Silicon nano-asperities: Morphological evolution and electrical properties of double-polysilicon interlayers
Abstract Polysilicon/silicon-dioxide/polysilicon structures (double polysilicon) are grown by deposition of amorphous silicon followed by thermal oxidation and a final polysilicon deposition process. Correlation between the appearance of silicon nano-structures and surface morphology formed during t...
Ausführliche Beschreibung
Autor*in: |
Edrei, R. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2004 |
---|
Anmerkung: |
© TMS-The Minerals, Metals and Materials Society 2004 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of electronic materials - Springer-Verlag, 1972, 33(2004), 7 vom: Juli, Seite 819-825 |
---|---|
Übergeordnetes Werk: |
volume:33 ; year:2004 ; number:7 ; month:07 ; pages:819-825 |
Links: |
---|
DOI / URN: |
10.1007/s11664-004-0248-x |
---|
Katalog-ID: |
OLC204229540X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC204229540X | ||
003 | DE-627 | ||
005 | 20230303063840.0 | ||
007 | tu | ||
008 | 200820s2004 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11664-004-0248-x |2 doi | |
035 | |a (DE-627)OLC204229540X | ||
035 | |a (DE-He213)s11664-004-0248-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Edrei, R. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Silicon nano-asperities: Morphological evolution and electrical properties of double-polysilicon interlayers |
264 | 1 | |c 2004 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © TMS-The Minerals, Metals and Materials Society 2004 | ||
520 | |a Abstract Polysilicon/silicon-dioxide/polysilicon structures (double polysilicon) are grown by deposition of amorphous silicon followed by thermal oxidation and a final polysilicon deposition process. Correlation between the appearance of silicon nano-structures and surface morphology formed during the amorphous silicon deposition stage and the electrical characteristics of the double poly capacitor have been investigated. It is shown that the process parameters have a pronounced effect on the morphological properties of the film surface. Nanometric size asperities form during the amorphous silicon deposition stage. The density and height distribution of these asperities were found to depend on deposition temperature. Thermal oxidation of the amorphous layer resulted in the growth of a top oxide layer and crystallization of the bottom silicon film. This process results in an overall increase of the surface roughness and a pronounced decrease in the height of the nano-asperities. By HF-etching the oxidized film, the surface of the polycrystalline silicon is exposed. Following this etching process, the surface roughness increases, whereas the density and height of the nano-asperities decrease. A correlation between the height of asperities on the bottom amorphous silicon film (as well as roughness of this film) and the breakdown voltage of the double poly was found. | ||
700 | 1 | |a Shauly, E. N. |4 aut | |
700 | 1 | |a Roizin, Y. |4 aut | |
700 | 1 | |a Gridin, V. V. |4 aut | |
700 | 1 | |a Akhvlediani, R. |4 aut | |
700 | 1 | |a Hoffman, A. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of electronic materials |d Springer-Verlag, 1972 |g 33(2004), 7 vom: Juli, Seite 819-825 |w (DE-627)129398233 |w (DE-600)186069-0 |w (DE-576)014781387 |x 0361-5235 |7 nnns |
773 | 1 | 8 | |g volume:33 |g year:2004 |g number:7 |g month:07 |g pages:819-825 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11664-004-0248-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_4319 | ||
951 | |a AR | ||
952 | |d 33 |j 2004 |e 7 |c 07 |h 819-825 |
author_variant |
r e re e n s en ens y r yr v v g vv vvg r a ra a h ah |
---|---|
matchkey_str |
article:03615235:2004----::iionnaprtemrhlgclvltoadlcrclrprisfob |
hierarchy_sort_str |
2004 |
publishDate |
2004 |
allfields |
10.1007/s11664-004-0248-x doi (DE-627)OLC204229540X (DE-He213)s11664-004-0248-x-p DE-627 ger DE-627 rakwb eng 670 VZ Edrei, R. verfasserin aut Silicon nano-asperities: Morphological evolution and electrical properties of double-polysilicon interlayers 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © TMS-The Minerals, Metals and Materials Society 2004 Abstract Polysilicon/silicon-dioxide/polysilicon structures (double polysilicon) are grown by deposition of amorphous silicon followed by thermal oxidation and a final polysilicon deposition process. Correlation between the appearance of silicon nano-structures and surface morphology formed during the amorphous silicon deposition stage and the electrical characteristics of the double poly capacitor have been investigated. It is shown that the process parameters have a pronounced effect on the morphological properties of the film surface. Nanometric size asperities form