Precise model for estimating $ CO_{2} $—oil minimum miscibility pressure
Abstract The $ CO_{2} $—oil minimum miscibility pressure (MMP) is an important parameter for screening and selecting reservoirs for $ CO_{2} $ injection projects. For the highest recovery, a candidate reservoir must be capable of withstanding an average reservoir pressure greater than the $ CO_{2} $...
Ausführliche Beschreibung
Autor*in: |
Shokir, Eissa M. El-M. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2007 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Pleiades Publishing, Ltd. 2007 |
---|
Übergeordnetes Werk: |
Enthalten in: Petroleum chemistry - Nauka/Interperiodica, 1962, 47(2007), 5 vom: Sept., Seite 368-376 |
---|---|
Übergeordnetes Werk: |
volume:47 ; year:2007 ; number:5 ; month:09 ; pages:368-376 |
Links: |
---|
DOI / URN: |
10.1134/S0965544107050106 |
---|
Katalog-ID: |
OLC2042193216 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2042193216 | ||
003 | DE-627 | ||
005 | 20230511155009.0 | ||
007 | tu | ||
008 | 200819s2007 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1134/S0965544107050106 |2 doi | |
035 | |a (DE-627)OLC2042193216 | ||
035 | |a (DE-He213)S0965544107050106-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
100 | 1 | |a Shokir, Eissa M. El-M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Precise model for estimating $ CO_{2} $—oil minimum miscibility pressure |
264 | 1 | |c 2007 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Pleiades Publishing, Ltd. 2007 | ||
520 | |a Abstract The $ CO_{2} $—oil minimum miscibility pressure (MMP) is an important parameter for screening and selecting reservoirs for $ CO_{2} $ injection projects. For the highest recovery, a candidate reservoir must be capable of withstanding an average reservoir pressure greater than the $ CO_{2} $—oil MMP. Knowledge of the $ CO_{2} $—oil MMP is also important when selecting a model to predict or simulate reservoir performance as a result of $ CO_{2} $ injection. This paper, presents a new alternating conditional expectation “ACE”-based model for estimating $ CO_{2} $—oil MMP. The ACE algorithm estimates the optimal transformation that maximizes the correlation between the transformed dependent variable “$ CO_{2} $—oil MMP” and the sum of the transformed independent variables that represent reservoir temperature and different components of oil composition. Predicted values of the $ CO_{2} $—oil MMP from the developed ACE-based model were compared with the experimental and calculated values from the most common correlations reported in the literature for $ CO_{2} $—oil MMP prediction. The results showed that the ACE-based model is superior to other commonly used correlations. Regarding other correlations, the ACE-based model yielded the highest correlation coefficient (0.9878), the lowest average relative error (0.7428%), and the lowest standard deviation of error (1.2265). | ||
650 | 4 | |a Critical Temperature | |
650 | 4 | |a Petroleum Chemistry | |
650 | 4 | |a Average Relative Error | |
650 | 4 | |a Reservoir Temperature | |
650 | 4 | |a Optimal Transformation | |
773 | 0 | 8 | |i Enthalten in |t Petroleum chemistry |d Nauka/Interperiodica, 1962 |g 47(2007), 5 vom: Sept., Seite 368-376 |w (DE-627)129598399 |w (DE-600)241025-4 |w (DE-576)015091651 |x 0965-5441 |7 nnns |
773 | 1 | 8 | |g volume:47 |g year:2007 |g number:5 |g month:09 |g pages:368-376 |
856 | 4 | 1 | |u https://doi.org/10.1134/S0965544107050106 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-ARC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 47 |j 2007 |e 5 |c 09 |h 368-376 |
author_variant |
e m e m s emem emems |
---|---|
matchkey_str |
article:09655441:2007----::rcsmdloetmtnc_oliiums |
hierarchy_sort_str |
2007 |
publishDate |
2007 |
allfields |
10.1134/S0965544107050106 doi (DE-627)OLC2042193216 (DE-He213)S0965544107050106-p DE-627 ger DE-627 rakwb eng 690 VZ Shokir, Eissa M. El-M. verfasserin aut Precise model for estimating $ CO_{2} $—oil minimum miscibility pressure 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2007 Abstract The $ CO_{2} $—oil minimum miscibility pressure (MMP) is an important parameter for screening and selecting reservoirs for $ CO_{2} $ injection projects. For the highest recovery, a candidate reservoir must be capable of withstanding an average reservoir pressure greater than the $ CO_{2} $—oil MMP. Knowledge of the $ CO_{2} $—oil MMP is also important when selecting a model to predict or simulate reservoir performance as a result of $ CO_{2} $ injection. This paper, presents a new alternating conditional expectation “ACE”-based model for estimating $ CO_{2} $—oil MMP. The ACE algorithm estimates the optimal transformation that maximizes the correlation between the