In Situ Interferometry of MOCVD-Grown ZnO for Nucleation-Layer-Based Optimization and Nanostructure Formation Monitoring
A reliable in situ interferometry technique allowed accurate prediction of the change in ZnO morphology during growth on various substrate types. Interferometry results showed that a 40-nm-thick nucleation layer on top of GaN allows growth of smooth and monocrystalline ZnO layers, as also confirmed...
Ausführliche Beschreibung
Autor*in: |
Biethan, J.-P. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Anmerkung: |
© TMS 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of electronic materials - Springer US, 1972, 40(2011), 4 vom: 29. Jan., Seite 453-458 |
---|---|
Übergeordnetes Werk: |
volume:40 ; year:2011 ; number:4 ; day:29 ; month:01 ; pages:453-458 |
Links: |
---|
DOI / URN: |
10.1007/s11664-011-1515-2 |
---|
Katalog-ID: |
OLC2042315915 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2042315915 | ||
003 | DE-627 | ||
005 | 20230401125240.0 | ||
007 | tu | ||
008 | 200820s2011 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11664-011-1515-2 |2 doi | |
035 | |a (DE-627)OLC2042315915 | ||
035 | |a (DE-He213)s11664-011-1515-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Biethan, J.-P. |e verfasserin |4 aut | |
245 | 1 | 0 | |a In Situ Interferometry of MOCVD-Grown ZnO for Nucleation-Layer-Based Optimization and Nanostructure Formation Monitoring |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © TMS 2011 | ||
520 | |a A reliable in situ interferometry technique allowed accurate prediction of the change in ZnO morphology during growth on various substrate types. Interferometry results showed that a 40-nm-thick nucleation layer on top of GaN allows growth of smooth and monocrystalline ZnO layers, as also confirmed by x-ray diffractometry (XRD). Studies of ZnO growth on silicon indicated that the surface morphology changes during the high-temperature growth step, resulting in needle-shaped ZnO on top of a thin ZnO initial layer. The observed surface morphology change corresponded to the interferometer signature and allowed identification of nanostructure formation. | ||
650 | 4 | |a ZnO | |
650 | 4 | |a MOCVD | |
650 | 4 | |a interferometry | |
650 | 4 | |a nucleation layer optimization | |
650 | 4 | |a nanostructures | |
700 | 1 | |a Considine, L. |4 aut | |
700 | 1 | |a Pavlidis, D. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of electronic materials |d Springer US, 1972 |g 40(2011), 4 vom: 29. Jan., Seite 453-458 |w (DE-627)129398233 |w (DE-600)186069-0 |w (DE-576)014781387 |x 0361-5235 |7 nnns |
773 | 1 | 8 | |g volume:40 |g year:2011 |g number:4 |g day:29 |g month:01 |g pages:453-458 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11664-011-1515-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2020 | ||
951 | |a AR | ||
952 | |d 40 |j 2011 |e 4 |b 29 |c 01 |h 453-458 |
author_variant |
j p b jpb l c lc d p dp |
---|---|
matchkey_str |
article:03615235:2011----::niunefrmtyfovgonnfrulainaebsdpiiainnnns |
hierarchy_sort_str |
2011 |
publishDate |
2011 |
allfields |
10.1007/s11664-011-1515-2 doi (DE-627)OLC2042315915 (DE-He213)s11664-011-1515-2-p DE-627 ger DE-627 rakwb eng 670 VZ Biethan, J.-P. verfasserin aut In Situ Interferometry of MOCVD-Grown ZnO for Nucleation-Layer-Based Optimization and Nanostructure Formation Monitoring 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © TMS 2011 A reliable in situ interferometry technique allowed accurate prediction of the change in ZnO morphology during growth on various substrate types. Interferometry results showed that a 40-nm-thick nucleation layer on top of GaN allows growth of smooth and monocrystalline ZnO layers, as also confirmed by x-ray diffractometry (XRD). Studies of ZnO growth on silicon indicated that the surface morphology changes during the high-temperature growth step, resulting in needle-shaped ZnO on top of a thin ZnO initial layer. The observed surface morphology change corresponded to the interferometer signature and allowed identification of nanostructure formation. ZnO MOCVD interferometry nucleation layer optimization nanostructures Considine, L. aut Pavlidis, D. aut Enthalten in Journal of electronic materials Springer US, 1972 40(2011), 4 vom: 29. Jan., Seite 453-458 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:40 year:2011 number:4 day:29 month:01 pages:453-458 https://doi.org/10.1007/s11664-011-1515-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2020 AR 40 2011 4 29 01 453-458 |
spelling |
10.1007/s11664-011-1515-2 doi (DE-627)OLC2042315915 (DE-He213)s11664-011-1515-2-p DE-627 ger DE-627 rakwb eng 670 VZ Biethan, J.-P. verfasserin aut In Situ Interferometry of MOCVD-Grown ZnO for Nucleation-Layer-Based Optimization and Nanostructure Formation Monitoring 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © TMS 2011 A reliable in situ interferometry technique allowed accurate prediction of the change in ZnO morphology during growth on various substrate types. Interferometry results showed that a 40-nm-thick nucleation layer on top of GaN allows growth of smooth and monocrystalline ZnO layers, as also confirmed by x-ray diffractometry (XRD). Studies of ZnO growth on silicon indicated that the surface morphology changes during the high-temperature growth step, resulting in needle-shaped ZnO on top of a thin ZnO initial layer. The observed surface morphology change corresponded to the interferometer signature and allowed identification of nanostructure formation. ZnO MOCVD interferometry nucleation layer optimization nanostructures Considine, L. aut Pavlidis, D. aut Enthalten in Journal of electronic materials Springer US, 1972 40(2011), 4 vom: 29. Jan., Seite 453-458 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:40 year:2011 number:4 day:29 month:01 pages:453-458 https://doi.org/10.1007/s11664-011-1515-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2020 AR 40 2011 4 29 01 453-458 |
