Preparation and Properties of $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $/ZnO Composite Thermoelectric Materials
Abstract $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $/x wt.% ZnO (x = 0, 0.5, 1, 2) composite thermoelectric (TE) materials were prepared with ZnO as additive. The materials were characterized by x-ray diffraction analysis, electron probe microanalysis, and use of TE transport measurements. The ZnO additive...
Ausführliche Beschreibung
Autor*in: |
Tang, Dingguo [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Minerals, Metals & Materials Society 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of electronic materials - Springer US, 1972, 44(2015), 6 vom: 07. Jan., Seite 1902-1908 |
---|---|
Übergeordnetes Werk: |
volume:44 ; year:2015 ; number:6 ; day:07 ; month:01 ; pages:1902-1908 |
Links: |
---|
DOI / URN: |
10.1007/s11664-014-3590-7 |
---|
Katalog-ID: |
OLC2042336432 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2042336432 | ||
003 | DE-627 | ||
005 | 20230401125844.0 | ||
007 | tu | ||
008 | 200820s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11664-014-3590-7 |2 doi | |
035 | |a (DE-627)OLC2042336432 | ||
035 | |a (DE-He213)s11664-014-3590-7-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Tang, Dingguo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Preparation and Properties of $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $/ZnO Composite Thermoelectric Materials |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Minerals, Metals & Materials Society 2014 | ||
520 | |a Abstract $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $/x wt.% ZnO (x = 0, 0.5, 1, 2) composite thermoelectric (TE) materials were prepared with ZnO as additive. The materials were characterized by x-ray diffraction analysis, electron probe microanalysis, and use of TE transport measurements. The ZnO additive, distributed throughout the interior of intact part of the bulk material, interacts with diffusing elemental Zn at elevated temperatures, which is beneficial to the thermal stability of the composite TE materials. The electrical conductivity is increased by addition of the ZnO, because of increased carrier mobility, even though the carrier concentration decreases slightly. The Seebeck coefficients are nearly the same for all the composite TE materials below 560 K, and the presence of the decomposition product ZnSb increases the Seebeck coefficient at high temperatures. All the composite TE materials have lower thermal conductivity than pure $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $, as a result of the lower lattice thermal conductivity, because of the enhanced phonon scattering induced by the ZnO additive. The maximum ZT is 1.16 at 700 K for the sample with x = 1, an increase of 86% compared with that of pure $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $. Therefore, addition of ZnO can increase the thermal stability and TE performance of $ Zn_{4} $$ Sb_{3} $-based composite TE materials. | ||
650 | 4 | |a Thermoelectric | |
650 | 4 | |a Zn | |
650 | 4 | |a Sb | |
650 | 4 | |a ZnO additive | |
650 | 4 | |a properties | |
700 | 1 | |a Zhu, Wanting |4 aut | |
700 | 1 | |a Wei, Ping |4 aut | |
700 | 1 | |a Zhou, Hongyu |4 aut | |
700 | 1 | |a Liu, Zhiyuan |4 aut | |
700 | 1 | |a Yu, Jian |4 aut | |
700 | 1 | |a Zhao, Wenyu |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of electronic materials |d Springer US, 1972 |g 44(2015), 6 vom: 07. Jan., Seite 1902-1908 |w (DE-627)129398233 |w (DE-600)186069-0 |w (DE-576)014781387 |x 0361-5235 |7 nnns |
773 | 1 | 8 | |g volume:44 |g year:2015 |g number:6 |g day:07 |g month:01 |g pages:1902-1908 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11664-014-3590-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 44 |j 2015 |e 6 |b 07 |c 01 |h 1902-1908 |
author_variant |
d t dt w z wz p w pw h z hz z l zl j y jy w z wz |
---|---|
matchkey_str |
article:03615235:2015----::rprtoadrprisfn4b24n06ncmoieh |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s11664-014-3590-7 doi (DE-627)OLC2042336432 (DE-He213)s11664-014-3590-7-p DE-627 ger DE-627 rakwb eng 670 VZ Tang, Dingguo verfasserin aut Preparation and Properties of $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $/ZnO Composite Thermoelectric Materials 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society 2014 Abstract $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $/x wt.