during the amorphous silicon deposition stage. The density and height distribution of these asperities were found to depend on deposition temperature. Thermal oxidation of the amorphous layer resulted in the growth of a top oxide layer and crystallization of the bottom silicon film. This process results in an overall increase of the surface roughness and a pronounced decrease in the height of the nano-asperities. By HF-etching the oxidized film, the surface of the polycrystalline silicon is exposed. Following this etching process, the surface roughness increases, whereas the density and height of the nano-asperities decrease. A correlation between the height of asperities on the bottom amorphous silicon film (as well as roughness of this film) and the breakdown voltage of the double poly was found. Shauly, E. N. aut Roizin, Y. aut Gridin, V. V. aut Akhvlediani, R. aut Hoffman, A. aut Enthalten in Journal of electronic materials Springer-Verlag, 1972 33(2004), 7 vom: Juli, Seite 819-825 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:33 year:2004 number:7 month:07 pages:819-825 https://doi.org/10.1007/s11664-004-0248-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4319 AR 33 2004 7 07 819-825 |
spelling |
10.1007/s11664-004-0248-x doi (DE-627)OLC204229540X (DE-He213)s11664-004-0248-x-p DE-627 ger DE-627 rakwb eng 670 VZ Edrei, R. verfasserin aut Silicon nano-asperities: Morphological evolution and electrical properties of double-polysilicon interlayers 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © TMS-The Minerals, Metals and Materials Society 2004 Abstract Polysilicon/silicon-dioxide/polysilicon structures (double polysilicon) are grown by deposition of amorphous silicon followed by thermal oxidation and a final polysilicon deposition process. Correlation between the appearance of silicon nano-structures and surface morphology formed during the amorphous silicon deposition stage and the electrical characteristics of the double poly capacitor have been investigated. It is shown that the process parameters have a pronounced effect on the morphological properties of the film surface. Nanometric size asperities form during the amorphous silicon deposition stage. The density and height distribution of these asperities were found to depend on deposition temperature. Thermal oxidation of the amorphous layer resulted in the growth of a top oxide layer and crystallization of the bottom silicon film. This process results in an overall increase of the surface roughness and a pronounced decrease in the height of the nano-asperities. By HF-etching the oxidized film, the surface of the polycrystalline silicon is exposed. Following this etching process, the surface roughness increases, whereas the density and height of the nano-asperities decrease. A correlation between the height of asperities on the bottom amorphous silicon film (as well as roughness of this film) and the breakdown voltage of the double poly was found. Shauly, E. N. aut Roizin, Y. aut Gridin, V. V. aut Akhvlediani, R. aut Hoffman, A. aut Enthalten in Journal of electronic materials Springer-Verlag, 1972 33(2004), 7 vom: Juli, Seite 819-825 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:33 year:2004 number:7 month:07 pages:819-825 https://doi.org/10.1007/s11664-004-0248-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4319 AR 33 2004 7 07 819-825 |
allfields_unstemmed |
10.1007/s11664-004-0248-x doi (DE-627)OLC204229540X (DE-He213)s11664-004-0248-x-p DE-627 ger DE-627 rakwb eng 670 VZ Edrei, R. verfasserin aut Silicon nano-asperities: Morphological evolution and electrical properties of double-polysilicon interlayers 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © TMS-The Minerals, Metals and Materials Society 2004 Abstract Polysilicon/silicon-dioxide/polysilicon structures (double polysilicon) are grown by deposition of amorphous silicon followed by thermal oxidation and a final polysilicon deposition process. Correlation between the appearance of silicon nano-structures and surface morphology formed during the amorphous silicon deposition stage and the electrical characteristics of the double poly capacitor have been investigated. It is shown that the process parameters have a pronounced effect on the morphological properties of the film surface. Nanometric size asperities form during the amorphous silicon deposition stage. The density and height distribution of these asperities were found to depend on deposition temperature. Thermal oxidation of the amorphous layer resulted in the growth of a top oxide layer and crystallization of the bottom silicon film. This process results in an overall increase of the surface roughness and a pronounced decrease in the height of the nano-asperities. By HF-etching the oxidized film, the