A $ Neo^{2} $ bayesian foundation of the maxmin value for two-person zero-sum games
Abstract A joint derivation of utility and value for two-person zero-sum games is obtained using a decision theoretic approach. Acts map states to consequences. The latter are lotteries over prizes, and the set of states is a product of two finite sets (m rows andn columns). Preferences over acts ar...
Ausführliche Beschreibung
Autor*in: |
Hart, Sergiu [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1994 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Physica-Verlag 1994 |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of game theory - Physica-Verlag, 1971, 23(1994), 4 vom: Dez., Seite 347-358 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:1994 ; number:4 ; month:12 ; pages:347-358 |
Links: |
---|
DOI / URN: |
10.1007/BF01242948 |
---|
Katalog-ID: |
OLC2041757302 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2041757302 | ||
003 | DE-627 | ||
005 | 20230323143144.0 | ||
007 | tu | ||
008 | 200820s1994 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF01242948 |2 doi | |
035 | |a (DE-627)OLC2041757302 | ||
035 | |a (DE-He213)BF01242948-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a SA 5860 |q VZ |2 rvk | ||
084 | |a SA 5860 |q VZ |2 rvk | ||
100 | 1 | |a Hart, Sergiu |e verfasserin |4 aut | |
245 | 1 | 0 | |a A $ Neo^{2} $ bayesian foundation of the maxmin value for two-person zero-sum games |
264 | 1 | |c 1994 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Physica-Verlag 1994 | ||
520 | |a Abstract A joint derivation of utility and value for two-person zero-sum games is obtained using a decision theoretic approach. Acts map states to consequences. The latter are lotteries over prizes, and the set of states is a product of two finite sets (m rows andn columns). Preferences over acts are complete, transitive, continuous, monotonie and certainty-independent (Gilboa and Schmeidler (1989)), and satisfy a new axiom which we introduce. These axioms are shown to characterize preferences such that (i) the induced preferences on consequences are represented by a von Neumann-Morgenstern utility function, and (ii) each act is ranked according to the maxmin value of the correspondingm × n utility matrix (viewed as a two-person zero-sum game). An alternative statement of the result deals simultaneously with all finite two-person zero-sum games in the framework of conditional acts and preferences. | ||
650 | 4 | |a Utility Function | |
650 | 4 | |a Economic Theory | |
650 | 4 | |a Game Theory | |
650 | 4 | |a Theoretic Approach | |
650 | 4 | |a Alternative Statement | |
700 | 1 | |a Modica, Salvatore |4 aut | |
700 | 1 | |a Schmeidler, David |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of game theory |d Physica-Verlag, 1971 |g 23(1994), 4 vom: Dez., Seite 347-358 |w (DE-627)129290653 |w (DE-600)120387-3 |w (DE-576)01447199X |x 0020-7276 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:1994 |g number:4 |g month:12 |g pages:347-358 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF01242948 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-WIW | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2244 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4193 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4314 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4700 | ||
936 | r | v | |a SA 5860 |
936 | r | v | |a SA 5860 |
951 | |a AR | ||
952 | |d 23 |j 1994 |e 4 |c 12 |h 347-358 |
author_variant |
s h sh s m sm d s ds |
---|---|
matchkey_str |
article:00207276:1994----::nobysafudtooteamnaufrw |
hierarchy_sort_str |
1994 |
publishDate |
1994 |
allfields |
10.1007/BF01242948 doi (DE-627)OLC2041757302 (DE-He213)BF01242948-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ SA 5860 VZ rvk SA 5860 VZ rvk Hart, Sergiu verfasserin aut A $ Neo^{2} $ bayesian foundation of the maxmin value for two-person zero-sum games 1994 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Physica-Verlag 1994 Abstract A joint derivation of utility and value for two-person zero-sum games is obtained using a decision theoretic approach. Acts map states to consequences. The latter are lotteries over prizes, and the set of states is a product of two finite sets (m rows andn columns). Preferences over acts are complete, transitive, continuous, monotonie and certainty-independent (Gilboa and Schmeidler (1989)), and satisfy a new axiom which we introduce. These axioms are shown to characterize preferences such that (i) the induced preferences on consequences are represented by a von Neumann-Morgenstern utility function, and (ii) each act is ranked according to the maxmin value of the correspondingm × n utility matrix (viewed as a two-person zero-sum game). An alternative statement of the result deals simultaneously with all finite two-person zero-sum games in the framework of conditional acts and preferences. Utility Function Economic Theory Game Theory Theoretic Approach Alternative Statement Modica, Salvatore aut Schmeidler, David aut Enthalten in International journal of game theory Physica-Verlag, 1971 23(1994), 4 vom: Dez., Seite 347-358 (DE-627)129290653 (DE-600)120387-3 (DE-576)01447199X 0020-7276 nnns volume:23 year:1994 number:4 month:12 pages:347-358 https://doi.org/10.1007/BF01242948 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2244 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4700 SA 5860 SA 5860 AR 23 1994 4 12 347-358 |
