Controlled thermal kinetics in RTP
Abstract Ultra-shallow junction formation is one of the most exciting new challenges for RTP process engineers and vendors. In many cases, reaction rat limited and diffusion limited processes are to be promoted or suppressed in a complementary manner. In the case of reaction rate limited processes,...
Ausführliche Beschreibung
Autor*in: |
Niess, J. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1998 |
---|
Anmerkung: |
© TMS-The Minerals, Metals and Materials Society 1998 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of electronic materials - Springer-Verlag, 1972, 27(1998), 12 vom: Dez., Seite 1286-1290 |
---|---|
Übergeordnetes Werk: |
volume:27 ; year:1998 ; number:12 ; month:12 ; pages:1286-1290 |
Links: |
---|
DOI / URN: |
10.1007/s11664-998-0087-2 |
---|
Katalog-ID: |
OLC204228159X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC204228159X | ||
003 | DE-627 | ||
005 | 20230303063724.0 | ||
007 | tu | ||
008 | 200820s1998 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11664-998-0087-2 |2 doi | |
035 | |a (DE-627)OLC204228159X | ||
035 | |a (DE-He213)s11664-998-0087-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Niess, J. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Controlled thermal kinetics in RTP |
264 | 1 | |c 1998 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © TMS-The Minerals, Metals and Materials Society 1998 | ||
520 | |a Abstract Ultra-shallow junction formation is one of the most exciting new challenges for RTP process engineers and vendors. In many cases, reaction rat limited and diffusion limited processes are to be promoted or suppressed in a complementary manner. In the case of reaction rate limited processes, a short time “flash” annealing at higher temperatures is often more advantageous than the conventional temperature-time functions for 10–60 s with linear ramps. We have to optimize two phenomena simultaneously: the most effective dopant activation and defect removal without dopant loss. At the same time dopant profile redistribution is to be limited as much as possible. Beside the thermal kinetics of implant annealing, a proper surface control is also very important. Surface etching due to SiO formation with subsequent implant evaporation is as detrimental as $ SiO_{2} $ growth with subsequent implant segregation. The importance and possibilities of “controlled thermal kinetics” and “limited concentration” processing mode are shown in some RTA experiments. | ||
700 | 1 | |a Grunwald, Ch. |4 aut | |
700 | 1 | |a Strohmaier, R. |4 aut | |
700 | 1 | |a Nényei, Z. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of electronic materials |d Springer-Verlag, 1972 |g 27(1998), 12 vom: Dez., Seite 1286-1290 |w (DE-627)129398233 |w (DE-600)186069-0 |w (DE-576)014781387 |x 0361-5235 |7 nnns |
773 | 1 | 8 | |g volume:27 |g year:1998 |g number:12 |g month:12 |g pages:1286-1290 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11664-998-0087-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 27 |j 1998 |e 12 |c 12 |h 1286-1290 |
author_variant |
j n jn c g cg r s rs z n zn |
---|---|
matchkey_str |
article:03615235:1998----::otoldhrakn |
hierarchy_sort_str |
1998 |
publishDate |
1998 |
allfields |
10.1007/s11664-998-0087-2 doi (DE-627)OLC204228159X (DE-He213)s11664-998-0087-2-p DE-627 ger DE-627 rakwb eng 670 VZ Niess, J. verfasserin aut Controlled thermal kinetics in RTP 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © TMS-The Minerals, Metals and Materials Society 1998 Abstract Ultra-shallow junction formation is one of the most exciting new challenges for RTP process engineers and vendors. In many cases, reaction rat limited and diffusion limited processes are to be promoted or suppressed in a complementary manner. In the case of reaction rate limited processes, a short time “flash” annealing at higher temperatures is often more advantageous than the conventional temperature-time functions for 10–60 s with linear ramps. We have to optimize two phenomena simultaneously: the most effective dopant activation and defect removal without dopant loss. At the same time dopant profile redistribution is to be limited as much as possible. Beside the thermal kinetics of implant annealing, a proper surface control is also very important. Surface etching due to SiO formation with subsequent implant evaporation is as detrimental as $ SiO_{2} $ growth with subsequent implant segregation. The importance and possibilities of “controlled thermal kinetics” and “limited concentration” processing mode are shown in some RTA experiments. Grunwald, Ch. aut Strohmaier, R. aut Nényei, Z. aut Enthalten in Journal of electronic materials Springer-Verlag, 1972 27(1998), 12 vom: Dez., Seite 1286-1290 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:27 year:1998 number:12 month:12 pages:1286-1290 https://doi.org/10.1007/s11664-998-0087-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_4036 GBV_ILN_4266 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 27 1998 12 12 1286-1290 |
