Measurement of 3D Printed Structure Using a Peak Detection Method in Dispersive Interferometry
Abstract We describe an optical three dimensional (3D) measurement method using white-light dispersive interferometry in the range of 5 μm–150 μm. A spectrometer was employed for real-time wavelength scanning and the distance information was obtained using a simple peak detection method in the spect...
Ausführliche Beschreibung
Autor*in: |
Kim, Jongheon [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Minerals, Metals & Materials Society 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of electronic materials - Springer US, 1972, 44(2014), 3 vom: 20. Nov., Seite 792-796 |
---|---|
Übergeordnetes Werk: |
volume:44 ; year:2014 ; number:3 ; day:20 ; month:11 ; pages:792-796 |
Links: |
---|
DOI / URN: |
10.1007/s11664-014-3524-4 |
---|
Katalog-ID: |
OLC2042335746 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2042335746 | ||
003 | DE-627 | ||
005 | 20230401125822.0 | ||
007 | tu | ||
008 | 200820s2014 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11664-014-3524-4 |2 doi | |
035 | |a (DE-627)OLC2042335746 | ||
035 | |a (DE-He213)s11664-014-3524-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Kim, Jongheon |e verfasserin |4 aut | |
245 | 1 | 0 | |a Measurement of 3D Printed Structure Using a Peak Detection Method in Dispersive Interferometry |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Minerals, Metals & Materials Society 2014 | ||
520 | |a Abstract We describe an optical three dimensional (3D) measurement method using white-light dispersive interferometry in the range of 5 μm–150 μm. A spectrometer was employed for real-time wavelength scanning and the distance information was obtained using a simple peak detection method in the spectral domain. Fast measurement time enabled us real-time distance measurement of the specimen. The piezoelectric actuator and capacitance distance sensor was employed for nanometer positioning and measuring distance reference value. This technique can be implemented as a distance measurement unit in white-light scanning interferometry by simply attaching a spectrometer to the conventional system. The results showed an accuracy of better than 60 nm for any position within 5 μm–150 μm. The proposed technique can be used as shape-measuring tool for 3D printed products. Measurement results using the proposed method are also presented. These experimental results show that pthe roposed method can be used as a measurement tool for 3D printed products. | ||
650 | 4 | |a Dispersive Interferometry | |
650 | 4 | |a 3D measurement | |
650 | 4 | |a shape measurement | |
650 | 4 | |a 3D printed product | |
700 | 1 | |a Jo, Taeyong |4 aut | |
700 | 1 | |a Kim, Namyoon |4 aut | |
700 | 1 | |a Kwon, Dongil |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of electronic materials |d Springer US, 1972 |g 44(2014), 3 vom: 20. Nov., Seite 792-796 |w (DE-627)129398233 |w (DE-600)186069-0 |w (DE-576)014781387 |x 0361-5235 |7 nnns |
773 | 1 | 8 | |g volume:44 |g year:2014 |g number:3 |g day:20 |g month:11 |g pages:792-796 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11664-014-3524-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 44 |j 2014 |e 3 |b 20 |c 11 |h 792-796 |
author_variant |
j k jk t j tj n k nk d k dk |
---|---|
matchkey_str |
article:03615235:2014----::esrmno3pitdtutruigpadtcinehdni |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1007/s11664-014-3524-4 doi (DE-627)OLC2042335746 (DE-He213)s11664-014-3524-4-p DE-627 ger DE-627 rakwb eng 670 VZ Kim, Jongheon verfasserin aut Measurement of 3D Printed Structure Using a Peak Detection Method in Dispersive Interferometry 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society 2014 Abstract We describe an optical three dimensional (3D) measurement method using white-light dispersive interferometry in the range of 5 μm–150 μm. A spectrometer was employed for real-time wavelength scanning and the distance information was obtained using a simple peak detection method in the spectral domain. Fast measurement time enabled us real-time distance measurement of the specimen. The piezoelectric actuator and capacitance distance sensor was employed for nanometer positioning and measuring distance reference value. This technique can be implemented as a distance measurement unit in white-light scanning interferometry by simply attaching a spectrometer to the conventional system. The results showed an accuracy of better than 60 nm for any position within 5 μm–150 μm. The proposed technique can be used as shape-measuring tool for 3D printed products. Measurement results using the proposed method are also presented. These experimental results show that pthe roposed method can be used as a measurement tool for 3D printed products. Dispersive Interferometry 3D measurement shape measurement 3D printed product Jo, Taeyong aut Kim, Namyoon aut Kwon, Dongil aut Enthalten in Journal of electronic materials Springer US, 1972 44(2014), 3 vom: 20. Nov., Seite 792-796 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:44 year:2014 number:3 day:20 month:11 pages:792-796 https://doi.org/10.1007/s11664-014-3524-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 44 2014 3 20 11 792-796 |