% ZnO (x = 0, 0.5, 1, 2) composite thermoelectric (TE) materials were prepared with ZnO as additive. The materials were characterized by x-ray diffraction analysis, electron probe microanalysis, and use of TE transport measurements. The ZnO additive, distributed throughout the interior of intact part of the bulk material, interacts with diffusing elemental Zn at elevated temperatures, which is beneficial to the thermal stability of the composite TE materials. The electrical conductivity is increased by addition of the ZnO, because of increased carrier mobility, even though the carrier concentration decreases slightly. The Seebeck coefficients are nearly the same for all the composite TE materials below 560 K, and the presence of the decomposition product ZnSb increases the Seebeck coefficient at high temperatures. All the composite TE materials have lower thermal conductivity than pure $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $, as a result of the lower lattice thermal conductivity, because of the enhanced phonon scattering induced by the ZnO additive. The maximum ZT is 1.16 at 700 K for the sample with x = 1, an increase of 86% compared with that of pure $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $. Therefore, addition of ZnO can increase the thermal stability and TE performance of $ Zn_{4} $$ Sb_{3} $-based composite TE materials. Thermoelectric Zn Sb ZnO additive properties Zhu, Wanting aut Wei, Ping aut Zhou, Hongyu aut Liu, Zhiyuan aut Yu, Jian aut Zhao, Wenyu aut Enthalten in Journal of electronic materials Springer US, 1972 44(2015), 6 vom: 07. Jan., Seite 1902-1908 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:44 year:2015 number:6 day:07 month:01 pages:1902-1908 https://doi.org/10.1007/s11664-014-3590-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 44 2015 6 07 01 1902-1908 |
spelling |
10.1007/s11664-014-3590-7 doi (DE-627)OLC2042336432 (DE-He213)s11664-014-3590-7-p DE-627 ger DE-627 rakwb eng 670 VZ Tang, Dingguo verfasserin aut Preparation and Properties of $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $/ZnO Composite Thermoelectric Materials 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society 2014 Abstract $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $/x wt.% ZnO (x = 0, 0.5, 1, 2) composite thermoelectric (TE) materials were prepared with ZnO as additive. The materials were characterized by x-ray diffraction analysis, electron probe microanalysis, and use of TE transport measurements. The ZnO additive, distributed throughout the interior of intact part of the bulk material, interacts with diffusing elemental Zn at elevated temperatures, which is beneficial to the thermal stability of the composite TE materials. The electrical conductivity is increased by addition of the ZnO, because of increased carrier mobility, even though the carrier concentration decreases slightly. The Seebeck coefficients are nearly the same for all the composite TE materials below 560 K, and the presence of the decomposition product ZnSb increases the Seebeck coefficient at high temperatures. All the composite TE materials have lower thermal conductivity than pure $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $, as a result of the lower lattice thermal conductivity, because of the enhanced phonon scattering induced by the ZnO additive. The maximum ZT is 1.16 at 700 K for the sample with x = 1, an increase of 86% compared with that of pure $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $. Therefore, addition of ZnO can increase the thermal stability and TE performance of $ Zn_{4} $$ Sb_{3} $-based composite TE materials. Thermoelectric Zn Sb ZnO additive properties Zhu, Wanting aut Wei, Ping aut Zhou, Hongyu aut Liu, Zhiyuan aut Yu, Jian aut Zhao, Wenyu aut Enthalten in Journal of electronic materials Springer US, 1972 44(2015), 6 vom: 07. Jan., Seite 1902-1908 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:44 year:2015 number:6 day:07 month:01 pages:1902-1908 https://doi.org/10.1007/s11664-014-3590-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 44 2015 6 07 01 1902-1908 |
allfields_unstemmed |
10.1007/s11664-014-3590-7 doi (DE-627)OLC2042336432 (DE-He213)s11664-014-3590-7-p DE-627 ger DE-627 rakwb eng 670 VZ Tang, Dingguo verfasserin aut Preparation and Properties of $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $/ZnO Composite Thermoelectric Materials 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society 2014 Abstract $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $/x wt.% ZnO (x = 0, 0.5, 1, 2) composite thermoelectric (TE) materials were prepared with ZnO as additive. The materials were characterized by x-ray diffraction analysis, electron probe microanalysis, and use of TE transport measurements. The ZnO additive, distributed throughout the interior of intact part of the bulk material, interacts with diffusing elemental Zn at elevated temperatures, which is beneficial to the thermal stability of the composite TE materials. The electrical conductivity is increased by addition of the ZnO, because of increased carrier mobility, even though the carrier concentration decreases slightly. The Seebeck coefficients are nearly the same for all the composite TE materials below 560 K, and the presence of the decomposition product ZnSb increases the Seebeck coefficient at high temperatures. All the composite TE materials have lower thermal conductivity than pure $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $, as a result of the lower lattice thermal conductivity, because of the enhanced phonon scattering induced by the ZnO additive. The maximum ZT is 1.16 at 700 K for the sample with x = 1, an increase of 86% compared with that of pure $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $. Therefore, addition of ZnO can increase the thermal stability and TE performance of $ Zn_{4} $$ Sb_{3} $-based composite TE materials. Thermoelectric Zn Sb ZnO additive properties Zhu, Wanting aut Wei, Ping aut Zhou, Hongyu aut Liu, Zhiyuan aut Yu, Jian aut Zhao, Wenyu aut Enthalten in Journal of electronic materials Springer US, 1972 44(2015), 6 vom: 07. Jan., Seite 1902-1908 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:44 year:2015 number:6 day:07 month:01 pages:1902-1908 https://doi.org/10.1007/s11664-014-3590-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 44 2015 6 07 01 1902-1908 |