allfields_unstemmed |
10.1007/s11664-011-1515-2 doi (DE-627)OLC2042315915 (DE-He213)s11664-011-1515-2-p DE-627 ger DE-627 rakwb eng 670 VZ Biethan, J.-P. verfasserin aut In Situ Interferometry of MOCVD-Grown ZnO for Nucleation-Layer-Based Optimization and Nanostructure Formation Monitoring 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © TMS 2011 A reliable in situ interferometry technique allowed accurate prediction of the change in ZnO morphology during growth on various substrate types. Interferometry results showed that a 40-nm-thick nucleation layer on top of GaN allows growth of smooth and monocrystalline ZnO layers, as also confirmed by x-ray diffractometry (XRD). Studies of ZnO growth on silicon indicated that the surface morphology changes during the high-temperature growth step, resulting in needle-shaped ZnO on top of a thin ZnO initial layer. The observed surface morphology change corresponded to the interferometer signature and allowed identification of nanostructure formation. ZnO MOCVD interferometry nucleation layer optimization nanostructures Considine, L. aut Pavlidis, D. aut Enthalten in Journal of electronic materials Springer US, 1972 40(2011), 4 vom: 29. Jan., Seite 453-458 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:40 year:2011 number:4 day:29 month:01 pages:453-458 https://doi.org/10.1007/s11664-011-1515-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2020 AR 40 2011 4 29 01 453-458 |
allfieldsGer |
10.1007/s11664-011-1515-2 doi (DE-627)OLC2042315915 (DE-He213)s11664-011-1515-2-p DE-627 ger DE-627 rakwb eng 670 VZ Biethan, J.-P. verfasserin aut In Situ Interferometry of MOCVD-Grown ZnO for Nucleation-Layer-Based Optimization and Nanostructure Formation Monitoring 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © TMS 2011 A reliable in situ interferometry technique allowed accurate prediction of the change in ZnO morphology during growth on various substrate types. Interferometry results showed that a 40-nm-thick nucleation layer on top of GaN allows growth of smooth and monocrystalline ZnO layers, as also confirmed by x-ray diffractometry (XRD). Studies of ZnO growth on silicon indicated that the surface morphology changes during the high-temperature growth step, resulting in needle-shaped ZnO on top of a thin ZnO initial layer. The observed surface morphology change corresponded to the interferometer signature and allowed identification of nanostructure formation. ZnO MOCVD interferometry nucleation layer optimization nanostructures Considine, L. aut Pavlidis, D. aut Enthalten in Journal of electronic materials Springer US, 1972 40(2011), 4 vom: 29. Jan., Seite 453-458 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:40 year:2011 number:4 day:29 month:01 pages:453-458 https://doi.org/10.1007/s11664-011-1515-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2020 AR 40 2011 4 29 01 453-458 |
allfieldsSound |
10.1007/s11664-011-1515-2 doi (DE-627)OLC2042315915 (DE-He213)s11664-011-1515-2-p DE-627 ger DE-627 rakwb eng 670 VZ Biethan, J.-P. verfasserin aut In Situ Interferometry of MOCVD-Grown ZnO for Nucleation-Layer-Based Optimization and Nanostructure Formation Monitoring 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © TMS 2011 A reliable in situ interferometry technique allowed accurate prediction of the change in ZnO morphology during growth on various substrate types. Interferometry results showed that a 40-nm-thick nucleation layer on top of GaN allows growth of smooth and monocrystalline ZnO layers, as also confirmed by x-ray diffractometry (XRD). Studies of ZnO growth on silicon indicated that the surface morphology changes during the high-temperature growth step, resulting in needle-shaped ZnO on top of a thin ZnO initial layer. The observed surface morphology change corresponded to the interferometer signature and allowed identification of nanostructure formation. ZnO MOCVD interferometry nucleation layer optimization nanostructures Considine, L. aut Pavlidis, D. aut Enthalten in Journal of electronic materials Springer US, 1972 40(2011), 4 vom: 29. Jan., Seite 453-458 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:40 year:2011 number:4 day:29 month:01 pages:453-458 https://doi.org/10.1007/s11664-011-1515-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2020 AR 40 2011 4 29 01 453-458 |
language |
English |
source |
Enthalten in Journal of electronic materials 40(2011), 4 vom: 29. Jan., Seite 453-458 volume:40 year:2011 number:4 day:29 month:01 pages:453-458 |
sourceStr |
Enthalten in Journal of electronic materials 40(2011), 4 vom: 29. Jan., Seite 453-458 volume:40 year:2011 number:4 day:29 month:01 pages:453-458 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