spelling |
10.1007/s11664-014-3524-4 doi (DE-627)OLC2042335746 (DE-He213)s11664-014-3524-4-p DE-627 ger DE-627 rakwb eng 670 VZ Kim, Jongheon verfasserin aut Measurement of 3D Printed Structure Using a Peak Detection Method in Dispersive Interferometry 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society 2014 Abstract We describe an optical three dimensional (3D) measurement method using white-light dispersive interferometry in the range of 5 μm–150 μm. A spectrometer was employed for real-time wavelength scanning and the distance information was obtained using a simple peak detection method in the spectral domain. Fast measurement time enabled us real-time distance measurement of the specimen. The piezoelectric actuator and capacitance distance sensor was employed for nanometer positioning and measuring distance reference value. This technique can be implemented as a distance measurement unit in white-light scanning interferometry by simply attaching a spectrometer to the conventional system. The results showed an accuracy of better than 60 nm for any position within 5 μm–150 μm. The proposed technique can be used as shape-measuring tool for 3D printed products. Measurement results using the proposed method are also presented. These experimental results show that pthe roposed method can be used as a measurement tool for 3D printed products. Dispersive Interferometry 3D measurement shape measurement 3D printed product Jo, Taeyong aut Kim, Namyoon aut Kwon, Dongil aut Enthalten in Journal of electronic materials Springer US, 1972 44(2014), 3 vom: 20. Nov., Seite 792-796 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:44 year:2014 number:3 day:20 month:11 pages:792-796 https://doi.org/10.1007/s11664-014-3524-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 44 2014 3 20 11 792-796 |
allfields_unstemmed |
10.1007/s11664-014-3524-4 doi (DE-627)OLC2042335746 (DE-He213)s11664-014-3524-4-p DE-627 ger DE-627 rakwb eng 670 VZ Kim, Jongheon verfasserin aut Measurement of 3D Printed Structure Using a Peak Detection Method in Dispersive Interferometry 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society 2014 Abstract We describe an optical three dimensional (3D) measurement method using white-light dispersive interferometry in the range of 5 μm–150 μm. A spectrometer was employed for real-time wavelength scanning and the distance information was obtained using a simple peak detection method in the spectral domain. Fast measurement time enabled us real-time distance measurement of the specimen. The piezoelectric actuator and capacitance distance sensor was employed for nanometer positioning and measuring distance reference value. This technique can be implemented as a distance measurement unit in white-light scanning interferometry by simply attaching a spectrometer to the conventional system. The results showed an accuracy of better than 60 nm for any position within 5 μm–150 μm. The proposed technique can be used as shape-measuring tool for 3D printed products. Measurement results using the proposed method are also presented. These experimental results show that pthe roposed method can be used as a measurement tool for 3D printed products. Dispersive Interferometry 3D measurement shape measurement 3D printed product Jo, Taeyong aut Kim, Namyoon aut Kwon, Dongil aut Enthalten in Journal of electronic materials Springer US, 1972 44(2014), 3 vom: 20. Nov., Seite 792-796 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:44 year:2014 number:3 day:20 month:11 pages:792-796 https://doi.org/10.1007/s11664-014-3524-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 44 2014 3 20 11 792-796 |
allfieldsGer |
10.1007/s11664-014-3524-4 doi (DE-627)OLC2042335746 (DE-He213)s11664-014-3524-4-p DE-627 ger DE-627 rakwb eng 670 VZ Kim, Jongheon verfasserin aut Measurement of 3D Printed Structure Using a Peak Detection Method in Dispersive Interferometry 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society 2014 Abstract We describe an optical three dimensional (3D) measurement method using white-light dispersive interferometry in the range of 5 μm–150 μm. A spectrometer was employed for real-time wavelength scanning and the distance information was obtained using a simple peak detection method in the spectral domain. Fast measurement time enabled us real-time distance measurement of the specimen. The piezoelectric actuator and capacitance distance sensor was employed for nanometer positioning and measuring distance reference value. This technique can be implemented as a distance measurement unit in white-light scanning interferometry by simply attaching a spectrometer to the conventional system. The results showed an accuracy of better than 60 nm for any position within 5 μm–150 μm. The proposed technique can be used as shape-measuring tool for 3D printed products. Measurement results using the proposed method are also presented. These experimental results show that pthe roposed method can be used as a measurement tool for 3D printed products. Dispersive Interferometry 3D measurement shape measurement 3D printed product Jo, Taeyong aut Kim, Namyoon aut Kwon, Dongil aut Enthalten in Journal of electronic materials Springer US, 1972 44(2014), 3 vom: 20. Nov., Seite 792-796 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:44 year:2014 number:3 day:20 month:11 pages:792-796 https://doi.org/10.1007/s11664-014-3524-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 44 2014 3 20 11 792-796 |
