The Numerical–Experimental Enhanced Analysis of HOT MCT Barrier Infrared Detectors
Abstract We present the results of numerical simulations and experimental data of band gap-engineered higher operating temperature mercury cadmium telluride barrier photodiodes working in a middle wavelength infrared radiation and a long wavelength infrared radiation range of an infrared radiation s...
Ausführliche Beschreibung
Autor*in: |
Jóźwikowski, K. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of electronic materials - Springer US, 1972, 46(2017), 9 vom: 21. Apr., Seite 5471-5478 |
---|---|
Übergeordnetes Werk: |
volume:46 ; year:2017 ; number:9 ; day:21 ; month:04 ; pages:5471-5478 |
Links: |
---|
DOI / URN: |
10.1007/s11664-017-5513-x |
---|
Katalog-ID: |
OLC2042356107 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2042356107 | ||
003 | DE-627 | ||
005 | 20230401130318.0 | ||
007 | tu | ||
008 | 200820s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11664-017-5513-x |2 doi | |
035 | |a (DE-627)OLC2042356107 | ||
035 | |a (DE-He213)s11664-017-5513-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Jóźwikowski, K. |e verfasserin |4 aut | |
245 | 1 | 0 | |a The Numerical–Experimental Enhanced Analysis of HOT MCT Barrier Infrared Detectors |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2017 | ||
520 | |a Abstract We present the results of numerical simulations and experimental data of band gap-engineered higher operating temperature mercury cadmium telluride barrier photodiodes working in a middle wavelength infrared radiation and a long wavelength infrared radiation range of an infrared radiation spectrum. Detailed numerical calculations of the detector performance were made with our own computer software taking into account Shockley Hall Read, Auger, band-to-band and trap-assisted tunneling and dislocation-related currents. We have also simulated a fluctuation phenomena by using our Langevin-like numerical method to analyze shot, diffusion, generation–recombination and 1/f noise. | ||
650 | 4 | |a HOT MCT barrier detectors | |
650 | 4 | |a valence band offset | |
650 | 4 | |a MOCVD technology | |
700 | 1 | |a Piotrowski, J. |4 aut | |
700 | 1 | |a Jóźwikowska, A. |4 aut | |
700 | 1 | |a Kopytko, M. |4 aut | |
700 | 1 | |a Martyniuk, P. |4 aut | |
700 | 1 | |a Gawron, W. |4 aut | |
700 | 1 | |a Madejczyk, P. |4 aut | |
700 | 1 | |a Kowalewski, A. |4 aut | |
700 | 1 | |a Markowska, O. |4 aut | |
700 | 1 | |a Martyniuk, A. |4 aut | |
700 | 1 | |a Rogalski, A. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of electronic materials |d Springer US, 1972 |g 46(2017), 9 vom: 21. Apr., Seite 5471-5478 |w (DE-627)129398233 |w (DE-600)186069-0 |w (DE-576)014781387 |x 0361-5235 |7 nnns |
773 | 1 | 8 | |g volume:46 |g year:2017 |g number:9 |g day:21 |g month:04 |g pages:5471-5478 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11664-017-5513-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 46 |j 2017 |e 9 |b 21 |c 04 |h 5471-5478 |
author_variant |
k j kj j p jp a j aj m k mk p m pm w g wg p m pm a k ak o m om a m am a r ar |
---|---|
matchkey_str |
article:03615235:2017----::hnmrclxeietlnacdnlssfomtare |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1007/s11664-017-5513-x doi (DE-627)OLC2042356107 (DE-He213)s11664-017-5513-x-p DE-627 ger DE-627 rakwb eng 670 VZ Jóźwikowski, K. verfasserin aut The Numerical–Experimental Enhanced Analysis of HOT MCT Barrier Infrared Detectors 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2017 Abstract We present the results of numerical simulations and experimental data of band gap-engineered higher operating temperature mercury cadmium telluride barrier photodiodes working in a middle wavelength infrared radiation and a long wavelength infrared radiation range of an infrared radiation spectrum. Detailed numerical calculations of the detector performance were made with our own computer software taking into account Shockley Hall Read, Auger, band-to-band and trap-assisted tunneling and dislocation-related currents. We have also simulated a fluctuation phenomena by using our Langevin-like numerical method to analyze shot, diffusion, generation–recombination and 1/f noise. HOT MCT barrier detectors valence band offset MOCVD technology Piotrowski, J. aut Jóźwikowska, A. aut Kopytko, M. aut Martyniuk, P. aut Gawron, W. aut Madejczyk, P. aut Kowalewski, A. aut Markowska, O. aut Martyniuk, A. aut Rogalski, A. aut Enthalten in Journal of electronic materials Springer US, 1972 46(2017), 9 vom: 21. Apr., Seite 5471-5478 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:46 year:2017 number:9 day:21 month:04 pages:5471-5478 https://doi.org/10.1007/s11664-017-5513-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 46 2017 9 21 04 5471-5478 |