ZnO MOCVD interferometry nucleation layer optimization nanostructures |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of electronic materials |
authorswithroles_txt_mv |
Biethan, J.-P. @@aut@@ Considine, L. @@aut@@ Pavlidis, D. @@aut@@ |
publishDateDaySort_date |
2011-01-29T00:00:00Z |
hierarchy_top_id |
129398233 |
dewey-sort |
3670 |
id |
OLC2042315915 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2042315915</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401125240.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11664-011-1515-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2042315915</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11664-011-1515-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Biethan, J.-P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">In Situ Interferometry of MOCVD-Grown ZnO for Nucleation-Layer-Based Optimization and Nanostructure Formation Monitoring</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© TMS 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A reliable in situ interferometry technique allowed accurate prediction of the change in ZnO morphology during growth on various substrate types. Interferometry results showed that a 40-nm-thick nucleation layer on top of GaN allows growth of smooth and monocrystalline ZnO layers, as also confirmed by x-ray diffractometry (XRD). Studies of ZnO growth on silicon indicated that the surface morphology changes during the high-temperature growth step, resulting in needle-shaped ZnO on top of a thin ZnO initial layer. The observed surface morphology change corresponded to the interferometer signature and allowed identification of nanostructure formation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ZnO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MOCVD</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">interferometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nucleation layer optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanostructures</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Considine, L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pavlidis, D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of electronic materials</subfield><subfield code="d">Springer US, 1972</subfield><subfield code="g">40(2011), 4 vom: 29. Jan., Seite 453-458</subfield><subfield code="w">(DE-627)129398233</subfield><subfield code="w">(DE-600)186069-0</subfield><subfield code="w">(DE-576)014781387</subfield><subfield code="x">0361-5235</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:40</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:4</subfield><subfield code="g">day:29</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:453-458</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11664-011-1515-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">40</subfield><subfield code="j">2011</subfield><subfield code="e">4</subfield><subfield code="b">29</subfield><subfield code="c">01</subfield><subfield code="h">453-458</subfield></datafield></record></collection>
|
author |
Biethan, J.-P. |
spellingShingle |
Biethan, J.-P. ddc 670 misc ZnO misc MOCVD misc interferometry misc nucleation layer optimization misc nanostructures In Situ Interferometry of MOCVD-Grown ZnO for Nucleation-Layer-Based Optimization and Nanostructure Formation Monitoring |
authorStr |
Biethan, J.-P. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129398233 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0361-5235 |
topic_title |
670 VZ In Situ Interferometry of MOCVD-Grown ZnO for Nucleation-Layer-Based Optimization and Nanostructure Formation Monitoring ZnO MOCVD interferometry nucleation layer optimization nanostructures |
topic |
ddc 670 misc ZnO misc MOCVD misc interferometry misc nucleation layer optimization misc nanostructures |
topic_unstemmed |
ddc 670 misc ZnO misc MOCVD misc interferometry misc nucleation layer optimization misc nanostructures |
topic_browse |
ddc 670 misc ZnO misc MOCVD misc interferometry misc nucleation layer optimization misc nanostructures |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of electronic materials |
hierarchy_parent_id |
129398233 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of electronic materials |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 |
title |
In Situ Interferometry of MOCVD-Grown ZnO for Nucleation-Layer-Based Optimization and Nanostructure Formation Monitoring |
ctrlnum |
(DE-627)OLC2042315915 (DE-He213)s11664-011-1515-2-p |
title_full |
In Situ Interferometry of MOCVD-Grown ZnO for Nucleation-Layer-Based Optimization and Nanostructure Formation Monitoring |
author_sort |
Biethan, J.-P. |
journal |
Journal of electronic materials |
journalStr |
Journal of electronic materials |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
453 |
author_browse |
Biethan, J.-P. Considine, L. Pavlidis, D. |
container_volume |
40 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Biethan, J.-P. |
doi_str_mv |
10.1007/s11664-011-1515-2 |
dewey-full |
670 |
title_sort |
in situ interferometry of mocvd-grown zno for nucleation-layer-based optimization and nanostructure formation monitoring |
title_auth |
In Situ Interferometry of MOCVD-Grown ZnO for Nucleation-Layer-Based Optimization and Nanostructure Formation Monitoring |
