><subfield code="h">153-186</subfield></datafield></record></collection>
|
author |
Lindner, Michael |
spellingShingle |
Lindner, Michael ddc 510 ssgn 17,1 misc Large-scale multi-agent systems misc Coordination fault detection misc Teamwork A representation for coordination fault detection in large-scale multi-agent systems |
authorStr |
Lindner, Michael |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130904104 |
format |
Article |
dewey-ones |
510 - Mathematics 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1012-2443 |
topic_title |
510 004 VZ 17,1 ssgn A representation for coordination fault detection in large-scale multi-agent systems Large-scale multi-agent systems Coordination fault detection Teamwork |
topic |
ddc 510 ssgn 17,1 misc Large-scale multi-agent systems misc Coordination fault detection misc Teamwork |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Large-scale multi-agent systems misc Coordination fault detection misc Teamwork |
topic_browse |
ddc 510 ssgn 17,1 misc Large-scale multi-agent systems misc Coordination fault detection misc Teamwork |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Annals of mathematics and artificial intelligence |
hierarchy_parent_id |
130904104 |
dewey-tens |
510 - Mathematics 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Annals of mathematics and artificial intelligence |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130904104 (DE-600)1045926-1 (DE-576)02499622X |
title |
A representation for coordination fault detection in large-scale multi-agent systems |
ctrlnum |
(DE-627)OLC2041503793 (DE-He213)s10472-009-9165-2-p |
title_full |
A representation for coordination fault detection in large-scale multi-agent systems |
author_sort |
Lindner, Michael |
journal |
Annals of mathematics and artificial intelligence |
journalStr |
Annals of mathematics and artificial intelligence |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2009 |
contenttype_str_mv |
txt |
container_start_page |
153 |
author_browse |
Lindner, Michael Kalech, Meir Kaminka, Gal A. |
container_volume |
56 |
class |
510 004 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Lindner, Michael |
doi_str_mv |
10.1007/s10472-009-9165-2 |
dewey-full |
510 004 |
title_sort |
a representation for coordination fault detection in large-scale multi-agent systems |
title_auth |
A representation for coordination fault detection in large-scale multi-agent systems |
abstract |
Abstract Teamwork requires that team members coordinate their actions. The representation of the coordination is a key requirement since it influences the complexity and flexibility of reasoning team-members. One aspect of this requirement is detecting coordination faults as a result of intermittent failures of sensors, communication failures, etc. Detection of such faults, based on observations of the behavior of agents, is of prime importance. Though different solutions have been presented thus far, none has presented a comprehensive and efficient resolution for large-scale teams. This paper presents a formal approach to representing multi-agent coordination, and multi-agent observations, using matrix structures. This representation facilitates easy representation of coordination requirements, modularity, flexibility and reuse of existing systems. Based on this representation, we present a novel solution for fault-detection that is both generic and efficient for large-scale teams. We demonstrate the modularity of the representation by presenting a reuse of existing systems and by importing other models (e.g. hierarchical systems) into the new representation. Finally, we extend the representation to support dynamical aspects of complex systems. © Springer Science+Business Media B.V. 2009 |
abstractGer |
Abstract Teamwork requires that team members coordinate their actions. The representation of the coordination is a key requirement since it influences the complexity and flexibility of reasoning team-members. One aspect of this requirement is detecting coordination faults as a result of intermittent failures of sensors, communication failures, etc. Detection of such faults, based on observations of the behavior of agents, is of prime importance. Though different solutions have been presented thus far, none has presented a comprehensive and efficient resolution for large-scale teams. This paper presents a formal approach to representing multi-agent coordination, and multi-agent observations, using matrix structures. This representation facilitates easy representation of coordination requirements, modularity, flexibility and reuse of existing systems. Based on this representation, we present a novel solution for fault-detection that is both generic and efficient for large-scale teams. We demonstrate the modularity of the representation by presenting a reuse of existing systems and by importing other models (e.g. hierarchical systems) into the new representation. Finally, we extend the representation to support dynamical aspects of complex systems. © Springer Science+Business Media B.V. 2009 |
abstract_unstemmed |
Abstract Teamwork requires that team members coordinate their actions. The representation of the coordination is a key requirement since it influences the complexity and flexibility of reasoning team-members. One aspect of this requirement is detecting coordination faults as a result of intermittent failures of sensors, communication failures, etc. Detection of such faults, based on observations of the behavior of agents, is of prime importance. Though different solutions have been presented thus far, none has presented a comprehensive and efficient resolution for large-scale teams. This paper presents a formal approach to representing multi-agent coordination, and multi-agent observations, using matrix structures. This representation facilitates easy representation of coordination requirements, modularity, flexibility and reuse of existing systems. Based on this representation, we present a novel solution for fault-detection that is both generic and efficient for large-scale teams. We demonstrate the modularity of the representation by presenting a reuse of existing systems and by importing other models (e.g. hierarchical systems) into the new representation. Finally, we extend the representation to support dynamical aspects of complex systems. © Springer Science+Business Media B.V. 2009 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 |
container_issue |
2 |
title_short |
A representation for coordination fault detection in large-scale multi-agent systems |
url |
https://doi.org/10.1007/s10472-009-9165-2 |
remote_bool |
false |
author2 |
Kalech, Meir Kaminka, Gal A. |
author2Str |
Kalech, Meir Kaminka, Gal A. |
ppnlink |
130904104 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10472-009-9165-2 |
up_date |
2024-07-04T04:53:56.166Z |
_version_ |
1803622899942162432 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2041503793</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502200247.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2009 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10472-009-9165-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2041503793</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10472-009-9165-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lindner, Michael</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A representation for coordination fault detection in large-scale multi-agent systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media B.V. 2009</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Teamwork requires that team members coordinate their actions. The representation of the coordination is a key requirement since it influences the complexity and flexibility of reasoning team-members. One aspect of this requirement is detecting coordination faults as a result of intermittent failures of sensors, communication failures, etc. Detection of such faults, based on observations of the behavior of agents, is of prime importance. Though different solutions have been presented thus far, none has presented a comprehensive and efficient resolution for large-scale teams. This paper presents a formal approach to representing multi-agent coordination, and multi-agent observations, using matrix structures. This representation facilitates easy representation of coordination requirements, modularity, flexibility and reuse of existing systems. Based on this representation, we present a novel solution for fault-detection that is both generic and efficient for large-scale teams. We demonstrate the modularity of the representation by presenting a reuse of existing systems and by importing other models (e.g. hierarchical systems) into the new representation. Finally, we extend the representation to support dynamical aspects of complex systems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Large-scale multi-agent systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coordination fault detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Teamwork</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kalech, Meir</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaminka, Gal A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of mathematics and artificial intelligence</subfield><subfield code="d">Springer Netherlands, 1990</subfield><subfield code="g">56(2009), 2 vom: Juni, Seite 153-186</subfield><subfield code="w">(DE-627)130904104</subfield><subfield code="w">(DE-600)1045926-1</subfield><subfield code="w">(DE-576)02499622X</subfield><subfield code="x">1012-2443</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:2</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:153-186</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10472-009-9165-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2009</subfield><subfield code="e">2</subfield><subfield code="c">06</subfield><subfield code="h">153-186</subfield></datafield></record></collection>
|
score |
7.401269 |