spelling |
10.1007/s11664-998-0087-2 doi (DE-627)OLC204228159X (DE-He213)s11664-998-0087-2-p DE-627 ger DE-627 rakwb eng 670 VZ Niess, J. verfasserin aut Controlled thermal kinetics in RTP 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © TMS-The Minerals, Metals and Materials Society 1998 Abstract Ultra-shallow junction formation is one of the most exciting new challenges for RTP process engineers and vendors. In many cases, reaction rat limited and diffusion limited processes are to be promoted or suppressed in a complementary manner. In the case of reaction rate limited processes, a short time “flash” annealing at higher temperatures is often more advantageous than the conventional temperature-time functions for 10–60 s with linear ramps. We have to optimize two phenomena simultaneously: the most effective dopant activation and defect removal without dopant loss. At the same time dopant profile redistribution is to be limited as much as possible. Beside the thermal kinetics of implant annealing, a proper surface control is also very important. Surface etching due to SiO formation with subsequent implant evaporation is as detrimental as $ SiO_{2} $ growth with subsequent implant segregation. The importance and possibilities of “controlled thermal kinetics” and “limited concentration” processing mode are shown in some RTA experiments. Grunwald, Ch. aut Strohmaier, R. aut Nényei, Z. aut Enthalten in Journal of electronic materials Springer-Verlag, 1972 27(1998), 12 vom: Dez., Seite 1286-1290 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:27 year:1998 number:12 month:12 pages:1286-1290 https://doi.org/10.1007/s11664-998-0087-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_4036 GBV_ILN_4266 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 27 1998 12 12 1286-1290 |
allfields_unstemmed |
10.1007/s11664-998-0087-2 doi (DE-627)OLC204228159X (DE-He213)s11664-998-0087-2-p DE-627 ger DE-627 rakwb eng 670 VZ Niess, J. verfasserin aut Controlled thermal kinetics in RTP 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © TMS-The Minerals, Metals and Materials Society 1998 Abstract Ultra-shallow junction formation is one of the most exciting new challenges for RTP process engineers and vendors. In many cases, reaction rat limited and diffusion limited processes are to be promoted or suppressed in a complementary manner. In the case of reaction rate limited processes, a short time “flash” annealing at higher temperatures is often more advantageous than the conventional temperature-time functions for 10–60 s with linear ramps. We have to optimize two phenomena simultaneously: the most effective dopant activation and defect removal without dopant loss. At the same time dopant profile redistribution is to be limited as much as possible. Beside the thermal kinetics of implant annealing, a proper surface control is also very important. Surface etching due to SiO formation with subsequent implant evaporation is as detrimental as $ SiO_{2} $ growth with subsequent implant segregation. The importance and possibilities of “controlled thermal kinetics” and “limited concentration” processing mode are shown in some RTA experiments. Grunwald, Ch. aut Strohmaier, R. aut Nényei, Z. aut Enthalten in Journal of electronic materials Springer-Verlag, 1972 27(1998), 12 vom: Dez., Seite 1286-1290 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:27 year:1998 number:12 month:12 pages:1286-1290 https://doi.org/10.1007/s11664-998-0087-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_4036 GBV_ILN_4266 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 27 1998 12 12 1286-1290 |
allfieldsGer |
10.1007/s11664-998-0087-2 doi (DE-627)OLC204228159X (DE-He213)s11664-998-0087-2-p DE-627 ger DE-627 rakwb eng 670 VZ Niess, J. verfasserin aut Controlled thermal kinetics in RTP 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © TMS-The Minerals, Metals and Materials Society 1998 Abstract Ultra-shallow junction formation is one of the most exciting new challenges for RTP process engineers and vendors. In many cases, reaction rat limited and diffusion limited processes are to be promoted or suppressed in a complementary manner. In the case of reaction rate limited processes, a short time “flash” annealing at higher temperatures is often more advantageous than the conventional temperature-time functions for 10–60 s with linear ramps. We have to optimize two phenomena simultaneously: the most effective dopant activation and defect removal without dopant loss. At the