spelling |
10.1007/s11664-017-5513-x doi (DE-627)OLC2042356107 (DE-He213)s11664-017-5513-x-p DE-627 ger DE-627 rakwb eng 670 VZ Jóźwikowski, K. verfasserin aut The Numerical–Experimental Enhanced Analysis of HOT MCT Barrier Infrared Detectors 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2017 Abstract We present the results of numerical simulations and experimental data of band gap-engineered higher operating temperature mercury cadmium telluride barrier photodiodes working in a middle wavelength infrared radiation and a long wavelength infrared radiation range of an infrared radiation spectrum. Detailed numerical calculations of the detector performance were made with our own computer software taking into account Shockley Hall Read, Auger, band-to-band and trap-assisted tunneling and dislocation-related currents. We have also simulated a fluctuation phenomena by using our Langevin-like numerical method to analyze shot, diffusion, generation–recombination and 1/f noise. HOT MCT barrier detectors valence band offset MOCVD technology Piotrowski, J. aut Jóźwikowska, A. aut Kopytko, M. aut Martyniuk, P. aut Gawron, W. aut Madejczyk, P. aut Kowalewski, A. aut Markowska, O. aut Martyniuk, A. aut Rogalski, A. aut Enthalten in Journal of electronic materials Springer US, 1972 46(2017), 9 vom: 21. Apr., Seite 5471-5478 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:46 year:2017 number:9 day:21 month:04 pages:5471-5478 https://doi.org/10.1007/s11664-017-5513-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 46 2017 9 21 04 5471-5478 |
allfields_unstemmed |
10.1007/s11664-017-5513-x doi (DE-627)OLC2042356107 (DE-He213)s11664-017-5513-x-p DE-627 ger DE-627 rakwb eng 670 VZ Jóźwikowski, K. verfasserin aut The Numerical–Experimental Enhanced Analysis of HOT MCT Barrier Infrared Detectors 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2017 Abstract We present the results of numerical simulations and experimental data of band gap-engineered higher operating temperature mercury cadmium telluride barrier photodiodes working in a middle wavelength infrared radiation and a long wavelength infrared radiation range of an infrared radiation spectrum. Detailed numerical calculations of the detector performance were made with our own computer software taking into account Shockley Hall Read, Auger, band-to-band and trap-assisted tunneling and dislocation-related currents. We have also simulated a fluctuation phenomena by using our Langevin-like numerical method to analyze shot, diffusion, generation–recombination and 1/f noise. HOT MCT barrier detectors valence band offset MOCVD technology Piotrowski, J. aut Jóźwikowska, A. aut Kopytko, M. aut Martyniuk, P. aut Gawron, W. aut Madejczyk, P. aut Kowalewski, A. aut Markowska, O. aut Martyniuk, A. aut Rogalski, A. aut Enthalten in Journal of electronic materials Springer US, 1972 46(2017), 9 vom: 21. Apr., Seite 5471-5478 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:46 year:2017 number:9 day:21 month:04 pages:5471-5478 https://doi.org/10.1007/s11664-017-5513-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 46 2017 9 21 04 5471-5478 |
allfieldsGer |
10.1007/s11664-017-5513-x doi (DE-627)OLC2042356107 (DE-He213)s11664-017-5513-x-p DE-627 ger DE-627 rakwb eng 670 VZ Jóźwikowski, K. verfasserin aut The Numerical–Experimental Enhanced Analysis of HOT MCT Barrier Infrared Detectors 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2017 Abstract We present the results of numerical simulations and experimental data of band gap-engineered higher operating temperature mercury cadmium telluride barrier photodiodes working in a middle wavelength infrared radiation and a long wavelength infrared radiation range of an infrared radiation spectrum. Detailed numerical calculations of the detector performance were made with our own computer software taking into account Shockley Hall Read, Auger, band-to-band and trap-assisted tunneling and dislocation-related currents. We have also simulated a fluctuation phenomena by using our Langevin-like numerical method to analyze shot, diffusion, generation–recombination and 1/f noise. HOT MCT barrier detectors valence band offset MOCVD technology Piotrowski, J. aut Jóźwikowska, A. aut Kopytko, M. aut Martyniuk, P. aut Gawron, W. aut Madejczyk, P. aut Kowalewski, A. aut Markowska, O. aut Martyniuk, A. aut Rogalski, A. aut Enthalten in Journal of electronic materials Springer US, 1972 46(2017), 9 vom: 21. Apr., Seite 5471-5478 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:46 year:2017 number:9 day:21 month:04 pages:5471-5478 https://doi.org/10.1007/s11664-017-5513-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 46 2017 9 21 04 5471-5478 |
