A Phase Separation Route to Synthesize α-$ Fe_{2} $$ O_{3} $ Porous Nanofibers via Electrospinning for Ultrafast Ethanol Sensing
Abstract A facile and economic procedure was provided to synthesize α-$ Fe_{2} $$ O_{3} $ nanofibers. In this procedure, porous α-$ Fe_{2} $$ O_{3} $ nanofibers were obtained by a single-polymer/binary-solvent system, while solid α-$ Fe_{2} $$ O_{3} $ nanofibers were prepared by a single-polymer/sin...
Ausführliche Beschreibung
Autor*in: |
Dong, Shuwen [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Minerals, Metals & Materials Society 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of electronic materials - Springer US, 1972, 47(2018), 7 vom: 13. Apr., Seite 3934-3941 |
---|---|
Übergeordnetes Werk: |
volume:47 ; year:2018 ; number:7 ; day:13 ; month:04 ; pages:3934-3941 |
Links: |
---|
DOI / URN: |
10.1007/s11664-018-6274-x |
---|
Katalog-ID: |
OLC204236228X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC204236228X | ||
003 | DE-627 | ||
005 | 20230401130512.0 | ||
007 | tu | ||
008 | 200820s2018 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11664-018-6274-x |2 doi | |
035 | |a (DE-627)OLC204236228X | ||
035 | |a (DE-He213)s11664-018-6274-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Dong, Shuwen |e verfasserin |4 aut | |
245 | 1 | 0 | |a A Phase Separation Route to Synthesize α-$ Fe_{2} $$ O_{3} $ Porous Nanofibers via Electrospinning for Ultrafast Ethanol Sensing |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Minerals, Metals & Materials Society 2018 | ||
520 | |a Abstract A facile and economic procedure was provided to synthesize α-$ Fe_{2} $$ O_{3} $ nanofibers. In this procedure, porous α-$ Fe_{2} $$ O_{3} $ nanofibers were obtained by a single-polymer/binary-solvent system, while solid α-$ Fe_{2} $$ O_{3} $ nanofibers were prepared by a single-polymer/single-solvent system. The crystal structure and morphology of both samples were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption isotherms. The formation mechanism of porous structure was based on solvent evaporation-induced phase separation by the use of mixed solvents with different volatility. Furthermore, ethanol-sensing performance of the porous α-$ Fe_{2} $$ O_{3} $ nanofibers was evaluated and compared with solid α-$ Fe_{2} $$ O_{3} $ nanofibers. Results from gas-sensing measurements reveal that porous α-$ Fe_{2} $$ O_{3} $ nanofibers exhibit higher sensitivity and slightly longer recovery time than solid α-$ Fe_{2} $$ O_{3} $ nanofibers. Over all, the gas sensor based on porous α-$ Fe_{2} $$ O_{3} $ nanofibers shows excellent ethanol-sensing capability with high sensitivity and ultrafast response/recovery behaviors, indicating its potential application as a real-time monitoring gas sensor. | ||
650 | 4 | |a α-Fe | |
650 | 4 | |a O | |
650 | 4 | |a nanofibers | |
650 | 4 | |a porous | |
650 | 4 | |a phase separation | |
650 | 4 | |a ethanol sensing | |
650 | 4 | |a ultrafast response/recovery | |
700 | 1 | |a Yan, Shuang |4 aut | |
700 | 1 | |a Gao, Wenyuan |4 aut | |
700 | 1 | |a Liu, Guishan |4 aut | |
700 | 1 | |a Hao, Hongshun |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of electronic materials |d Springer US, 1972 |g 47(2018), 7 vom: 13. Apr., Seite 3934-3941 |w (DE-627)129398233 |w (DE-600)186069-0 |w (DE-576)014781387 |x 0361-5235 |7 nnns |
773 | 1 | 8 | |g volume:47 |g year:2018 |g number:7 |g day:13 |g month:04 |g pages:3934-3941 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11664-018-6274-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 47 |j 2018 |e 7 |b 13 |c 04 |h 3934-3941 |
author_variant |
s d sd s y sy w g wg g l gl h h hh |
---|---|
matchkey_str |
article:03615235:2018----::paeeaainottsnhszf_o3oosaoiesieetopnig |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s11664-018-6274-x doi (DE-627)OLC204236228X (DE-He213)s11664-018-6274-x-p DE-627 ger DE-627 rakwb eng 670 VZ Dong, Shuwen verfasserin aut A Phase Separation Route to Synthesize α-$ Fe_{2} $$ O_{3} $ Porous Nanofibers via Electrospinning for Ultrafast Ethanol Sensing 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society 2018 Abstract A facile and economic procedure was provided to synthesize α-$ Fe_{2} $$ O_{3} $ nanofibers. In this procedure, porous α-$ Fe_{2} $$ O_{3} $ nanofibers were obtained by a single-polymer/binary-solvent system, while solid α-$ Fe_{2} $$ O_{3} $ nanofibers were prepared by a single-polymer/single-solvent