allfieldsGer |
10.1007/s11664-014-3590-7 doi (DE-627)OLC2042336432 (DE-He213)s11664-014-3590-7-p DE-627 ger DE-627 rakwb eng 670 VZ Tang, Dingguo verfasserin aut Preparation and Properties of $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $/ZnO Composite Thermoelectric Materials 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society 2014 Abstract $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $/x wt.% ZnO (x = 0, 0.5, 1, 2) composite thermoelectric (TE) materials were prepared with ZnO as additive. The materials were characterized by x-ray diffraction analysis, electron probe microanalysis, and use of TE transport measurements. The ZnO additive, distributed throughout the interior of intact part of the bulk material, interacts with diffusing elemental Zn at elevated temperatures, which is beneficial to the thermal stability of the composite TE materials. The electrical conductivity is increased by addition of the ZnO, because of increased carrier mobility, even though the carrier concentration decreases slightly. The Seebeck coefficients are nearly the same for all the composite TE materials below 560 K, and the presence of the decomposition product ZnSb increases the Seebeck coefficient at high temperatures. All the composite TE materials have lower thermal conductivity than pure $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $, as a result of the lower lattice thermal conductivity, because of the enhanced phonon scattering induced by the ZnO additive. The maximum ZT is 1.16 at 700 K for the sample with x = 1, an increase of 86% compared with that of pure $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $. Therefore, addition of ZnO can increase the thermal stability and TE performance of $ Zn_{4} $$ Sb_{3} $-based composite TE materials. Thermoelectric Zn Sb ZnO additive properties Zhu, Wanting aut Wei, Ping aut Zhou, Hongyu aut Liu, Zhiyuan aut Yu, Jian aut Zhao, Wenyu aut Enthalten in Journal of electronic materials Springer US, 1972 44(2015), 6 vom: 07. Jan., Seite 1902-1908 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:44 year:2015 number:6 day:07 month:01 pages:1902-1908 https://doi.org/10.1007/s11664-014-3590-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 44 2015 6 07 01 1902-1908 |
allfieldsSound |
10.1007/s11664-014-3590-7 doi (DE-627)OLC2042336432 (DE-He213)s11664-014-3590-7-p DE-627 ger DE-627 rakwb eng 670 VZ Tang, Dingguo verfasserin aut Preparation and Properties of $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $/ZnO Composite Thermoelectric Materials 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society 2014 Abstract $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $/x wt.% ZnO (x = 0, 0.5, 1, 2) composite thermoelectric (TE) materials were prepared with ZnO as additive. The materials were characterized by x-ray diffraction analysis, electron probe microanalysis, and use of TE transport measurements. The ZnO additive, distributed throughout the interior of intact part of the bulk material, interacts with diffusing elemental Zn at elevated temperatures, which is beneficial to the thermal stability of the composite TE materials. The electrical conductivity is increased by addition of the ZnO, because of increased carrier mobility, even though the carrier concentration decreases slightly. The Seebeck coefficients are nearly the same for all the composite TE materials below 560 K, and the presence of the decomposition product ZnSb increases the Seebeck coefficient at high temperatures. All the composite TE materials have lower thermal conductivity than pure $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $, as a result of the lower lattice thermal conductivity, because of the enhanced phonon scattering induced by the ZnO additive. The maximum ZT is 1.16 at 700 K for the sample with x = 1, an increase of 86% compared with that of pure $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $. Therefore, addition of ZnO can increase the thermal stability and TE performance of $ Zn_{4} $$ Sb_{3} $-based composite TE materials. Thermoelectric Zn Sb ZnO additive properties Zhu, Wanting aut Wei, Ping aut Zhou, Hongyu aut Liu, Zhiyuan aut Yu, Jian aut Zhao, Wenyu aut Enthalten in Journal of electronic materials Springer US, 1972 44(2015), 6 vom: 07. Jan., Seite 1902-1908 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:44 year:2015 number:6 day:07 month:01 pages:1902-1908 https://doi.org/10.1007/s11664-014-3590-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 44 2015 6 07 01 1902-1908 |