allfieldsSound |
10.1007/s11664-017-5513-x doi (DE-627)OLC2042356107 (DE-He213)s11664-017-5513-x-p DE-627 ger DE-627 rakwb eng 670 VZ Jóźwikowski, K. verfasserin aut The Numerical–Experimental Enhanced Analysis of HOT MCT Barrier Infrared Detectors 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2017 Abstract We present the results of numerical simulations and experimental data of band gap-engineered higher operating temperature mercury cadmium telluride barrier photodiodes working in a middle wavelength infrared radiation and a long wavelength infrared radiation range of an infrared radiation spectrum. Detailed numerical calculations of the detector performance were made with our own computer software taking into account Shockley Hall Read, Auger, band-to-band and trap-assisted tunneling and dislocation-related currents. We have also simulated a fluctuation phenomena by using our Langevin-like numerical method to analyze shot, diffusion, generation–recombination and 1/f noise. HOT MCT barrier detectors valence band offset MOCVD technology Piotrowski, J. aut Jóźwikowska, A. aut Kopytko, M. aut Martyniuk, P. aut Gawron, W. aut Madejczyk, P. aut Kowalewski, A. aut Markowska, O. aut Martyniuk, A. aut Rogalski, A. aut Enthalten in Journal of electronic materials Springer US, 1972 46(2017), 9 vom: 21. Apr., Seite 5471-5478 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:46 year:2017 number:9 day:21 month:04 pages:5471-5478 https://doi.org/10.1007/s11664-017-5513-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 46 2017 9 21 04 5471-5478 |
language |
English |
source |
Enthalten in Journal of electronic materials 46(2017), 9 vom: 21. Apr., Seite 5471-5478 volume:46 year:2017 number:9 day:21 month:04 pages:5471-5478 |
sourceStr |
Enthalten in Journal of electronic materials 46(2017), 9 vom: 21. Apr., Seite 5471-5478 volume:46 year:2017 number:9 day:21 month:04 pages:5471-5478 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
HOT MCT barrier detectors valence band offset MOCVD technology |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of electronic materials |
authorswithroles_txt_mv |
Jóźwikowski, K. @@aut@@ Piotrowski, J. @@aut@@ Jóźwikowska, A. @@aut@@ Kopytko, M. @@aut@@ Martyniuk, P. @@aut@@ Gawron, W. @@aut@@ Madejczyk, P. @@aut@@ Kowalewski, A. @@aut@@ Markowska, O. @@aut@@ Martyniuk, A. @@aut@@ Rogalski, A. @@aut@@ |
publishDateDaySort_date |
2017-04-21T00:00:00Z |
hierarchy_top_id |
129398233 |
dewey-sort |
3670 |
id |
OLC2042356107 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2042356107</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401130318.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11664-017-5513-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2042356107</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11664-017-5513-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jóźwikowski, K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Numerical–Experimental Enhanced Analysis of HOT MCT Barrier Infrared Detectors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We present the results of numerical simulations and experimental data of band gap-engineered higher operating temperature mercury cadmium telluride barrier photodiodes working in a middle wavelength infrared radiation and a long wavelength infrared radiation range of an infrared radiation spectrum. Detailed numerical calculations of the detector performance were made with our own computer software taking into account Shockley Hall Read, Auger, band-to-band and trap-assisted tunneling and dislocation-related currents. We have also simulated a fluctuation phenomena by using our Langevin-like numerical method to analyze shot, diffusion, generation–recombination and 1/f noise.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">HOT MCT barrier detectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">valence band offset</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MOCVD technology</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Piotrowski, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jóźwikowska, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kopytko, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martyniuk, P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gawron, W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Madejczyk, P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kowalewski, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Markowska, O.