system. The crystal structure and morphology of both samples were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption isotherms. The formation mechanism of porous structure was based on solvent evaporation-induced phase separation by the use of mixed solvents with different volatility. Furthermore, ethanol-sensing performance of the porous α-$ Fe_{2} $$ O_{3} $ nanofibers was evaluated and compared with solid α-$ Fe_{2} $$ O_{3} $ nanofibers. Results from gas-sensing measurements reveal that porous α-$ Fe_{2} $$ O_{3} $ nanofibers exhibit higher sensitivity and slightly longer recovery time than solid α-$ Fe_{2} $$ O_{3} $ nanofibers. Over all, the gas sensor based on porous α-$ Fe_{2} $$ O_{3} $ nanofibers shows excellent ethanol-sensing capability with high sensitivity and ultrafast response/recovery behaviors, indicating its potential application as a real-time monitoring gas sensor. α-Fe O nanofibers porous phase separation ethanol sensing ultrafast response/recovery Yan, Shuang aut Gao, Wenyuan aut Liu, Guishan aut Hao, Hongshun aut Enthalten in Journal of electronic materials Springer US, 1972 47(2018), 7 vom: 13. Apr., Seite 3934-3941 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:47 year:2018 number:7 day:13 month:04 pages:3934-3941 https://doi.org/10.1007/s11664-018-6274-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 47 2018 7 13 04 3934-3941 |
spelling |
10.1007/s11664-018-6274-x doi (DE-627)OLC204236228X (DE-He213)s11664-018-6274-x-p DE-627 ger DE-627 rakwb eng 670 VZ Dong, Shuwen verfasserin aut A Phase Separation Route to Synthesize α-$ Fe_{2} $$ O_{3} $ Porous Nanofibers via Electrospinning for Ultrafast Ethanol Sensing 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society 2018 Abstract A facile and economic procedure was provided to synthesize α-$ Fe_{2} $$ O_{3} $ nanofibers. In this procedure, porous α-$ Fe_{2} $$ O_{3} $ nanofibers were obtained by a single-polymer/binary-solvent system, while solid α-$ Fe_{2} $$ O_{3} $ nanofibers were prepared by a single-polymer/single-solvent system. The crystal structure and morphology of both samples were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption isotherms. The formation mechanism of porous structure was based on solvent evaporation-induced phase separation by the use of mixed solvents with different volatility. Furthermore, ethanol-sensing performance of the porous α-$ Fe_{2} $$ O_{3} $ nanofibers was evaluated and compared with solid α-$ Fe_{2} $$ O_{3} $ nanofibers. Results from gas-sensing measurements reveal that porous α-$ Fe_{2} $$ O_{3} $ nanofibers exhibit higher sensitivity and slightly longer recovery time than solid α-$ Fe_{2} $$ O_{3} $ nanofibers. Over all, the gas sensor based on porous α-$ Fe_{2} $$ O_{3} $ nanofibers shows excellent ethanol-sensing capability with high sensitivity and ultrafast response/recovery behaviors, indicating its potential application as a real-time monitoring gas sensor. α-Fe O nanofibers porous phase separation ethanol sensing ultrafast response/recovery Yan, Shuang aut Gao, Wenyuan aut Liu, Guishan aut Hao, Hongshun aut Enthalten in Journal of electronic materials Springer US, 1972 47(2018), 7 vom: 13. Apr., Seite 3934-3941 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:47 year:2018 number:7 day:13 month:04 pages:3934-3941 https://doi.org/10.1007/s11664-018-6274-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 47 2018 7 13 04 3934-3941 |
allfields_unstemmed |
10.1007/s11664-018-6274-x doi (DE-627)OLC204236228X (DE-He213)s11664-018-6274-x-p DE-627 ger DE-627 rakwb eng 670 VZ Dong, Shuwen verfasserin aut A Phase Separation Route to Synthesize α-$ Fe_{2} $$ O_{3} $ Porous Nanofibers via Electrospinning for Ultrafast Ethanol Sensing 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society 2018 Abstract A facile and economic procedure was provided to synthesize α-$ Fe_{2} $$ O_{3} $ nanofibers. In this procedure, porous α-$ Fe_{2} $$ O_{3} $ nanofibers were obtained by a single-polymer/binary-solvent system, while solid α-$ Fe_{2} $$ O_{3} $ nanofibers were prepared by a single-polymer/single-solvent system. The crystal structure and morphology of both samples were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption isotherms. The formation mechanism of porous structure was based on solvent evaporation-induced phase separation by the use of mixed solvents with different