language |
English |
source |
Enthalten in Journal of electronic materials 44(2015), 6 vom: 07. Jan., Seite 1902-1908 volume:44 year:2015 number:6 day:07 month:01 pages:1902-1908 |
sourceStr |
Enthalten in Journal of electronic materials 44(2015), 6 vom: 07. Jan., Seite 1902-1908 volume:44 year:2015 number:6 day:07 month:01 pages:1902-1908 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Thermoelectric Zn Sb ZnO additive properties |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of electronic materials |
authorswithroles_txt_mv |
Tang, Dingguo @@aut@@ Zhu, Wanting @@aut@@ Wei, Ping @@aut@@ Zhou, Hongyu @@aut@@ Liu, Zhiyuan @@aut@@ Yu, Jian @@aut@@ Zhao, Wenyu @@aut@@ |
publishDateDaySort_date |
2015-01-07T00:00:00Z |
hierarchy_top_id |
129398233 |
dewey-sort |
3670 |
id |
OLC2042336432 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2042336432</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401125844.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11664-014-3590-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2042336432</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11664-014-3590-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tang, Dingguo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Preparation and Properties of $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $/ZnO Composite Thermoelectric Materials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Minerals, Metals & Materials Society 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $/x wt.% ZnO (x = 0, 0.5, 1, 2) composite thermoelectric (TE) materials were prepared with ZnO as additive. The materials were characterized by x-ray diffraction analysis, electron probe microanalysis, and use of TE transport measurements. The ZnO additive, distributed throughout the interior of intact part of the bulk material, interacts with diffusing elemental Zn at elevated temperatures, which is beneficial to the thermal stability of the composite TE materials. The electrical conductivity is increased by addition of the ZnO, because of increased carrier mobility, even though the carrier concentration decreases slightly. The Seebeck coefficients are nearly the same for all the composite TE materials below 560 K, and the presence of the decomposition product ZnSb increases the Seebeck coefficient at high temperatures. All the composite TE materials have lower thermal conductivity than pure $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $, as a result of the lower lattice thermal conductivity, because of the enhanced phonon scattering induced by the ZnO additive. The maximum ZT is 1.16 at 700 K for the sample with x = 1, an increase of 86% compared with that of pure $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $. Therefore, addition of ZnO can increase the thermal stability and TE performance of $ Zn_{4} $$ Sb_{3} $-based composite TE materials.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermoelectric</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zn</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sb</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ZnO additive</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">properties</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Wanting</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Ping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Hongyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Zhiyuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Jian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Wenyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of electronic materials</subfield><subfield code="d">Springer US, 1972</subfield><subfield code="g">44(2015), 6 vom: 07. Jan., Seite 1902-1908</subfield><subfield code="w">(DE-627)129398233</subfield><subfield code="w">(DE-600)186069-0</subfield><subfield code="w">(DE-576)014781387</subfield><subfield code="x">0361-5235</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:6</subfield><subfield code="g">day:07</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1902-1908</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11664-014-3590-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2015</subfield><subfield code="e">6</subfield><subfield code="b">07</subfield><subfield code="c">01</subfield><subfield code="h">1902-1908</subfield></datafield></record></collection>
|
author |
Tang, Dingguo |
spellingShingle |
Tang, Dingguo ddc 670 misc Thermoelectric misc Zn misc Sb misc ZnO additive misc properties Preparation and Properties of $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $/ZnO Composite Thermoelectric Materials |
authorStr |
Tang, Dingguo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129398233 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0361-5235 |
topic_title |
670 VZ Preparation and Properties of $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $/ZnO Composite Thermoelectric Materials Thermoelectric Zn Sb ZnO additive properties |
topic |
ddc 670 misc Thermoelectric misc Zn misc Sb misc ZnO additive misc properties |