spelling |
10.1007/BF01242948 doi (DE-627)OLC2041757302 (DE-He213)BF01242948-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ SA 5860 VZ rvk SA 5860 VZ rvk Hart, Sergiu verfasserin aut A $ Neo^{2} $ bayesian foundation of the maxmin value for two-person zero-sum games 1994 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Physica-Verlag 1994 Abstract A joint derivation of utility and value for two-person zero-sum games is obtained using a decision theoretic approach. Acts map states to consequences. The latter are lotteries over prizes, and the set of states is a product of two finite sets (m rows andn columns). Preferences over acts are complete, transitive, continuous, monotonie and certainty-independent (Gilboa and Schmeidler (1989)), and satisfy a new axiom which we introduce. These axioms are shown to characterize preferences such that (i) the induced preferences on consequences are represented by a von Neumann-Morgenstern utility function, and (ii) each act is ranked according to the maxmin value of the correspondingm × n utility matrix (viewed as a two-person zero-sum game). An alternative statement of the result deals simultaneously with all finite two-person zero-sum games in the framework of conditional acts and preferences. Utility Function Economic Theory Game Theory Theoretic Approach Alternative Statement Modica, Salvatore aut Schmeidler, David aut Enthalten in International journal of game theory Physica-Verlag, 1971 23(1994), 4 vom: Dez., Seite 347-358 (DE-627)129290653 (DE-600)120387-3 (DE-576)01447199X 0020-7276 nnns volume:23 year:1994 number:4 month:12 pages:347-358 https://doi.org/10.1007/BF01242948 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2244 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4700 SA 5860 SA 5860 AR 23 1994 4 12 347-358 |
allfields_unstemmed |
10.1007/BF01242948 doi (DE-627)OLC2041757302 (DE-He213)BF01242948-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ SA 5860 VZ rvk SA 5860 VZ rvk Hart, Sergiu verfasserin aut A $ Neo^{2} $ bayesian foundation of the maxmin value for two-person zero-sum games 1994 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Physica-Verlag 1994 Abstract A joint derivation of utility and value for two-person zero-sum games is obtained using a decision theoretic approach. Acts map states to consequences. The latter are lotteries over prizes, and the set of states is a product of two finite sets (m rows andn columns). Preferences over acts are complete, transitive, continuous, monotonie and certainty-independent (Gilboa and Schmeidler (1989)), and satisfy a new axiom which we introduce. These axioms are shown to characterize preferences such that (i) the induced preferences on consequences are represented by a von Neumann-Morgenstern utility function, and (ii) each act is ranked according to the maxmin value of the correspondingm × n utility matrix (viewed as a two-person zero-sum game). An alternative statement of the result deals simultaneously with all finite two-person zero-sum games in the framework of conditional acts and preferences. Utility Function Economic Theory Game Theory Theoretic Approach Alternative Statement Modica, Salvatore aut Schmeidler, David aut Enthalten in International journal of game theory Physica-Verlag, 1971 23(1994), 4 vom: Dez., Seite 347-358 (DE-627)129290653 (DE-600)120387-3 (DE-576)01447199X 0020-7276 nnns volume:23 year:1994 number:4 month:12 pages:347-358 https://doi.org/10.1007/BF01242948 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2244 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4700 SA 5860 SA 5860 AR 23 1994 4 12 347-358 |
allfieldsGer |
10.1007/BF01242948 doi (DE-627)OLC2041757302 (DE-He213)BF01242948-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ SA 5860 VZ rvk SA 5860 VZ rvk Hart, Sergiu verfasserin aut A $ Neo^{2} $ bayesian foundation of the maxmin value for two-person zero-sum games 1994 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Physica-Verlag 1994 Abstract A joint derivation of utility and value for two-person zero-sum games is obtained using a decision theoretic approach. Acts map states to consequences. The latter are lotteries over prizes, and the set of states is a product of two finite sets (m rows andn columns). Preferences over acts are complete, transitive, continuous, monotonie and certainty-independent (Gilboa and Schmeidler (1989)), and satisfy a new axiom which we introduce. These axioms are shown to characterize preferences such that (i) the induced preferences on consequences are represented by a von Neumann-Morgenstern utility function, and (ii) each act is ranked according to the maxmin value of the correspondingm × n utility matrix (viewed as a two-person zero-sum game). An alternative statement of the result deals simultaneously with all finite two-person zero-sum games in the framework of conditional acts and preferences. Utility Function Economic Theory Game Theory Theoretic Approach Alternative Statement Modica, Salvatore aut Schmeidler, David aut Enthalten in International journal of game theory Physica-Verlag, 1971 23(1994), 4 vom: Dez., Seite 347-358 (DE-627)129290653 (DE-600)120387-3 (DE-576)01447199X 0020-7276 nnns volume:23 year:1994 number:4 month:12 pages:347-358 https://doi.org/10.1007/BF01242948 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2244 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4700 SA 5860 SA 5860 AR 23 1994 4 12 347-358 |