surface of the polycrystalline silicon is exposed. Following this etching process, the surface roughness increases, whereas the density and height of the nano-asperities decrease. A correlation between the height of asperities on the bottom amorphous silicon film (as well as roughness of this film) and the breakdown voltage of the double poly was found. Shauly, E. N. aut Roizin, Y. aut Gridin, V. V. aut Akhvlediani, R. aut Hoffman, A. aut Enthalten in Journal of electronic materials Springer-Verlag, 1972 33(2004), 7 vom: Juli, Seite 819-825 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:33 year:2004 number:7 month:07 pages:819-825 https://doi.org/10.1007/s11664-004-0248-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4319 AR 33 2004 7 07 819-825 |
allfieldsGer |
10.1007/s11664-004-0248-x doi (DE-627)OLC204229540X (DE-He213)s11664-004-0248-x-p DE-627 ger DE-627 rakwb eng 670 VZ Edrei, R. verfasserin aut Silicon nano-asperities: Morphological evolution and electrical properties of double-polysilicon interlayers 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © TMS-The Minerals, Metals and Materials Society 2004 Abstract Polysilicon/silicon-dioxide/polysilicon structures (double polysilicon) are grown by deposition of amorphous silicon followed by thermal oxidation and a final polysilicon deposition process. Correlation between the appearance of silicon nano-structures and surface morphology formed during the amorphous silicon deposition stage and the electrical characteristics of the double poly capacitor have been investigated. It is shown that the process parameters have a pronounced effect on the morphological properties of the film surface. Nanometric size asperities form during the amorphous silicon deposition stage. The density and height distribution of these asperities were found to depend on deposition temperature. Thermal oxidation of the amorphous layer resulted in the growth of a top oxide layer and crystallization of the bottom silicon film. This process results in an overall increase of the surface roughness and a pronounced decrease in the height of the nano-asperities. By HF-etching the oxidized film, the surface of the polycrystalline silicon is exposed. Following this etching process, the surface roughness increases, whereas the density and height of the nano-asperities decrease. A correlation between the height of asperities on the bottom amorphous silicon film (as well as roughness of this film) and the breakdown voltage of the double poly was found. Shauly, E. N. aut Roizin, Y. aut Gridin, V. V. aut Akhvlediani, R. aut Hoffman, A. aut Enthalten in Journal of electronic materials Springer-Verlag, 1972 33(2004), 7 vom: Juli, Seite 819-825 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:33 year:2004 number:7 month:07 pages:819-825 https://doi.org/10.1007/s11664-004-0248-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4319 AR 33 2004 7 07 819-825 |
allfieldsSound |
10.1007/s11664-004-0248-x doi (DE-627)OLC204229540X (DE-He213)s11664-004-0248-x-p DE-627 ger DE-627 rakwb eng 670 VZ Edrei, R. verfasserin aut Silicon nano-asperities: Morphological evolution and electrical properties of double-polysilicon interlayers 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © TMS-The Minerals, Metals and Materials Society 2004 Abstract Polysilicon/silicon-dioxide/polysilicon structures (double polysilicon) are grown by deposition of amorphous silicon followed by thermal oxidation and a final polysilicon deposition process. Correlation between the appearance of silicon nano-structures and surface morphology formed during the amorphous silicon deposition stage and the electrical characteristics of the double poly capacitor have been investigated. It is shown that the process parameters have a pronounced effect on the morphological properties of the film surface. Nanometric size asperities form during the amorphous silicon deposition stage. The density and height distribution of these asperities were found to depend on deposition temperature. Thermal oxidation of the amorphous layer resulted in the growth of a top oxide layer and crystallization of the bottom silicon film. This process results in an overall increase of the surface roughness and a pronounced decrease in the height of the nano-asperities. By HF-etching the oxidized film, the surface of the polycrystalline silicon is exposed. Following this etching process, the surface roughness increases, whereas the density and height of the nano-asperities decrease. A correlation between the height of asperities on the bottom amorphous silicon film (as well as roughness of this film) and the breakdown voltage of the double poly was found. Shauly, E. N. aut Roizin, Y. aut Gridin, V. V. aut Akhvlediani, R. aut Hoffman, A. aut Enthalten in Journal of electronic materials Springer-Verlag, 1972 33(2004), 7 vom: Juli, Seite 819-825 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:33 year:2004 number:7 month:07 pages:819-825 https://doi.org/10.1007/s11664-004-0248-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4319 AR 33 2004 7 07 819-825 |