topic_unstemmed |
ddc 670 misc Thermoelectric misc Zn misc Sb misc ZnO additive misc properties |
topic_browse |
ddc 670 misc Thermoelectric misc Zn misc Sb misc ZnO additive misc properties |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of electronic materials |
hierarchy_parent_id |
129398233 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of electronic materials |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 |
title |
Preparation and Properties of $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $/ZnO Composite Thermoelectric Materials |
ctrlnum |
(DE-627)OLC2042336432 (DE-He213)s11664-014-3590-7-p |
title_full |
Preparation and Properties of $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $/ZnO Composite Thermoelectric Materials |
author_sort |
Tang, Dingguo |
journal |
Journal of electronic materials |
journalStr |
Journal of electronic materials |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
1902 |
author_browse |
Tang, Dingguo Zhu, Wanting Wei, Ping Zhou, Hongyu Liu, Zhiyuan Yu, Jian Zhao, Wenyu |
container_volume |
44 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Tang, Dingguo |
doi_str_mv |
10.1007/s11664-014-3590-7 |
dewey-full |
670 |
title_sort |
preparation and properties of $ zn_{4} $$ sb_{2.94} $$ in_{0.06} $/zno composite thermoelectric materials |
title_auth |
Preparation and Properties of $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $/ZnO Composite Thermoelectric Materials |
abstract |
Abstract $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $/x wt.% ZnO (x = 0, 0.5, 1, 2) composite thermoelectric (TE) materials were prepared with ZnO as additive. The materials were characterized by x-ray diffraction analysis, electron probe microanalysis, and use of TE transport measurements. The ZnO additive, distributed throughout the interior of intact part of the bulk material, interacts with diffusing elemental Zn at elevated temperatures, which is beneficial to the thermal stability of the composite TE materials. The electrical conductivity is increased by addition of the ZnO, because of increased carrier mobility, even though the carrier concentration decreases slightly. The Seebeck coefficients are nearly the same for all the composite TE materials below 560 K, and the presence of the decomposition product ZnSb increases the Seebeck coefficient at high temperatures. All the composite TE materials have lower thermal conductivity than pure $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $, as a result of the lower lattice thermal conductivity, because of the enhanced phonon scattering induced by the ZnO additive. The maximum ZT is 1.16 at 700 K for the sample with x = 1, an increase of 86% compared with that of pure $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $. Therefore, addition of ZnO can increase the thermal stability and TE performance of $ Zn_{4} $$ Sb_{3} $-based composite TE materials. © The Minerals, Metals & Materials Society 2014 |
abstractGer |
Abstract $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $/x wt.% ZnO (x = 0, 0.5, 1, 2) composite thermoelectric (TE) materials were prepared with ZnO as additive. The materials were characterized by x-ray diffraction analysis, electron probe microanalysis, and use of TE transport measurements. The ZnO additive, distributed throughout the interior of intact part of the bulk material, interacts with diffusing elemental Zn at elevated temperatures, which is beneficial to the thermal stability of the composite TE materials. The electrical conductivity is increased by addition of the ZnO, because of increased carrier mobility, even though the carrier concentration decreases slightly. The Seebeck coefficients are nearly the same for all the composite TE materials below 560 K, and the presence of the decomposition product ZnSb increases the Seebeck coefficient at high temperatures. All the composite TE materials have lower thermal conductivity than pure $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $, as a result of the lower lattice thermal conductivity, because of the enhanced phonon scattering induced by the ZnO additive. The maximum ZT is 1.16 at 700 K for the sample with x = 1, an increase of 86% compared with that of pure $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $. Therefore, addition of ZnO can increase the thermal stability and TE performance of $ Zn_{4} $$ Sb_{3} $-based composite TE materials. © The Minerals, Metals & Materials Society 2014 |
abstract_unstemmed |