transformed dependent variable “$ CO_{2} $—oil MMP” and the sum of the transformed independent variables that represent reservoir temperature and different components of oil composition. Predicted values of the $ CO_{2} $—oil MMP from the developed ACE-based model were compared with the experimental and calculated values from the most common correlations reported in the literature for $ CO_{2} $—oil MMP prediction. The results showed that the ACE-based model is superior to other commonly used correlations. Regarding other correlations, the ACE-based model yielded the highest correlation coefficient (0.9878), the lowest average relative error (0.7428%), and the lowest standard deviation of error (1.2265). Critical Temperature Petroleum Chemistry Average Relative Error Reservoir Temperature Optimal Transformation Enthalten in Petroleum chemistry Nauka/Interperiodica, 1962 47(2007), 5 vom: Sept., Seite 368-376 (DE-627)129598399 (DE-600)241025-4 (DE-576)015091651 0965-5441 nnns volume:47 year:2007 number:5 month:09 pages:368-376 https://doi.org/10.1134/S0965544107050106 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 47 2007 5 09 368-376 |
spelling |
10.1134/S0965544107050106 doi (DE-627)OLC2042193216 (DE-He213)S0965544107050106-p DE-627 ger DE-627 rakwb eng 690 VZ Shokir, Eissa M. El-M. verfasserin aut Precise model for estimating $ CO_{2} $—oil minimum miscibility pressure 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2007 Abstract The $ CO_{2} $—oil minimum miscibility pressure (MMP) is an important parameter for screening and selecting reservoirs for $ CO_{2} $ injection projects. For the highest recovery, a candidate reservoir must be capable of withstanding an average reservoir pressure greater than the $ CO_{2} $—oil MMP. Knowledge of the $ CO_{2} $—oil MMP is also important when selecting a model to predict or simulate reservoir performance as a result of $ CO_{2} $ injection. This paper, presents a new alternating conditional expectation “ACE”-based model for estimating $ CO_{2} $—oil MMP. The ACE algorithm estimates the optimal transformation that maximizes the correlation between the transformed dependent variable “$ CO_{2} $—oil MMP” and the sum of the transformed independent variables that represent reservoir temperature and different components of oil composition. Predicted values of the $ CO_{2} $—oil MMP from the developed ACE-based model were compared with the experimental and calculated values from the most common correlations reported in the literature for $ CO_{2} $—oil MMP prediction. The results showed that the ACE-based model is superior to other commonly used correlations. Regarding other correlations, the ACE-based model yielded the highest correlation coefficient (0.9878), the lowest average relative error (0.7428%), and the lowest standard deviation of error (1.2265). Critical Temperature Petroleum Chemistry Average Relative Error Reservoir Temperature Optimal Transformation Enthalten in Petroleum chemistry Nauka/Interperiodica, 1962 47(2007), 5 vom: Sept., Seite 368-376 (DE-627)129598399 (DE-600)241025-4 (DE-576)015091651 0965-5441 nnns volume:47 year:2007 number:5 month:09 pages:368-376 https://doi.org/10.1134/S0965544107050106 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 47 2007 5 09 368-376 |
allfields_unstemmed |
10.1134/S0965544107050106 doi (DE-627)OLC2042193216 (DE-He213)S0965544107050106-p DE-627 ger DE-627 rakwb eng 690 VZ Shokir, Eissa M. El-M. verfasserin aut Precise model for estimating $ CO_{2} $—oil minimum miscibility pressure 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2007 Abstract The $ CO_{2} $—oil minimum miscibility pressure (MMP) is an important parameter for screening and selecting reservoirs for $ CO_{2} $ injection projects. For the highest recovery, a candidate reservoir must be capable of withstanding an average reservoir pressure greater than the $ CO_{2} $—oil MMP. Knowledge of the $ CO_{2} $—oil MMP is also important when selecting a model to predict or simulate reservoir performance as a result of $ CO_{2} $ injection. This paper, presents a new alternating conditional expectation “ACE”-based model for estimating $ CO_{2} $—oil MMP. The ACE algorithm estimates the optimal transformation that maximizes the correlation between the transformed dependent variable “$ CO_{2} $—oil MMP” and the sum of the transformed independent variables that represent reservoir temperature and different components of oil composition. Predicted values of the $ CO_{2} $—oil MMP from the developed ACE-based model were compared with the experimental and calculated values from the most common correlations reported in the literature for $ CO_{2} $—oil MMP prediction. The results showed that the ACE-based model is superior to other commonly used correlations. Regarding other correlations, the ACE-based model yielded the highest correlation coefficient (0.9878), the lowest average relative error (0.7428%), and the lowest standard deviation of error (1.2265). Critical Temperature Petroleum Chemistry Average Relative Error Reservoir Temperature Optimal Transformation Enthalten in Petroleum chemistry Nauka/Interperiodica, 1962 47(2007), 5 vom: Sept., Seite 368-376 (DE-627)129598399 (DE-600)241025-4 (DE-576)015091651 0965-5441 nnns volume:47 year:2007 number:5 month:09 pages:368-376 https://doi.org/10.1134/S0965544107050106 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 47 2007 5 09 368-376 |