language |
English |
source |
Enthalten in Journal of electronic materials 33(2004), 7 vom: Juli, Seite 819-825 volume:33 year:2004 number:7 month:07 pages:819-825 |
sourceStr |
Enthalten in Journal of electronic materials 33(2004), 7 vom: Juli, Seite 819-825 volume:33 year:2004 number:7 month:07 pages:819-825 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of electronic materials |
authorswithroles_txt_mv |
Edrei, R. @@aut@@ Shauly, E. N. @@aut@@ Roizin, Y. @@aut@@ Gridin, V. V. @@aut@@ Akhvlediani, R. @@aut@@ Hoffman, A. @@aut@@ |
publishDateDaySort_date |
2004-07-01T00:00:00Z |
hierarchy_top_id |
129398233 |
dewey-sort |
3670 |
id |
OLC204229540X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC204229540X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230303063840.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2004 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11664-004-0248-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC204229540X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11664-004-0248-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Edrei, R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Silicon nano-asperities: Morphological evolution and electrical properties of double-polysilicon interlayers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2004</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© TMS-The Minerals, Metals and Materials Society 2004</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Polysilicon/silicon-dioxide/polysilicon structures (double polysilicon) are grown by deposition of amorphous silicon followed by thermal oxidation and a final polysilicon deposition process. Correlation between the appearance of silicon nano-structures and surface morphology formed during the amorphous silicon deposition stage and the electrical characteristics of the double poly capacitor have been investigated. It is shown that the process parameters have a pronounced effect on the morphological properties of the film surface. Nanometric size asperities form during the amorphous silicon deposition stage. The density and height distribution of these asperities were found to depend on deposition temperature. Thermal oxidation of the amorphous layer resulted in the growth of a top oxide layer and crystallization of the bottom silicon film. This process results in an overall increase of the surface roughness and a pronounced decrease in the height of the nano-asperities. By HF-etching the oxidized film, the surface of the polycrystalline silicon is exposed. Following this etching process, the surface roughness increases, whereas the density and height of the nano-asperities decrease. A correlation between the height of asperities on the bottom amorphous silicon film (as well as roughness of this film) and the breakdown voltage of the double poly was found.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shauly, E. N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roizin, Y.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gridin, V. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Akhvlediani, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hoffman, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of electronic materials</subfield><subfield code="d">Springer-Verlag, 1972</subfield><subfield code="g">33(2004), 7 vom: Juli, Seite 819-825</subfield><subfield code="w">(DE-627)129398233</subfield><subfield code="w">(DE-600)186069-0</subfield><subfield code="w">(DE-576)014781387</subfield><subfield code="x">0361-5235</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2004</subfield><subfield code="g">number:7</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:819-825</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11664-004-0248-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2004</subfield><subfield code="e">7</subfield><subfield code="c">07</subfield><subfield code="h">819-825</subfield></datafield></record></collection>
|
author |
Edrei, R. |
spellingShingle |
Edrei, R. ddc 670 Silicon nano-asperities: Morphological evolution and electrical properties of double-polysilicon interlayers |
authorStr |
Edrei, R. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129398233 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0361-5235 |
topic_title |
670 VZ Silicon nano-asperities: Morphological evolution and electrical properties of double-polysilicon interlayers |
topic |
ddc 670 |
topic_unstemmed |
ddc 670 |