abstract |
A reliable in situ interferometry technique allowed accurate prediction of the change in ZnO morphology during growth on various substrate types. Interferometry results showed that a 40-nm-thick nucleation layer on top of GaN allows growth of smooth and monocrystalline ZnO layers, as also confirmed by x-ray diffractometry (XRD). Studies of ZnO growth on silicon indicated that the surface morphology changes during the high-temperature growth step, resulting in needle-shaped ZnO on top of a thin ZnO initial layer. The observed surface morphology change corresponded to the interferometer signature and allowed identification of nanostructure formation. © TMS 2011 |
abstractGer |
A reliable in situ interferometry technique allowed accurate prediction of the change in ZnO morphology during growth on various substrate types. Interferometry results showed that a 40-nm-thick nucleation layer on top of GaN allows growth of smooth and monocrystalline ZnO layers, as also confirmed by x-ray diffractometry (XRD). Studies of ZnO growth on silicon indicated that the surface morphology changes during the high-temperature growth step, resulting in needle-shaped ZnO on top of a thin ZnO initial layer. The observed surface morphology change corresponded to the interferometer signature and allowed identification of nanostructure formation. © TMS 2011 |
abstract_unstemmed |
A reliable in situ interferometry technique allowed accurate prediction of the change in ZnO morphology during growth on various substrate types. Interferometry results showed that a 40-nm-thick nucleation layer on top of GaN allows growth of smooth and monocrystalline ZnO layers, as also confirmed by x-ray diffractometry (XRD). Studies of ZnO growth on silicon indicated that the surface morphology changes during the high-temperature growth step, resulting in needle-shaped ZnO on top of a thin ZnO initial layer. The observed surface morphology change corresponded to the interferometer signature and allowed identification of nanostructure formation. © TMS 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2020 |
container_issue |
4 |
title_short |
In Situ Interferometry of MOCVD-Grown ZnO for Nucleation-Layer-Based Optimization and Nanostructure Formation Monitoring |
url |
https://doi.org/10.1007/s11664-011-1515-2 |
remote_bool |
false |
author2 |
Considine, L. Pavlidis, D. |
author2Str |
Considine, L. Pavlidis, D. |
ppnlink |
129398233 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11664-011-1515-2 |
up_date |
2024-07-03T14:41:22.314Z |
_version_ |
1803569261249036288 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2042315915</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401125240.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11664-011-1515-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2042315915</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11664-011-1515-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Biethan, J.-P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">In Situ Interferometry of MOCVD-Grown ZnO for Nucleation-Layer-Based Optimization and Nanostructure Formation Monitoring</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© TMS 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A reliable in situ interferometry technique allowed accurate prediction of the change in ZnO morphology during growth on various substrate types. Interferometry results showed that a 40-nm-thick nucleation layer on top of GaN allows growth of smooth and monocrystalline ZnO layers, as also confirmed by x-ray diffractometry (XRD). Studies of ZnO growth on silicon indicated that the surface morphology changes during the high-temperature growth step, resulting in needle-shaped ZnO on top of a thin ZnO initial layer. The observed surface morphology change corresponded to the interferometer signature and allowed identification of nanostructure formation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ZnO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MOCVD</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">interferometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nucleation layer optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanostructures</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Considine, L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pavlidis, D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of electronic materials</subfield><subfield code="d">Springer US, 1972</subfield><subfield code="g">40(2011), 4 vom: 29. Jan., Seite 453-458</subfield><subfield code="w">(DE-627)129398233</subfield><subfield code="w">(DE-600)186069-0</subfield><subfield code="w">(DE-576)014781387</subfield><subfield code="x">0361-5235</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:40</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:4</subfield><subfield code="g">day:29</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:453-458</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11664-011-1515-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">40</subfield><subfield code="j">2011</subfield><subfield code="e">4</subfield><subfield code="b">29</subfield><subfield code="c">01</subfield><subfield code="h">453-458</subfield></datafield></record></collection>
|
score |
7.402936 |