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martyniuk, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rogalski, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of electronic materials</subfield><subfield code="d">Springer US, 1972</subfield><subfield code="g">46(2017), 9 vom: 21. Apr., Seite 5471-5478</subfield><subfield code="w">(DE-627)129398233</subfield><subfield code="w">(DE-600)186069-0</subfield><subfield code="w">(DE-576)014781387</subfield><subfield code="x">0361-5235</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:9</subfield><subfield code="g">day:21</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:5471-5478</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11664-017-5513-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2017</subfield><subfield code="e">9</subfield><subfield code="b">21</subfield><subfield code="c">04</subfield><subfield code="h">5471-5478</subfield></datafield></record></collection>
|
author |
Jóźwikowski, K. |
spellingShingle |
Jóźwikowski, K. ddc 670 misc HOT MCT barrier detectors misc valence band offset misc MOCVD technology The Numerical–Experimental Enhanced Analysis of HOT MCT Barrier Infrared Detectors |
authorStr |
Jóźwikowski, K. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129398233 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0361-5235 |
topic_title |
670 VZ The Numerical–Experimental Enhanced Analysis of HOT MCT Barrier Infrared Detectors HOT MCT barrier detectors valence band offset MOCVD technology |
topic |
ddc 670 misc HOT MCT barrier detectors misc valence band offset misc MOCVD technology |
topic_unstemmed |
ddc 670 misc HOT MCT barrier detectors misc valence band offset misc MOCVD technology |
topic_browse |
ddc 670 misc HOT MCT barrier detectors misc valence band offset misc MOCVD technology |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of electronic materials |
hierarchy_parent_id |
129398233 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of electronic materials |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 |
title |
The Numerical–Experimental Enhanced Analysis of HOT MCT Barrier Infrared Detectors |
ctrlnum |
(DE-627)OLC2042356107 (DE-He213)s11664-017-5513-x-p |
title_full |
The Numerical–Experimental Enhanced Analysis of HOT MCT Barrier Infrared Detectors |
author_sort |
Jóźwikowski, K. |
journal |
Journal of electronic materials |
journalStr |
Journal of electronic materials |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
5471 |
author_browse |
Jóźwikowski, K. Piotrowski, J. Jóźwikowska, A. Kopytko, M. Martyniuk, P. Gawron, W. Madejczyk, P. Kowalewski, A. Markowska, O. Martyniuk, A. Rogalski, A. |
container_volume |
46 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Jóźwikowski, K. |
doi_str_mv |
10.1007/s11664-017-5513-x |
dewey-full |
670 |
title_sort |
the numerical–experimental enhanced analysis of hot mct barrier infrared detectors |
title_auth |
The Numerical–Experimental Enhanced Analysis of HOT MCT Barrier Infrared Detectors |
abstract |
Abstract We present the results of numerical simulations and experimental data of band gap-engineered higher operating temperature mercury cadmium telluride barrier photodiodes working in a middle wavelength infrared radiation and a long wavelength infrared radiation range of an infrared radiation spectrum. Detailed numerical calculations of the detector performance were made with our own computer software taking into account Shockley Hall Read, Auger, band-to-band and trap-assisted tunneling and dislocation-related currents. We have also simulated a fluctuation phenomena by using our Langevin-like numerical method to analyze shot, diffusion, generation–recombination and 1/f noise. © The Author(s) 2017 |
abstractGer |
Abstract We present the results of numerical simulations and experimental data of band gap-engineered higher operating temperature mercury cadmium telluride barrier photodiodes working in a middle wavelength infrared radiation and a long wavelength infrared radiation range of an infrared radiation spectrum. Detailed numerical calculations of the detector performance were made with our own computer software taking into account Shockley Hall Read, Auger, band-to-band and trap-assisted tunneling and dislocation-related currents. We have also simulated a fluctuation phenomena by using our Langevin-like numerical method to analyze shot, diffusion, generation–recombination and 1/f noise. © The Author(s) 2017 |