allfieldsSound |
10.1007/BF01242948 doi (DE-627)OLC2041757302 (DE-He213)BF01242948-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ SA 5860 VZ rvk SA 5860 VZ rvk Hart, Sergiu verfasserin aut A $ Neo^{2} $ bayesian foundation of the maxmin value for two-person zero-sum games 1994 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Physica-Verlag 1994 Abstract A joint derivation of utility and value for two-person zero-sum games is obtained using a decision theoretic approach. Acts map states to consequences. The latter are lotteries over prizes, and the set of states is a product of two finite sets (m rows andn columns). Preferences over acts are complete, transitive, continuous, monotonie and certainty-independent (Gilboa and Schmeidler (1989)), and satisfy a new axiom which we introduce. These axioms are shown to characterize preferences such that (i) the induced preferences on consequences are represented by a von Neumann-Morgenstern utility function, and (ii) each act is ranked according to the maxmin value of the correspondingm × n utility matrix (viewed as a two-person zero-sum game). An alternative statement of the result deals simultaneously with all finite two-person zero-sum games in the framework of conditional acts and preferences. Utility Function Economic Theory Game Theory Theoretic Approach Alternative Statement Modica, Salvatore aut Schmeidler, David aut Enthalten in International journal of game theory Physica-Verlag, 1971 23(1994), 4 vom: Dez., Seite 347-358 (DE-627)129290653 (DE-600)120387-3 (DE-576)01447199X 0020-7276 nnns volume:23 year:1994 number:4 month:12 pages:347-358 https://doi.org/10.1007/BF01242948 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2244 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4700 SA 5860 SA 5860 AR 23 1994 4 12 347-358 |
language |
English |
source |
Enthalten in International journal of game theory 23(1994), 4 vom: Dez., Seite 347-358 volume:23 year:1994 number:4 month:12 pages:347-358 |
sourceStr |
Enthalten in International journal of game theory 23(1994), 4 vom: Dez., Seite 347-358 volume:23 year:1994 number:4 month:12 pages:347-358 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Utility Function Economic Theory Game Theory Theoretic Approach Alternative Statement |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
International journal of game theory |
authorswithroles_txt_mv |
Hart, Sergiu @@aut@@ Modica, Salvatore @@aut@@ Schmeidler, David @@aut@@ |
publishDateDaySort_date |
1994-12-01T00:00:00Z |
hierarchy_top_id |
129290653 |
dewey-sort |
3510 |
id |
OLC2041757302 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2041757302</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323143144.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1994 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01242948</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2041757302</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01242948-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5860</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5860</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hart, Sergiu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A $ Neo^{2} $ bayesian foundation of the maxmin value for two-person zero-sum games</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1994</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Physica-Verlag 1994</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A joint derivation of utility and value for two-person zero-sum games is obtained using a decision theoretic approach. Acts map states to consequences. The latter are lotteries over prizes, and the set of states is a product of two finite sets (m rows andn columns). Preferences over acts are complete, transitive, continuous, monotonie and certainty-independent (Gilboa and Schmeidler (1989)), and satisfy a new axiom which we introduce. These axioms are shown to characterize preferences such that (i) the induced preferences on consequences are represented by a von Neumann-Morgenstern utility function, and (ii) each act is ranked according to the maxmin value of the correspondingm × n utility matrix (viewed as a two-person zero-sum game). An alternative statement of the result deals simultaneously with all finite two-person zero-sum games in the framework of conditional acts and preferences.