topic_browse |
ddc 670 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of electronic materials |
hierarchy_parent_id |
129398233 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of electronic materials |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 |
title |
Silicon nano-asperities: Morphological evolution and electrical properties of double-polysilicon interlayers |
ctrlnum |
(DE-627)OLC204229540X (DE-He213)s11664-004-0248-x-p |
title_full |
Silicon nano-asperities: Morphological evolution and electrical properties of double-polysilicon interlayers |
author_sort |
Edrei, R. |
journal |
Journal of electronic materials |
journalStr |
Journal of electronic materials |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2004 |
contenttype_str_mv |
txt |
container_start_page |
819 |
author_browse |
Edrei, R. Shauly, E. N. Roizin, Y. Gridin, V. V. Akhvlediani, R. Hoffman, A. |
container_volume |
33 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Edrei, R. |
doi_str_mv |
10.1007/s11664-004-0248-x |
dewey-full |
670 |
title_sort |
silicon nano-asperities: morphological evolution and electrical properties of double-polysilicon interlayers |
title_auth |
Silicon nano-asperities: Morphological evolution and electrical properties of double-polysilicon interlayers |
abstract |
Abstract Polysilicon/silicon-dioxide/polysilicon structures (double polysilicon) are grown by deposition of amorphous silicon followed by thermal oxidation and a final polysilicon deposition process. Correlation between the appearance of silicon nano-structures and surface morphology formed during the amorphous silicon deposition stage and the electrical characteristics of the double poly capacitor have been investigated. It is shown that the process parameters have a pronounced effect on the morphological properties of the film surface. Nanometric size asperities form during the amorphous silicon deposition stage. The density and height distribution of these asperities were found to depend on deposition temperature. Thermal oxidation of the amorphous layer resulted in the growth of a top oxide layer and crystallization of the bottom silicon film. This process results in an overall increase of the surface roughness and a pronounced decrease in the height of the nano-asperities. By HF-etching the oxidized film, the surface of the polycrystalline silicon is exposed. Following this etching process, the surface roughness increases, whereas the density and height of the nano-asperities decrease. A correlation between the height of asperities on the bottom amorphous silicon film (as well as roughness of this film) and the breakdown voltage of the double poly was found. © TMS-The Minerals, Metals and Materials Society 2004 |
abstractGer |
Abstract Polysilicon/silicon-dioxide/polysilicon structures (double polysilicon) are grown by deposition of amorphous silicon followed by thermal oxidation and a final polysilicon deposition process. Correlation between the appearance of silicon nano-structures and surface morphology formed during the amorphous silicon deposition stage and the electrical characteristics of the double poly capacitor have been investigated. It is shown that the process parameters have a pronounced effect on the morphological properties of the film surface. Nanometric size asperities form during the amorphous silicon deposition stage. The density and height distribution of these asperities were found to depend on deposition temperature. Thermal oxidation of the amorphous layer resulted in the growth of a top oxide layer and crystallization of the bottom silicon film. This process results in an overall increase of the surface roughness and a pronounced decrease in the height of the nano-asperities. By HF-etching the oxidized film, the surface of the polycrystalline silicon is exposed. Following this etching process, the surface roughness increases, whereas the density and height of the nano-asperities decrease. A correlation between the height of asperities on the bottom amorphous silicon film (as well as roughness of this film) and the breakdown voltage of the double poly was found. © TMS-The Minerals, Metals and Materials Society 2004 |
abstract_unstemmed |