volatility. Furthermore, ethanol-sensing performance of the porous α-$ Fe_{2} $$ O_{3} $ nanofibers was evaluated and compared with solid α-$ Fe_{2} $$ O_{3} $ nanofibers. Results from gas-sensing measurements reveal that porous α-$ Fe_{2} $$ O_{3} $ nanofibers exhibit higher sensitivity and slightly longer recovery time than solid α-$ Fe_{2} $$ O_{3} $ nanofibers. Over all, the gas sensor based on porous α-$ Fe_{2} $$ O_{3} $ nanofibers shows excellent ethanol-sensing capability with high sensitivity and ultrafast response/recovery behaviors, indicating its potential application as a real-time monitoring gas sensor. α-Fe O nanofibers porous phase separation ethanol sensing ultrafast response/recovery Yan, Shuang aut Gao, Wenyuan aut Liu, Guishan aut Hao, Hongshun aut Enthalten in Journal of electronic materials Springer US, 1972 47(2018), 7 vom: 13. Apr., Seite 3934-3941 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:47 year:2018 number:7 day:13 month:04 pages:3934-3941 https://doi.org/10.1007/s11664-018-6274-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 47 2018 7 13 04 3934-3941 |
allfieldsGer |
10.1007/s11664-018-6274-x doi (DE-627)OLC204236228X (DE-He213)s11664-018-6274-x-p DE-627 ger DE-627 rakwb eng 670 VZ Dong, Shuwen verfasserin aut A Phase Separation Route to Synthesize α-$ Fe_{2} $$ O_{3} $ Porous Nanofibers via Electrospinning for Ultrafast Ethanol Sensing 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society 2018 Abstract A facile and economic procedure was provided to synthesize α-$ Fe_{2} $$ O_{3} $ nanofibers. In this procedure, porous α-$ Fe_{2} $$ O_{3} $ nanofibers were obtained by a single-polymer/binary-solvent system, while solid α-$ Fe_{2} $$ O_{3} $ nanofibers were prepared by a single-polymer/single-solvent system. The crystal structure and morphology of both samples were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption isotherms. The formation mechanism of porous structure was based on solvent evaporation-induced phase separation by the use of mixed solvents with different volatility. Furthermore, ethanol-sensing performance of the porous α-$ Fe_{2} $$ O_{3} $ nanofibers was evaluated and compared with solid α-$ Fe_{2} $$ O_{3} $ nanofibers. Results from gas-sensing measurements reveal that porous α-$ Fe_{2} $$ O_{3} $ nanofibers exhibit higher sensitivity and slightly longer recovery time than solid α-$ Fe_{2} $$ O_{3} $ nanofibers. Over all, the gas sensor based on porous α-$ Fe_{2} $$ O_{3} $ nanofibers shows excellent ethanol-sensing capability with high sensitivity and ultrafast response/recovery behaviors, indicating its potential application as a real-time monitoring gas sensor. α-Fe O nanofibers porous phase separation ethanol sensing ultrafast response/recovery Yan, Shuang aut Gao, Wenyuan aut Liu, Guishan aut Hao, Hongshun aut Enthalten in Journal of electronic materials Springer US, 1972 47(2018), 7 vom: 13. Apr., Seite 3934-3941 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:47 year:2018 number:7 day:13 month:04 pages:3934-3941 https://doi.org/10.1007/s11664-018-6274-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 47 2018 7 13 04 3934-3941 |
allfieldsSound |
10.1007/s11664-018-6274-x doi (DE-627)OLC204236228X (DE-He213)s11664-018-6274-x-p DE-627 ger DE-627 rakwb eng 670 VZ Dong, Shuwen verfasserin aut A Phase Separation Route to Synthesize α-$ Fe_{2} $$ O_{3} $ Porous Nanofibers via Electrospinning for Ultrafast Ethanol Sensing 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society 2018 Abstract A facile and economic procedure was provided to synthesize α-$ Fe_{2} $$ O_{3} $ nanofibers. In this procedure, porous α-$ Fe_{2} $$ O_{3} $ nanofibers were obtained by a single-polymer/binary-solvent system, while solid α-$ Fe_{2} $$ O_{3} $ nanofibers were prepared by a single-polymer/single-solvent system. The crystal structure and morphology of both samples were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption isotherms. The formation mechanism of porous structure was based on solvent evaporation-induced phase separation by the use of mixed solvents with different volatility. Furthermore, ethanol-sensing performance of the porous α-$ Fe_{2} $$ O_{3} $ nanofibers was evaluated and compared with solid α-$ Fe_{2} $$ O_{3} $ nanofibers. Results from gas-sensing measurements reveal that porous α-$ Fe_{2} $$ O_{3} $ nanofibers exhibit higher sensitivity and slightly longer recovery time