same time dopant profile redistribution is to be limited as much as possible. Beside the thermal kinetics of implant annealing, a proper surface control is also very important. Surface etching due to SiO formation with subsequent implant evaporation is as detrimental as $ SiO_{2} $ growth with subsequent implant segregation. The importance and possibilities of “controlled thermal kinetics” and “limited concentration” processing mode are shown in some RTA experiments. Grunwald, Ch. aut Strohmaier, R. aut Nényei, Z. aut Enthalten in Journal of electronic materials Springer-Verlag, 1972 27(1998), 12 vom: Dez., Seite 1286-1290 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:27 year:1998 number:12 month:12 pages:1286-1290 https://doi.org/10.1007/s11664-998-0087-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_4036 GBV_ILN_4266 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 27 1998 12 12 1286-1290 |
allfieldsSound |
10.1007/s11664-998-0087-2 doi (DE-627)OLC204228159X (DE-He213)s11664-998-0087-2-p DE-627 ger DE-627 rakwb eng 670 VZ Niess, J. verfasserin aut Controlled thermal kinetics in RTP 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © TMS-The Minerals, Metals and Materials Society 1998 Abstract Ultra-shallow junction formation is one of the most exciting new challenges for RTP process engineers and vendors. In many cases, reaction rat limited and diffusion limited processes are to be promoted or suppressed in a complementary manner. In the case of reaction rate limited processes, a short time “flash” annealing at higher temperatures is often more advantageous than the conventional temperature-time functions for 10–60 s with linear ramps. We have to optimize two phenomena simultaneously: the most effective dopant activation and defect removal without dopant loss. At the same time dopant profile redistribution is to be limited as much as possible. Beside the thermal kinetics of implant annealing, a proper surface control is also very important. Surface etching due to SiO formation with subsequent implant evaporation is as detrimental as $ SiO_{2} $ growth with subsequent implant segregation. The importance and possibilities of “controlled thermal kinetics” and “limited concentration” processing mode are shown in some RTA experiments. Grunwald, Ch. aut Strohmaier, R. aut Nényei, Z. aut Enthalten in Journal of electronic materials Springer-Verlag, 1972 27(1998), 12 vom: Dez., Seite 1286-1290 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:27 year:1998 number:12 month:12 pages:1286-1290 https://doi.org/10.1007/s11664-998-0087-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_4036 GBV_ILN_4266 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 27 1998 12 12 1286-1290 |
language |
English |
source |
Enthalten in Journal of electronic materials 27(1998), 12 vom: Dez., Seite 1286-1290 volume:27 year:1998 number:12 month:12 pages:1286-1290 |
sourceStr |
Enthalten in Journal of electronic materials 27(1998), 12 vom: Dez., Seite 1286-1290 volume:27 year:1998 number:12 month:12 pages:1286-1290 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of electronic materials |
authorswithroles_txt_mv |
Niess, J. @@aut@@ Grunwald, Ch. @@aut@@ Strohmaier, R. @@aut@@ Nényei, Z. @@aut@@ |
publishDateDaySort_date |
1998-12-01T00:00:00Z |
hierarchy_top_id |
129398233 |
dewey-sort |
3670 |
id |
OLC204228159X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC204228159X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230303063724.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1998 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11664-998-0087-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC204228159X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11664-998-0087-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Niess, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Controlled thermal kinetics in RTP</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1998</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© TMS-The Minerals, Metals and Materials Society 1998</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Ultra-shallow junction formation is one of the most exciting new challenges for RTP process engineers and vendors. In many cases, reaction rat limited and diffusion limited processes are to be promoted or suppressed in a complementary manner. In the case of reaction rate limited processes, a short time “flash” annealing at higher temperatures is often more advantageous than the conventional temperature-time functions for 10–60 s with linear ramps. We have to optimize two phenomena simultaneously: the most effective dopant activation and defect removal without dopant loss. At the same time dopant profile redistribution is to be limited as much as possible. Beside the thermal kinetics of implant annealing, a proper surface control is also very important. Surface etching due to SiO formation with subsequent implant evaporation is as detrimental as $ SiO_{2} $ growth with subsequent implant segregation. The importance and possibilities of “controlled thermal kinetics” and “limited concentration” processing mode are shown in some RTA experiments.