allfieldsGer |
10.1134/S0965544107050106 doi (DE-627)OLC2042193216 (DE-He213)S0965544107050106-p DE-627 ger DE-627 rakwb eng 690 VZ Shokir, Eissa M. El-M. verfasserin aut Precise model for estimating $ CO_{2} $—oil minimum miscibility pressure 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2007 Abstract The $ CO_{2} $—oil minimum miscibility pressure (MMP) is an important parameter for screening and selecting reservoirs for $ CO_{2} $ injection projects. For the highest recovery, a candidate reservoir must be capable of withstanding an average reservoir pressure greater than the $ CO_{2} $—oil MMP. Knowledge of the $ CO_{2} $—oil MMP is also important when selecting a model to predict or simulate reservoir performance as a result of $ CO_{2} $ injection. This paper, presents a new alternating conditional expectation “ACE”-based model for estimating $ CO_{2} $—oil MMP. The ACE algorithm estimates the optimal transformation that maximizes the correlation between the transformed dependent variable “$ CO_{2} $—oil MMP” and the sum of the transformed independent variables that represent reservoir temperature and different components of oil composition. Predicted values of the $ CO_{2} $—oil MMP from the developed ACE-based model were compared with the experimental and calculated values from the most common correlations reported in the literature for $ CO_{2} $—oil MMP prediction. The results showed that the ACE-based model is superior to other commonly used correlations. Regarding other correlations, the ACE-based model yielded the highest correlation coefficient (0.9878), the lowest average relative error (0.7428%), and the lowest standard deviation of error (1.2265). Critical Temperature Petroleum Chemistry Average Relative Error Reservoir Temperature Optimal Transformation Enthalten in Petroleum chemistry Nauka/Interperiodica, 1962 47(2007), 5 vom: Sept., Seite 368-376 (DE-627)129598399 (DE-600)241025-4 (DE-576)015091651 0965-5441 nnns volume:47 year:2007 number:5 month:09 pages:368-376 https://doi.org/10.1134/S0965544107050106 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 47 2007 5 09 368-376 |
allfieldsSound |
10.1134/S0965544107050106 doi (DE-627)OLC2042193216 (DE-He213)S0965544107050106-p DE-627 ger DE-627 rakwb eng 690 VZ Shokir, Eissa M. El-M. verfasserin aut Precise model for estimating $ CO_{2} $—oil minimum miscibility pressure 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2007 Abstract The $ CO_{2} $—oil minimum miscibility pressure (MMP) is an important parameter for screening and selecting reservoirs for $ CO_{2} $ injection projects. For the highest recovery, a candidate reservoir must be capable of withstanding an average reservoir pressure greater than the $ CO_{2} $—oil MMP. Knowledge of the $ CO_{2} $—oil MMP is also important when selecting a model to predict or simulate reservoir performance as a result of $ CO_{2} $ injection. This paper, presents a new alternating conditional expectation “ACE”-based model for estimating $ CO_{2} $—oil MMP. The ACE algorithm estimates the optimal transformation that maximizes the correlation between the transformed dependent variable “$ CO_{2} $—oil MMP” and the sum of the transformed independent variables that represent reservoir temperature and different components of oil composition. Predicted values of the $ CO_{2} $—oil MMP from the developed ACE-based model were compared with the experimental and calculated values from the most common correlations reported in the literature for $ CO_{2} $—oil MMP prediction. The results showed that the ACE-based model is superior to other commonly used correlations. Regarding other correlations, the ACE-based model yielded the highest correlation coefficient (0.9878), the lowest average relative error (0.7428%), and the lowest standard deviation of error (1.2265). Critical Temperature Petroleum Chemistry Average Relative Error Reservoir Temperature Optimal Transformation Enthalten in Petroleum chemistry Nauka/Interperiodica, 1962 47(2007), 5 vom: Sept., Seite 368-376 (DE-627)129598399 (DE-600)241025-4 (DE-576)015091651 0965-5441 nnns volume:47 year:2007 number:5 month:09 pages:368-376 https://doi.org/10.1134/S0965544107050106 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 AR 47 2007 5 09 368-376 |