than solid α-$ Fe_{2} $$ O_{3} $ nanofibers. Over all, the gas sensor based on porous α-$ Fe_{2} $$ O_{3} $ nanofibers shows excellent ethanol-sensing capability with high sensitivity and ultrafast response/recovery behaviors, indicating its potential application as a real-time monitoring gas sensor. α-Fe O nanofibers porous phase separation ethanol sensing ultrafast response/recovery Yan, Shuang aut Gao, Wenyuan aut Liu, Guishan aut Hao, Hongshun aut Enthalten in Journal of electronic materials Springer US, 1972 47(2018), 7 vom: 13. Apr., Seite 3934-3941 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:47 year:2018 number:7 day:13 month:04 pages:3934-3941 https://doi.org/10.1007/s11664-018-6274-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 47 2018 7 13 04 3934-3941 |
language |
English |
source |
Enthalten in Journal of electronic materials 47(2018), 7 vom: 13. Apr., Seite 3934-3941 volume:47 year:2018 number:7 day:13 month:04 pages:3934-3941 |
sourceStr |
Enthalten in Journal of electronic materials 47(2018), 7 vom: 13. Apr., Seite 3934-3941 volume:47 year:2018 number:7 day:13 month:04 pages:3934-3941 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
α-Fe O nanofibers porous phase separation ethanol sensing ultrafast response/recovery |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of electronic materials |
authorswithroles_txt_mv |
Dong, Shuwen @@aut@@ Yan, Shuang @@aut@@ Gao, Wenyuan @@aut@@ Liu, Guishan @@aut@@ Hao, Hongshun @@aut@@ |
publishDateDaySort_date |
2018-04-13T00:00:00Z |
hierarchy_top_id |
129398233 |
dewey-sort |
3670 |
id |
OLC204236228X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC204236228X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401130512.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11664-018-6274-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC204236228X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11664-018-6274-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dong, Shuwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Phase Separation Route to Synthesize α-$ Fe_{2} $$ O_{3} $ Porous Nanofibers via Electrospinning for Ultrafast Ethanol Sensing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Minerals, Metals & Materials Society 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A facile and economic procedure was provided to synthesize α-$ Fe_{2} $$ O_{3} $ nanofibers. In this procedure, porous α-$ Fe_{2} $$ O_{3} $ nanofibers were obtained by a single-polymer/binary-solvent system, while solid α-$ Fe_{2} $$ O_{3} $ nanofibers were prepared by a single-polymer/single-solvent system. The crystal structure and morphology of both samples were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption isotherms. The formation mechanism of porous structure was based on solvent evaporation-induced phase separation by the use of mixed solvents with different volatility. Furthermore, ethanol-sensing performance of the porous α-$ Fe_{2} $$ O_{3} $ nanofibers was evaluated and compared with solid α-$ Fe_{2} $$ O_{3} $ nanofibers. Results from gas-sensing measurements reveal that porous α-$ Fe_{2} $$ O_{3} $ nanofibers exhibit higher sensitivity and slightly longer recovery time than solid α-$ Fe_{2} $$ O_{3} $ nanofibers. Over all, the gas sensor based on porous α-$ Fe_{2} $$ O_{3} $ nanofibers shows excellent ethanol-sensing capability with high sensitivity and ultrafast response/recovery behaviors, indicating its potential application as a real-time monitoring gas sensor.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">α-Fe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">O</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanofibers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">porous</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phase separation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ethanol sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ultrafast response/recovery</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Shuang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Wenyuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Guishan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hao, Hongshun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of electronic materials</subfield><subfield code="d">Springer US, 1972</subfield><subfield code="g">47(2018), 7 vom: 13. Apr., Seite 3934-3941</subfield><subfield