abstract_unstemmed |
Abstract We present the results of numerical simulations and experimental data of band gap-engineered higher operating temperature mercury cadmium telluride barrier photodiodes working in a middle wavelength infrared radiation and a long wavelength infrared radiation range of an infrared radiation spectrum. Detailed numerical calculations of the detector performance were made with our own computer software taking into account Shockley Hall Read, Auger, band-to-band and trap-assisted tunneling and dislocation-related currents. We have also simulated a fluctuation phenomena by using our Langevin-like numerical method to analyze shot, diffusion, generation–recombination and 1/f noise. © The Author(s) 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 |
container_issue |
9 |
title_short |
The Numerical–Experimental Enhanced Analysis of HOT MCT Barrier Infrared Detectors |
url |
https://doi.org/10.1007/s11664-017-5513-x |
remote_bool |
false |
author2 |
Piotrowski, J. Jóźwikowska, A. Kopytko, M. Martyniuk, P. Gawron, W. Madejczyk, P. Kowalewski, A. Markowska, O. Martyniuk, A. Rogalski, A. |
author2Str |
Piotrowski, J. Jóźwikowska, A. Kopytko, M. Martyniuk, P. Gawron, W. Madejczyk, P. Kowalewski, A. Markowska, O. Martyniuk, A. Rogalski, A. |
ppnlink |
129398233 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11664-017-5513-x |
up_date |
2024-07-03T14:52:09.288Z |
_version_ |
1803569939655688193 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2042356107</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401130318.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11664-017-5513-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2042356107</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11664-017-5513-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jóźwikowski, K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Numerical–Experimental Enhanced Analysis of HOT MCT Barrier Infrared Detectors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We present the results of numerical simulations and experimental data of band gap-engineered higher operating temperature mercury cadmium telluride barrier photodiodes working in a middle wavelength infrared radiation and a long wavelength infrared radiation range of an infrared radiation spectrum. Detailed numerical calculations of the detector performance were made with our own computer software taking into account Shockley Hall Read, Auger, band-to-band and trap-assisted tunneling and dislocation-related currents. We have also simulated a fluctuation phenomena by using our Langevin-like numerical method to analyze shot, diffusion, generation–recombination and 1/f noise.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">HOT MCT barrier detectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">valence band offset</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MOCVD technology</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Piotrowski, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jóźwikowska, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kopytko, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martyniuk, P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gawron, W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Madejczyk, P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kowalewski, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Markowska, O.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martyniuk, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rogalski, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of electronic materials</subfield><subfield code="d">Springer US, 1972</subfield><subfield code="g">46(2017), 9 vom: 21. Apr., Seite 5471-5478</subfield><subfield code="w">(DE-627)129398233</subfield><subfield code="w">(DE-600)186069-0</subfield><subfield code="w">(DE-576)014781387</subfield><subfield code="x">0361-5235</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:9</subfield><subfield code="g">day:21</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:5471-5478</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11664-017-5513-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2017</subfield><subfield code="e">9</subfield><subfield code="b">21</subfield><subfield code="c">04</subfield><subfield code="h">5471-5478</subfield></datafield></record></collection>
|
score |
7.4023485 |