allfieldsSound |
10.1007/s11664-014-3524-4 doi (DE-627)OLC2042335746 (DE-He213)s11664-014-3524-4-p DE-627 ger DE-627 rakwb eng 670 VZ Kim, Jongheon verfasserin aut Measurement of 3D Printed Structure Using a Peak Detection Method in Dispersive Interferometry 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society 2014 Abstract We describe an optical three dimensional (3D) measurement method using white-light dispersive interferometry in the range of 5 μm–150 μm. A spectrometer was employed for real-time wavelength scanning and the distance information was obtained using a simple peak detection method in the spectral domain. Fast measurement time enabled us real-time distance measurement of the specimen. The piezoelectric actuator and capacitance distance sensor was employed for nanometer positioning and measuring distance reference value. This technique can be implemented as a distance measurement unit in white-light scanning interferometry by simply attaching a spectrometer to the conventional system. The results showed an accuracy of better than 60 nm for any position within 5 μm–150 μm. The proposed technique can be used as shape-measuring tool for 3D printed products. Measurement results using the proposed method are also presented. These experimental results show that pthe roposed method can be used as a measurement tool for 3D printed products. Dispersive Interferometry 3D measurement shape measurement 3D printed product Jo, Taeyong aut Kim, Namyoon aut Kwon, Dongil aut Enthalten in Journal of electronic materials Springer US, 1972 44(2014), 3 vom: 20. Nov., Seite 792-796 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:44 year:2014 number:3 day:20 month:11 pages:792-796 https://doi.org/10.1007/s11664-014-3524-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 44 2014 3 20 11 792-796 |
language |
English |
source |
Enthalten in Journal of electronic materials 44(2014), 3 vom: 20. Nov., Seite 792-796 volume:44 year:2014 number:3 day:20 month:11 pages:792-796 |
sourceStr |
Enthalten in Journal of electronic materials 44(2014), 3 vom: 20. Nov., Seite 792-796 volume:44 year:2014 number:3 day:20 month:11 pages:792-796 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Dispersive Interferometry 3D measurement shape measurement 3D printed product |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of electronic materials |
authorswithroles_txt_mv |
Kim, Jongheon @@aut@@ Jo, Taeyong @@aut@@ Kim, Namyoon @@aut@@ Kwon, Dongil @@aut@@ |
publishDateDaySort_date |
2014-11-20T00:00:00Z |
hierarchy_top_id |
129398233 |
dewey-sort |
3670 |
id |
OLC2042335746 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2042335746</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401125822.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11664-014-3524-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2042335746</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11664-014-3524-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kim, Jongheon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Measurement of 3D Printed Structure Using a Peak Detection Method in Dispersive Interferometry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Minerals, Metals & Materials Society 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We describe an optical three dimensional (3D) measurement method using white-light dispersive interferometry in the range of 5 μm–150 μm. A spectrometer was employed for real-time wavelength scanning and the distance information was obtained using a simple peak detection method in the spectral domain. Fast measurement time enabled us real-time distance measurement of the specimen. The piezoelectric actuator and capacitance distance sensor was employed for nanometer positioning and measuring distance reference value. This technique can be implemented as a distance measurement unit in white-light scanning interferometry by simply attaching a spectrometer to the conventional system. The results showed an accuracy of better than 60 nm for any position within 5 μm–150 μm. The proposed technique can be used as shape-measuring tool for 3D printed products. Measurement results using the proposed method are also presented. These experimental results show that pthe roposed method can be used as a measurement tool for 3D printed products.