Abstract $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $/x wt.% ZnO (x = 0, 0.5, 1, 2) composite thermoelectric (TE) materials were prepared with ZnO as additive. The materials were characterized by x-ray diffraction analysis, electron probe microanalysis, and use of TE transport measurements. The ZnO additive, distributed throughout the interior of intact part of the bulk material, interacts with diffusing elemental Zn at elevated temperatures, which is beneficial to the thermal stability of the composite TE materials. The electrical conductivity is increased by addition of the ZnO, because of increased carrier mobility, even though the carrier concentration decreases slightly. The Seebeck coefficients are nearly the same for all the composite TE materials below 560 K, and the presence of the decomposition product ZnSb increases the Seebeck coefficient at high temperatures. All the composite TE materials have lower thermal conductivity than pure $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $, as a result of the lower lattice thermal conductivity, because of the enhanced phonon scattering induced by the ZnO additive. The maximum ZT is 1.16 at 700 K for the sample with x = 1, an increase of 86% compared with that of pure $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $. Therefore, addition of ZnO can increase the thermal stability and TE performance of $ Zn_{4} $$ Sb_{3} $-based composite TE materials. © The Minerals, Metals & Materials Society 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 |
container_issue |
6 |
title_short |
Preparation and Properties of $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $/ZnO Composite Thermoelectric Materials |
url |
https://doi.org/10.1007/s11664-014-3590-7 |
remote_bool |
false |
author2 |
Zhu, Wanting Wei, Ping Zhou, Hongyu Liu, Zhiyuan Yu, Jian Zhao, Wenyu |
author2Str |
Zhu, Wanting Wei, Ping Zhou, Hongyu Liu, Zhiyuan Yu, Jian Zhao, Wenyu |
ppnlink |
129398233 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11664-014-3590-7 |
up_date |
2024-07-03T14:46:49.634Z |
_version_ |
1803569604474175488 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2042336432</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401125844.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11664-014-3590-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2042336432</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11664-014-3590-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tang, Dingguo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Preparation and Properties of $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $/ZnO Composite Thermoelectric Materials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Minerals, Metals & Materials Society 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $/x wt.% ZnO (x = 0, 0.5, 1, 2) composite thermoelectric (TE) materials were prepared with ZnO as additive. The materials were characterized by x-ray diffraction analysis, electron probe microanalysis, and use of TE transport measurements. The ZnO additive, distributed throughout the interior of intact part of the bulk material, interacts with diffusing elemental Zn at elevated temperatures, which is beneficial to the thermal stability of the composite TE materials. The electrical conductivity is increased by addition of the ZnO, because of increased carrier mobility, even though the carrier concentration decreases slightly. The Seebeck coefficients are nearly the same for all the composite TE materials below 560 K, and the presence of the decomposition product ZnSb increases the Seebeck coefficient at high temperatures. All the composite TE materials have lower thermal conductivity than pure $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $, as a result of the lower lattice thermal conductivity, because of the enhanced phonon scattering induced by the ZnO additive. The maximum ZT is 1.16 at 700 K for the sample with x = 1, an increase of 86% compared with that of pure $ Zn_{4} $$ Sb_{2.94} $$ In_{0.06} $. Therefore, addition of ZnO can increase the thermal stability and TE performance of $ Zn_{4} $$ Sb_{3} $-based composite TE materials.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermoelectric</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zn</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sb</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ZnO additive</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">properties</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Wanting</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Ping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Hongyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Zhiyuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Jian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Wenyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of electronic materials</subfield><subfield code="d">Springer US, 1972</subfield><subfield code="g">44(2015), 6 vom: 07. Jan., Seite 1902-1908</subfield><subfield code="w">(DE-627)129398233</subfield><subfield code="w">(DE-600)186069-0</subfield><subfield code="w">(DE-576)014781387</subfield><subfield code="x">0361-5235</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:6</subfield><subfield code="g">day:07</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1902-1908</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11664-014-3590-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2015</subfield><subfield code="e">6</subfield><subfield code="b">07</subfield><subfield code="c">01</subfield><subfield code="h">1902-1908</subfield></datafield></record></collection>
|
score |
7.4010057 |