Abstract Polysilicon/silicon-dioxide/polysilicon structures (double polysilicon) are grown by deposition of amorphous silicon followed by thermal oxidation and a final polysilicon deposition process. Correlation between the appearance of silicon nano-structures and surface morphology formed during the amorphous silicon deposition stage and the electrical characteristics of the double poly capacitor have been investigated. It is shown that the process parameters have a pronounced effect on the morphological properties of the film surface. Nanometric size asperities form during the amorphous silicon deposition stage. The density and height distribution of these asperities were found to depend on deposition temperature. Thermal oxidation of the amorphous layer resulted in the growth of a top oxide layer and crystallization of the bottom silicon film. This process results in an overall increase of the surface roughness and a pronounced decrease in the height of the nano-asperities. By HF-etching the oxidized film, the surface of the polycrystalline silicon is exposed. Following this etching process, the surface roughness increases, whereas the density and height of the nano-asperities decrease. A correlation between the height of asperities on the bottom amorphous silicon film (as well as roughness of this film) and the breakdown voltage of the double poly was found. © TMS-The Minerals, Metals and Materials Society 2004 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_4319 |
container_issue |
7 |
title_short |
Silicon nano-asperities: Morphological evolution and electrical properties of double-polysilicon interlayers |
url |
https://doi.org/10.1007/s11664-004-0248-x |
remote_bool |
false |
author2 |
Shauly, E. N. Roizin, Y. Gridin, V. V. Akhvlediani, R. Hoffman, A. |
author2Str |
Shauly, E. N. Roizin, Y. Gridin, V. V. Akhvlediani, R. Hoffman, A. |
ppnlink |
129398233 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11664-004-0248-x |
up_date |
2024-07-03T14:35:51.409Z |
_version_ |
1803568914275237888 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC204229540X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230303063840.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2004 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11664-004-0248-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC204229540X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11664-004-0248-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Edrei, R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Silicon nano-asperities: Morphological evolution and electrical properties of double-polysilicon interlayers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2004</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© TMS-The Minerals, Metals and Materials Society 2004</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Polysilicon/silicon-dioxide/polysilicon structures (double polysilicon) are grown by deposition of amorphous silicon followed by thermal oxidation and a final polysilicon deposition process. Correlation between the appearance of silicon nano-structures and surface morphology formed during the amorphous silicon deposition stage and the electrical characteristics of the double poly capacitor have been investigated. It is shown that the process parameters have a pronounced effect on the morphological properties of the film surface. Nanometric size asperities form during the amorphous silicon deposition stage. The density and height distribution of these asperities were found to depend on deposition temperature. Thermal oxidation of the amorphous layer resulted in the growth of a top oxide layer and crystallization of the bottom silicon film. This process results in an overall increase of the surface roughness and a pronounced decrease in the height of the nano-asperities. By HF-etching the oxidized film, the surface of the polycrystalline silicon is exposed. Following this etching process, the surface roughness increases, whereas the density and height of the nano-asperities decrease. A correlation between the height of asperities on the bottom amorphous silicon film (as well as roughness of this film) and the breakdown voltage of the double poly was found.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shauly, E. N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roizin, Y.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gridin, V. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Akhvlediani, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hoffman, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of electronic materials</subfield><subfield code="d">Springer-Verlag, 1972</subfield><subfield code="g">33(2004), 7 vom: Juli, Seite 819-825</subfield><subfield code="w">(DE-627)129398233</subfield><subfield code="w">(DE-600)186069-0</subfield><subfield code="w">(DE-576)014781387</subfield><subfield code="x">0361-5235</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2004</subfield><subfield code="g">number:7</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:819-825</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11664-004-0248-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2004</subfield><subfield code="e">7</subfield><subfield code="c">07</subfield><subfield code="h">819-825</subfield></datafield></record></collection>
|
score |
7.400488 |