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dispersive Interferometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">shape measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D printed product</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jo, Taeyong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Namyoon</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kwon, Dongil</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of electronic materials</subfield><subfield code="d">Springer US, 1972</subfield><subfield code="g">44(2014), 3 vom: 20. Nov., Seite 792-796</subfield><subfield code="w">(DE-627)129398233</subfield><subfield code="w">(DE-600)186069-0</subfield><subfield code="w">(DE-576)014781387</subfield><subfield code="x">0361-5235</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:3</subfield><subfield code="g">day:20</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:792-796</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11664-014-3524-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2014</subfield><subfield code="e">3</subfield><subfield code="b">20</subfield><subfield code="c">11</subfield><subfield code="h">792-796</subfield></datafield></record></collection>
|
author |
Kim, Jongheon |
spellingShingle |
Kim, Jongheon ddc 670 misc Dispersive Interferometry misc 3D measurement misc shape measurement misc 3D printed product Measurement of 3D Printed Structure Using a Peak Detection Method in Dispersive Interferometry |
authorStr |
Kim, Jongheon |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129398233 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0361-5235 |
topic_title |
670 VZ Measurement of 3D Printed Structure Using a Peak Detection Method in Dispersive Interferometry Dispersive Interferometry 3D measurement shape measurement 3D printed product |
topic |
ddc 670 misc Dispersive Interferometry misc 3D measurement misc shape measurement misc 3D printed product |
topic_unstemmed |
ddc 670 misc Dispersive Interferometry misc 3D measurement misc shape measurement misc 3D printed product |
topic_browse |
ddc 670 misc Dispersive Interferometry misc 3D measurement misc shape measurement misc 3D printed product |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of electronic materials |
hierarchy_parent_id |
129398233 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of electronic materials |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 |
title |
Measurement of 3D Printed Structure Using a Peak Detection Method in Dispersive Interferometry |
ctrlnum |
(DE-627)OLC2042335746 (DE-He213)s11664-014-3524-4-p |
title_full |
Measurement of 3D Printed Structure Using a Peak Detection Method in Dispersive Interferometry |
author_sort |
Kim, Jongheon |
journal |
Journal of electronic materials |
journalStr |
Journal of electronic materials |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
792 |
author_browse |
Kim, Jongheon Jo, Taeyong Kim, Namyoon Kwon, Dongil |
container_volume |
44 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Kim, Jongheon |
doi_str_mv |
10.1007/s11664-014-3524-4 |
dewey-full |
670 |
title_sort |
measurement of 3d printed structure using a peak detection method in dispersive interferometry |
title_auth |
Measurement of 3D Printed Structure Using a Peak Detection Method in Dispersive Interferometry |
abstract |
Abstract We describe an optical three dimensional (3D) measurement method using white-light dispersive interferometry in the range of 5 μm–150 μm. A spectrometer was employed for real-time wavelength scanning and the distance information was obtained using a simple peak detection method in the spectral domain. Fast measurement time enabled us real-time distance measurement of the specimen. The piezoelectric actuator and capacitance distance sensor was employed for nanometer positioning and measuring distance reference value. This technique can be implemented as a distance measurement unit in white-light scanning interferometry by simply attaching a spectrometer to the conventional system. The results showed an accuracy of better than 60 nm for any position within 5 μm–150 μm. The proposed technique can be used as shape-measuring tool for 3D printed products. Measurement results using the proposed method are also presented. These experimental results show that pthe roposed method can be used as a measurement tool for 3D printed products. © The Minerals, Metals & Materials Society 2014 |
abstractGer |
Abstract We describe an optical three dimensional (3D) measurement method using white-light dispersive interferometry in the range of 5 μm–150 μm. A spectrometer was employed for real-time wavelength scanning and the distance information was obtained using a simple peak detection method in the spectral domain. Fast measurement time enabled us real-time distance measurement of the specimen. The piezoelectric actuator and capacitance distance sensor was employed for nanometer positioning and measuring distance reference value. This technique can be implemented as a distance measurement unit in white-light scanning interferometry by simply attaching a spectrometer to the conventional system. The results showed an accuracy of better than 60 nm for any position within 5 μm–150 μm. The proposed technique can be used as shape-measuring tool for 3D printed products. Measurement results using the proposed method are also presented. These experimental results show that pthe roposed method can be used as a measurement tool for 3D printed products. © The Minerals, Metals & Materials Society 2014 |