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Utility Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Game Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretic Approach</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alternative Statement</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Modica, Salvatore</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schmeidler, David</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of game theory</subfield><subfield code="d">Physica-Verlag, 1971</subfield><subfield code="g">23(1994), 4 vom: Dez., Seite 347-358</subfield><subfield code="w">(DE-627)129290653</subfield><subfield code="w">(DE-600)120387-3</subfield><subfield code="w">(DE-576)01447199X</subfield><subfield code="x">0020-7276</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:1994</subfield><subfield code="g">number:4</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:347-358</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01242948</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5860</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5860</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">1994</subfield><subfield code="e">4</subfield><subfield code="c">12</subfield><subfield code="h">347-358</subfield></datafield></record></collection>
|
author |
Hart, Sergiu |
spellingShingle |
Hart, Sergiu ddc 510 rvk SA 5860 misc Utility Function misc Economic Theory misc Game Theory misc Theoretic Approach misc Alternative Statement A $ Neo^{2} $ bayesian foundation of the maxmin value for two-person zero-sum games |
authorStr |
Hart, Sergiu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129290653 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0020-7276 |
topic_title |
510 VZ SA 5860 VZ rvk A $ Neo^{2} $ bayesian foundation of the maxmin value for two-person zero-sum games Utility Function Economic Theory Game Theory Theoretic Approach Alternative Statement |
topic |
ddc 510 rvk SA 5860 misc Utility Function misc Economic Theory misc Game Theory misc Theoretic Approach misc Alternative Statement |
topic_unstemmed |
ddc 510 rvk SA 5860 misc Utility Function misc Economic Theory misc Game Theory misc Theoretic Approach misc Alternative Statement |
topic_browse |
ddc 510 rvk SA 5860 misc Utility Function misc Economic Theory misc Game Theory misc Theoretic Approach misc Alternative Statement |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
International journal of game theory |
hierarchy_parent_id |
129290653 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
International journal of game theory |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129290653 (DE-600)120387-3 (DE-576)01447199X |
title |
A $ Neo^{2} $ bayesian foundation of the maxmin value for two-person zero-sum games |
ctrlnum |
(DE-627)OLC2041757302 (DE-He213)BF01242948-p |
title_full |
A $ Neo^{2} $ bayesian foundation of the maxmin value for two-person zero-sum games |
author_sort |
Hart, Sergiu |
journal |
International journal of game theory |
journalStr |
International journal of game theory |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1994 |
contenttype_str_mv |
txt |
container_start_page |
347 |
author_browse |
Hart, Sergiu Modica, Salvatore Schmeidler, David |
container_volume |
23 |
class |
510 VZ SA 5860 VZ rvk |
format_se |
Aufsätze |
author-letter |
Hart, Sergiu |
doi_str_mv |
10.1007/BF01242948 |
dewey-full |
510 |
title_sort |
a $ neo^{2} $ bayesian foundation of the maxmin value for two-person zero-sum games |
title_auth |
A $ Neo^{2} $ bayesian foundation of the maxmin value for two-person zero-sum games |
abstract |
Abstract A joint derivation of utility and value for two-person zero-sum games is obtained using a decision theoretic approach. Acts map states to consequences. The latter are lotteries over prizes, and the set of states is a product of two finite sets (m rows andn columns). Preferences over acts are complete, transitive, continuous, monotonie and certainty-independent (Gilboa and Schmeidler (1989)), and satisfy a new axiom which we introduce. These axioms are shown to characterize preferences such that (i) the induced preferences on consequences are represented by a von Neumann-Morgenstern utility function, and (ii) each act is ranked according to the maxmin value of the correspondingm × n utility matrix (viewed as a two-person zero-sum game). An alternative statement of the result deals simultaneously with all finite two-person zero-sum games in the framework of conditional acts and preferences. © Physica-Verlag 1994 |
abstractGer |
Abstract A joint derivation of utility and value for two-person zero-sum games is obtained using a decision theoretic approach. Acts map states to consequences. The latter are lotteries over prizes, and the set of states is a product of two finite sets (m rows andn columns). Preferences over acts are complete, transitive, continuous, monotonie and certainty-independent (Gilboa and Schmeidler (1989)), and satisfy a new axiom which we introduce. These axioms are shown to characterize preferences such that (i) the induced preferences on consequences are represented by a von Neumann-Morgenstern utility function, and (ii) each act is ranked according to the maxmin value of the correspondingm × n utility matrix (viewed as a two-person zero-sum game). An alternative statement of the result deals simultaneously with all finite two-person zero-sum games in the framework of conditional acts and preferences. © Physica-Verlag 1994 |