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grunwald, Ch.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Strohmaier, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nényei, Z.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of electronic materials</subfield><subfield code="d">Springer-Verlag, 1972</subfield><subfield code="g">27(1998), 12 vom: Dez., Seite 1286-1290</subfield><subfield code="w">(DE-627)129398233</subfield><subfield code="w">(DE-600)186069-0</subfield><subfield code="w">(DE-576)014781387</subfield><subfield code="x">0361-5235</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:1998</subfield><subfield code="g">number:12</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:1286-1290</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11664-998-0087-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">1998</subfield><subfield code="e">12</subfield><subfield code="c">12</subfield><subfield code="h">1286-1290</subfield></datafield></record></collection>
|
author |
Niess, J. |
spellingShingle |
Niess, J. ddc 670 Controlled thermal kinetics in RTP |
authorStr |
Niess, J. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129398233 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0361-5235 |
topic_title |
670 VZ Controlled thermal kinetics in RTP |
topic |
ddc 670 |
topic_unstemmed |
ddc 670 |
topic_browse |
ddc 670 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of electronic materials |
hierarchy_parent_id |
129398233 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of electronic materials |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 |
title |
Controlled thermal kinetics in RTP |
ctrlnum |
(DE-627)OLC204228159X (DE-He213)s11664-998-0087-2-p |
title_full |
Controlled thermal kinetics in RTP |
author_sort |
Niess, J. |
journal |
Journal of electronic materials |
journalStr |
Journal of electronic materials |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
1998 |
contenttype_str_mv |
txt |
container_start_page |
1286 |
author_browse |
Niess, J. Grunwald, Ch. Strohmaier, R. Nényei, Z. |
container_volume |
27 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Niess, J. |
doi_str_mv |
10.1007/s11664-998-0087-2 |
dewey-full |
670 |
title_sort |
controlled thermal kinetics in rtp |
title_auth |
Controlled thermal kinetics in RTP |
abstract |
Abstract Ultra-shallow junction formation is one of the most exciting new challenges for RTP process engineers and vendors. In many cases, reaction rat limited and diffusion limited processes are to be promoted or suppressed in a complementary manner. In the case of reaction rate limited processes, a short time “flash” annealing at higher temperatures is often more advantageous than the conventional temperature-time functions for 10–60 s with linear ramps. We have to optimize two phenomena simultaneously: the most effective dopant activation and defect removal without dopant loss. At the same time dopant profile redistribution is to be limited as much as possible. Beside the thermal kinetics of implant annealing, a proper surface control is also very important. Surface etching due to SiO formation with subsequent implant evaporation is as detrimental as $ SiO_{2} $ growth with subsequent implant segregation. The importance and possibilities of “controlled thermal kinetics” and “limited concentration” processing mode are shown in some RTA experiments. © TMS-The Minerals, Metals and Materials Society 1998 |
abstractGer |
Abstract Ultra-shallow junction formation is one of the most exciting new challenges for RTP process engineers and vendors. In many cases, reaction rat limited and diffusion limited processes are to be promoted or suppressed in a complementary manner. In the case of reaction rate limited processes, a short time “flash” annealing at higher temperatures is often more advantageous than the conventional temperature-time functions for 10–60 s with linear ramps. We have to optimize two phenomena simultaneously: the most effective dopant activation and defect removal without dopant loss. At the same time dopant profile redistribution is to be limited as much as possible. Beside the thermal kinetics of implant annealing, a proper surface control is also very important. Surface etching due to SiO formation with subsequent implant evaporation is as detrimental as $ SiO_{2} $ growth with subsequent implant segregation. The importance and possibilities of “controlled thermal kinetics” and “limited concentration” processing mode are shown in some RTA experiments. © TMS-The Minerals, Metals and Materials Society 1998 |