abstract_unstemmed |
Abstract We describe an optical three dimensional (3D) measurement method using white-light dispersive interferometry in the range of 5 μm–150 μm. A spectrometer was employed for real-time wavelength scanning and the distance information was obtained using a simple peak detection method in the spectral domain. Fast measurement time enabled us real-time distance measurement of the specimen. The piezoelectric actuator and capacitance distance sensor was employed for nanometer positioning and measuring distance reference value. This technique can be implemented as a distance measurement unit in white-light scanning interferometry by simply attaching a spectrometer to the conventional system. The results showed an accuracy of better than 60 nm for any position within 5 μm–150 μm. The proposed technique can be used as shape-measuring tool for 3D printed products. Measurement results using the proposed method are also presented. These experimental results show that pthe roposed method can be used as a measurement tool for 3D printed products. © The Minerals, Metals & Materials Society 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 |
container_issue |
3 |
title_short |
Measurement of 3D Printed Structure Using a Peak Detection Method in Dispersive Interferometry |
url |
https://doi.org/10.1007/s11664-014-3524-4 |
remote_bool |
false |
author2 |
Jo, Taeyong Kim, Namyoon Kwon, Dongil |
author2Str |
Jo, Taeyong Kim, Namyoon Kwon, Dongil |
ppnlink |
129398233 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11664-014-3524-4 |
up_date |
2024-07-03T14:46:38.128Z |
_version_ |
1803569592408211456 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2042335746</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401125822.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11664-014-3524-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2042335746</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11664-014-3524-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kim, Jongheon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Measurement of 3D Printed Structure Using a Peak Detection Method in Dispersive Interferometry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Minerals, Metals & Materials Society 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We describe an optical three dimensional (3D) measurement method using white-light dispersive interferometry in the range of 5 μm–150 μm. A spectrometer was employed for real-time wavelength scanning and the distance information was obtained using a simple peak detection method in the spectral domain. Fast measurement time enabled us real-time distance measurement of the specimen. The piezoelectric actuator and capacitance distance sensor was employed for nanometer positioning and measuring distance reference value. This technique can be implemented as a distance measurement unit in white-light scanning interferometry by simply attaching a spectrometer to the conventional system. The results showed an accuracy of better than 60 nm for any position within 5 μm–150 μm. The proposed technique can be used as shape-measuring tool for 3D printed products. Measurement results using the proposed method are also presented. These experimental results show that pthe roposed method can be used as a measurement tool for 3D printed products.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dispersive Interferometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">shape measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D printed product</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jo, Taeyong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Namyoon</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kwon, Dongil</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of electronic materials</subfield><subfield code="d">Springer US, 1972</subfield><subfield code="g">44(2014), 3 vom: 20. Nov., Seite 792-796</subfield><subfield code="w">(DE-627)129398233</subfield><subfield code="w">(DE-600)186069-0</subfield><subfield code="w">(DE-576)014781387</subfield><subfield code="x">0361-5235</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:3</subfield><subfield code="g">day:20</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:792-796</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11664-014-3524-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2014</subfield><subfield code="e">3</subfield><subfield code="b">20</subfield><subfield code="c">11</subfield><subfield code="h">792-796</subfield></datafield></record></collection>
|
score |
7.403063 |