language |
English |
source |
Enthalten in Petroleum chemistry 47(2007), 5 vom: Sept., Seite 368-376 volume:47 year:2007 number:5 month:09 pages:368-376 |
sourceStr |
Enthalten in Petroleum chemistry 47(2007), 5 vom: Sept., Seite 368-376 volume:47 year:2007 number:5 month:09 pages:368-376 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Critical Temperature Petroleum Chemistry Average Relative Error Reservoir Temperature Optimal Transformation |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Petroleum chemistry |
authorswithroles_txt_mv |
Shokir, Eissa M. El-M. @@aut@@ |
publishDateDaySort_date |
2007-09-01T00:00:00Z |
hierarchy_top_id |
129598399 |
dewey-sort |
3690 |
id |
OLC2042193216 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2042193216</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230511155009.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0965544107050106</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2042193216</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0965544107050106-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shokir, Eissa M. El-M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Precise model for estimating $ CO_{2} $—oil minimum miscibility pressure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The $ CO_{2} $—oil minimum miscibility pressure (MMP) is an important parameter for screening and selecting reservoirs for $ CO_{2} $ injection projects. For the highest recovery, a candidate reservoir must be capable of withstanding an average reservoir pressure greater than the $ CO_{2} $—oil MMP. Knowledge of the $ CO_{2} $—oil MMP is also important when selecting a model to predict or simulate reservoir performance as a result of $ CO_{2} $ injection. This paper, presents a new alternating conditional expectation “ACE”-based model for estimating $ CO_{2} $—oil MMP. The ACE algorithm estimates the optimal transformation that maximizes the correlation between the transformed dependent variable “$ CO_{2} $—oil MMP” and the sum of the transformed independent variables that represent reservoir temperature and different components of oil composition. Predicted values of the $ CO_{2} $—oil MMP from the developed ACE-based model were compared with the experimental and calculated values from the most common correlations reported in the literature for $ CO_{2} $—oil MMP prediction. The results showed that the ACE-based model is superior to other commonly used correlations. Regarding other correlations, the ACE-based model yielded the highest correlation coefficient (0.9878), the lowest average relative error (0.7428%), and the lowest standard deviation of error (1.2265).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Critical Temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Petroleum Chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Average Relative Error</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reservoir Temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimal Transformation</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Petroleum chemistry</subfield><subfield code="d">Nauka/Interperiodica, 1962</subfield><subfield code="g">47(2007), 5 vom: Sept., Seite 368-376</subfield><subfield code="w">(DE-627)129598399</subfield><subfield code="w">(DE-600)241025-4</subfield><subfield code="w">(DE-576)015091651</subfield><subfield code="x">0965-5441</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:47</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:5</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:368-376</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0965544107050106</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">47</subfield><subfield code="j">2007</subfield><subfield code="e">5</subfield><subfield code="c">09</subfield><subfield code="h">368-376</subfield></datafield></record></collection>
|
author |
Shokir, Eissa M. El-M. |
spellingShingle |
Shokir, Eissa M. El-M. ddc 690 misc Critical Temperature misc Petroleum Chemistry misc Average Relative Error misc Reservoir Temperature misc Optimal Transformation Precise model for estimating $ CO_{2} $—oil minimum miscibility pressure |
authorStr |
Shokir, Eissa M. El-M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129598399 |
format |
Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0965-5441 |
topic_title |
690 VZ Precise model for estimating $ CO_{2} $—oil minimum miscibility pressure Critical Temperature Petroleum Chemistry Average Relative Error Reservoir Temperature Optimal Transformation |