abstract_unstemmed |
Abstract A joint derivation of utility and value for two-person zero-sum games is obtained using a decision theoretic approach. Acts map states to consequences. The latter are lotteries over prizes, and the set of states is a product of two finite sets (m rows andn columns). Preferences over acts are complete, transitive, continuous, monotonie and certainty-independent (Gilboa and Schmeidler (1989)), and satisfy a new axiom which we introduce. These axioms are shown to characterize preferences such that (i) the induced preferences on consequences are represented by a von Neumann-Morgenstern utility function, and (ii) each act is ranked according to the maxmin value of the correspondingm × n utility matrix (viewed as a two-person zero-sum game). An alternative statement of the result deals simultaneously with all finite two-person zero-sum games in the framework of conditional acts and preferences. © Physica-Verlag 1994 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2244 GBV_ILN_4012 GBV_ILN_4036 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4700 |
container_issue |
4 |
title_short |
A $ Neo^{2} $ bayesian foundation of the maxmin value for two-person zero-sum games |
url |
https://doi.org/10.1007/BF01242948 |
remote_bool |
false |
author2 |
Modica, Salvatore Schmeidler, David |
author2Str |
Modica, Salvatore Schmeidler, David |
ppnlink |
129290653 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF01242948 |
up_date |
2024-07-04T05:23:34.024Z |
_version_ |
1803624764164538368 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2041757302</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323143144.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1994 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01242948</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2041757302</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01242948-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5860</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5860</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hart, Sergiu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A $ Neo^{2} $ bayesian foundation of the maxmin value for two-person zero-sum games</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1994</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Physica-Verlag 1994</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A joint derivation of utility and value for two-person zero-sum games is obtained using a decision theoretic approach. Acts map states to consequences. The latter are lotteries over prizes, and the set of states is a product of two finite sets (m rows andn columns). Preferences over acts are complete, transitive, continuous, monotonie and certainty-independent (Gilboa and Schmeidler (1989)), and satisfy a new axiom which we introduce. These axioms are shown to characterize preferences such that (i) the induced preferences on consequences are represented by a von Neumann-Morgenstern utility function, and (ii) each act is ranked according to the maxmin value of the correspondingm × n utility matrix (viewed as a two-person zero-sum game). An alternative statement of the result deals simultaneously with all finite two-person zero-sum games in the framework of conditional acts and preferences.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Utility Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Game Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretic Approach</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alternative Statement</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Modica, Salvatore</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schmeidler, David</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of game theory</subfield><subfield code="d">Physica-Verlag, 1971</subfield><subfield code="g">23(1994), 4 vom: Dez., Seite 347-358</subfield><subfield code="w">(DE-627)129290653</subfield><subfield code="w">(DE-600)120387-3</subfield><subfield code="w">(DE-576)01447199X</subfield><subfield code="x">0020-7276</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:1994</subfield><subfield code="g">number:4</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:347-358</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01242948</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5860</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5860</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">1994</subfield><subfield code="e">4</subfield><subfield code="c">12</subfield><subfield code="h">347-358</subfield></datafield></record></collection>
|
score |
7.3995247 |