abstract_unstemmed |
Abstract Ultra-shallow junction formation is one of the most exciting new challenges for RTP process engineers and vendors. In many cases, reaction rat limited and diffusion limited processes are to be promoted or suppressed in a complementary manner. In the case of reaction rate limited processes, a short time “flash” annealing at higher temperatures is often more advantageous than the conventional temperature-time functions for 10–60 s with linear ramps. We have to optimize two phenomena simultaneously: the most effective dopant activation and defect removal without dopant loss. At the same time dopant profile redistribution is to be limited as much as possible. Beside the thermal kinetics of implant annealing, a proper surface control is also very important. Surface etching due to SiO formation with subsequent implant evaporation is as detrimental as $ SiO_{2} $ growth with subsequent implant segregation. The importance and possibilities of “controlled thermal kinetics” and “limited concentration” processing mode are shown in some RTA experiments. © TMS-The Minerals, Metals and Materials Society 1998 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_30 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2027 GBV_ILN_4036 GBV_ILN_4266 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 |
container_issue |
12 |
title_short |
Controlled thermal kinetics in RTP |
url |
https://doi.org/10.1007/s11664-998-0087-2 |
remote_bool |
false |
author2 |
Grunwald, Ch Strohmaier, R. Nényei, Z. |
author2Str |
Grunwald, Ch Strohmaier, R. Nényei, Z. |
ppnlink |
129398233 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11664-998-0087-2 |
up_date |
2024-07-03T14:32:15.345Z |
_version_ |
1803568687720955904 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC204228159X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230303063724.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1998 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11664-998-0087-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC204228159X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11664-998-0087-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Niess, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Controlled thermal kinetics in RTP</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1998</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© TMS-The Minerals, Metals and Materials Society 1998</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Ultra-shallow junction formation is one of the most exciting new challenges for RTP process engineers and vendors. In many cases, reaction rat limited and diffusion limited processes are to be promoted or suppressed in a complementary manner. In the case of reaction rate limited processes, a short time “flash” annealing at higher temperatures is often more advantageous than the conventional temperature-time functions for 10–60 s with linear ramps. We have to optimize two phenomena simultaneously: the most effective dopant activation and defect removal without dopant loss. At the same time dopant profile redistribution is to be limited as much as possible. Beside the thermal kinetics of implant annealing, a proper surface control is also very important. Surface etching due to SiO formation with subsequent implant evaporation is as detrimental as $ SiO_{2} $ growth with subsequent implant segregation. The importance and possibilities of “controlled thermal kinetics” and “limited concentration” processing mode are shown in some RTA experiments.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grunwald, Ch.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Strohmaier, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nényei, Z.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of electronic materials</subfield><subfield code="d">Springer-Verlag, 1972</subfield><subfield code="g">27(1998), 12 vom: Dez., Seite 1286-1290</subfield><subfield code="w">(DE-627)129398233</subfield><subfield code="w">(DE-600)186069-0</subfield><subfield code="w">(DE-576)014781387</subfield><subfield code="x">0361-5235</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:1998</subfield><subfield code="g">number:12</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:1286-1290</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11664-998-0087-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">1998</subfield><subfield code="e">12</subfield><subfield code="c">12</subfield><subfield code="h">1286-1290</subfield></datafield></record></collection>
|
score |
7.401045 |