topic |
ddc 690 misc Critical Temperature misc Petroleum Chemistry misc Average Relative Error misc Reservoir Temperature misc Optimal Transformation |
topic_unstemmed |
ddc 690 misc Critical Temperature misc Petroleum Chemistry misc Average Relative Error misc Reservoir Temperature misc Optimal Transformation |
topic_browse |
ddc 690 misc Critical Temperature misc Petroleum Chemistry misc Average Relative Error misc Reservoir Temperature misc Optimal Transformation |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Petroleum chemistry |
hierarchy_parent_id |
129598399 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Petroleum chemistry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129598399 (DE-600)241025-4 (DE-576)015091651 |
title |
Precise model for estimating $ CO_{2} $—oil minimum miscibility pressure |
ctrlnum |
(DE-627)OLC2042193216 (DE-He213)S0965544107050106-p |
title_full |
Precise model for estimating $ CO_{2} $—oil minimum miscibility pressure |
author_sort |
Shokir, Eissa M. El-M. |
journal |
Petroleum chemistry |
journalStr |
Petroleum chemistry |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2007 |
contenttype_str_mv |
txt |
container_start_page |
368 |
author_browse |
Shokir, Eissa M. El-M. |
container_volume |
47 |
class |
690 VZ |
format_se |
Aufsätze |
author-letter |
Shokir, Eissa M. El-M. |
doi_str_mv |
10.1134/S0965544107050106 |
dewey-full |
690 |
title_sort |
precise model for estimating $ co_{2} $—oil minimum miscibility pressure |
title_auth |
Precise model for estimating $ CO_{2} $—oil minimum miscibility pressure |
abstract |
Abstract The $ CO_{2} $—oil minimum miscibility pressure (MMP) is an important parameter for screening and selecting reservoirs for $ CO_{2} $ injection projects. For the highest recovery, a candidate reservoir must be capable of withstanding an average reservoir pressure greater than the $ CO_{2} $—oil MMP. Knowledge of the $ CO_{2} $—oil MMP is also important when selecting a model to predict or simulate reservoir performance as a result of $ CO_{2} $ injection. This paper, presents a new alternating conditional expectation “ACE”-based model for estimating $ CO_{2} $—oil MMP. The ACE algorithm estimates the optimal transformation that maximizes the correlation between the transformed dependent variable “$ CO_{2} $—oil MMP” and the sum of the transformed independent variables that represent reservoir temperature and different components of oil composition. Predicted values of the $ CO_{2} $—oil MMP from the developed ACE-based model were compared with the experimental and calculated values from the most common correlations reported in the literature for $ CO_{2} $—oil MMP prediction. The results showed that the ACE-based model is superior to other commonly used correlations. Regarding other correlations, the ACE-based model yielded the highest correlation coefficient (0.9878), the lowest average relative error (0.7428%), and the lowest standard deviation of error (1.2265). © Pleiades Publishing, Ltd. 2007 |
abstractGer |
Abstract The $ CO_{2} $—oil minimum miscibility pressure (MMP) is an important parameter for screening and selecting reservoirs for $ CO_{2} $ injection projects. For the highest recovery, a candidate reservoir must be capable of withstanding an average reservoir pressure greater than the $ CO_{2} $—oil MMP. Knowledge of the $ CO_{2} $—oil MMP is also important when selecting a model to predict or simulate reservoir performance as a result of $ CO_{2} $ injection. This paper, presents a new alternating conditional expectation “ACE”-based model for estimating $ CO_{2} $—oil MMP. The ACE algorithm estimates the optimal transformation that maximizes the correlation between the transformed dependent variable “$ CO_{2} $—oil MMP” and the sum of the transformed independent variables that represent reservoir temperature and different components of oil composition. Predicted values of the $ CO_{2} $—oil MMP from the developed ACE-based model were compared with the experimental and calculated values from the most common correlations reported in the literature for $ CO_{2} $—oil MMP prediction. The results showed that the ACE-based model is superior to other commonly used correlations. Regarding other correlations, the ACE-based model yielded the highest correlation coefficient (0.9878), the lowest average relative error (0.7428%), and the lowest standard deviation of error (1.2265). © Pleiades Publishing, Ltd. 2007 |
abstract_unstemmed |
Abstract The $ CO_{2} $—oil minimum miscibility pressure (MMP) is an important parameter for screening and selecting reservoirs for $ CO_{2} $ injection projects. For the highest recovery, a candidate reservoir must be capable of withstanding an average reservoir pressure greater than the $ CO_{2} $—oil MMP. Knowledge of the $ CO_{2} $—oil MMP is also important when selecting a model to predict or simulate reservoir performance as a result of $ CO_{2} $ injection. This paper, presents a new alternating conditional expectation “ACE”-based model for estimating $ CO_{2} $—oil MMP. The ACE algorithm estimates the optimal transformation that maximizes the correlation between the transformed dependent variable “$ CO_{2} $—oil MMP” and the sum of the transformed independent variables that represent reservoir temperature and different components of oil composition. Predicted values of the $ CO_{2} $—oil MMP from the developed ACE-based model were compared with the experimental and calculated values from the most common correlations reported in the literature for $ CO_{2} $—oil MMP prediction. The results showed that the ACE-based model is superior to other commonly used correlations. Regarding other correlations, the ACE-based model yielded the highest correlation coefficient (0.9878), the lowest average relative error (0.7428%), and the lowest standard deviation of error (1.2265). © Pleiades Publishing, Ltd. 2007 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_70 |
container_issue |
5 |
title_short |
Precise model for estimating $ CO_{2} $—oil minimum miscibility pressure |
url |
https://doi.org/10.1134/S0965544107050106 |
remote_bool |
false |
ppnlink |
129598399 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S0965544107050106 |
up_date |
2024-07-03T14:10:33.359Z |
_version_ |
1803567322483392512 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2042193216</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230511155009.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0965544107050106</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2042193216</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0965544107050106-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shokir, Eissa M. El-M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Precise model for estimating $ CO_{2} $—oil minimum miscibility pressure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The $ CO_{2} $—oil minimum miscibility pressure (MMP) is an important parameter for screening and selecting reservoirs for $ CO_{2} $ injection projects. For the highest recovery, a candidate reservoir must be capable of withstanding an average reservoir pressure greater than the $ CO_{2} $—oil MMP. Knowledge of the $ CO_{2} $—oil MMP is also important when selecting a model to predict or simulate reservoir performance as a result of $ CO_{2} $ injection. This paper, presents a new alternating conditional expectation “ACE”-based model for estimating $ CO_{2} $—oil MMP. The ACE algorithm estimates the optimal transformation that maximizes the correlation between the transformed dependent variable “$ CO_{2} $—oil MMP” and the sum of the transformed independent variables that represent reservoir temperature and different components of oil composition. Predicted values of the $ CO_{2} $—oil MMP from the developed ACE-based model were compared with the experimental and calculated values from the most common correlations reported in the literature for $ CO_{2} $—oil MMP prediction. The results showed that the ACE-based model is superior to other commonly used correlations. Regarding other correlations, the ACE-based model yielded the highest correlation coefficient (0.9878), the lowest average relative error (0.7428%), and the lowest standard deviation of error (1.2265).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Critical Temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Petroleum Chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Average Relative Error</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reservoir Temperature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimal Transformation</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Petroleum chemistry</subfield><subfield code="d">Nauka/Interperiodica, 1962</subfield><subfield code="g">47(2007), 5 vom: Sept., Seite 368-376</subfield><subfield code="w">(DE-627)129598399</subfield><subfield code="w">(DE-600)241025-4</subfield><subfield code="w">(DE-576)015091651</subfield><subfield code="x">0965-5441</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:47</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:5</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:368-376</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0965544107050106</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">47</subfield><subfield code="j">2007</subfield><subfield code="e">5</subfield><subfield code="c">09</subfield><subfield code="h">368-376</subfield></datafield></record></collection>
|
score |
7.403078 |