code="w">(DE-627)129398233</subfield><subfield code="w">(DE-600)186069-0</subfield><subfield code="w">(DE-576)014781387</subfield><subfield code="x">0361-5235</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:47</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:7</subfield><subfield code="g">day:13</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:3934-3941</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11664-018-6274-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">47</subfield><subfield code="j">2018</subfield><subfield code="e">7</subfield><subfield code="b">13</subfield><subfield code="c">04</subfield><subfield code="h">3934-3941</subfield></datafield></record></collection>
|
author |
Dong, Shuwen |
spellingShingle |
Dong, Shuwen ddc 670 misc α-Fe misc O misc nanofibers misc porous misc phase separation misc ethanol sensing misc ultrafast response/recovery A Phase Separation Route to Synthesize α-$ Fe_{2} $$ O_{3} $ Porous Nanofibers via Electrospinning for Ultrafast Ethanol Sensing |
authorStr |
Dong, Shuwen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129398233 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0361-5235 |
topic_title |
670 VZ A Phase Separation Route to Synthesize α-$ Fe_{2} $$ O_{3} $ Porous Nanofibers via Electrospinning for Ultrafast Ethanol Sensing α-Fe O nanofibers porous phase separation ethanol sensing ultrafast response/recovery |
topic |
ddc 670 misc α-Fe misc O misc nanofibers misc porous misc phase separation misc ethanol sensing misc ultrafast response/recovery |
topic_unstemmed |
ddc 670 misc α-Fe misc O misc nanofibers misc porous misc phase separation misc ethanol sensing misc ultrafast response/recovery |
topic_browse |
ddc 670 misc α-Fe misc O misc nanofibers misc porous misc phase separation misc ethanol sensing misc ultrafast response/recovery |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of electronic materials |
hierarchy_parent_id |
129398233 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of electronic materials |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 |
title |
A Phase Separation Route to Synthesize α-$ Fe_{2} $$ O_{3} $ Porous Nanofibers via Electrospinning for Ultrafast Ethanol Sensing |
ctrlnum |
(DE-627)OLC204236228X (DE-He213)s11664-018-6274-x-p |
title_full |
A Phase Separation Route to Synthesize α-$ Fe_{2} $$ O_{3} $ Porous Nanofibers via Electrospinning for Ultrafast Ethanol Sensing |
author_sort |
Dong, Shuwen |
journal |
Journal of electronic materials |
journalStr |
Journal of electronic materials |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
3934 |
author_browse |
Dong, Shuwen Yan, Shuang Gao, Wenyuan Liu, Guishan Hao, Hongshun |
container_volume |
47 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Dong, Shuwen |
doi_str_mv |
10.1007/s11664-018-6274-x |
dewey-full |
670 |
title_sort |
a phase separation route to synthesize α-$ fe_{2} $$ o_{3} $ porous nanofibers via electrospinning for ultrafast ethanol sensing |
title_auth |
A Phase Separation Route to Synthesize α-$ Fe_{2} $$ O_{3} $ Porous Nanofibers via Electrospinning for Ultrafast Ethanol Sensing |
abstract |
Abstract A facile and economic procedure was provided to synthesize α-$ Fe_{2} $$ O_{3} $ nanofibers. In this procedure, porous α-$ Fe_{2} $$ O_{3} $ nanofibers were obtained by a single-polymer/binary-solvent system, while solid α-$ Fe_{2} $$ O_{3} $ nanofibers were prepared by a single-polymer/single-solvent system. The crystal structure and morphology of both samples were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption isotherms. The formation mechanism of porous structure was based on solvent evaporation-induced phase separation by the use of mixed solvents with different volatility. Furthermore, ethanol-sensing performance of the porous α-$ Fe_{2} $$ O_{3} $ nanofibers was evaluated and compared with solid α-$ Fe_{2} $$ O_{3} $ nanofibers. Results from gas-sensing measurements reveal that porous α-$ Fe_{2} $$ O_{3} $ nanofibers exhibit higher sensitivity and slightly longer recovery time than solid α-$ Fe_{2} $$ O_{3} $ nanofibers. Over all, the gas sensor based on porous α-$ Fe_{2} $$ O_{3} $ nanofibers shows excellent ethanol-sensing capability with high sensitivity and ultrafast response/recovery behaviors, indicating its potential application as a real-time monitoring gas sensor. © The Minerals, Metals & Materials Society 2018 |
abstractGer |
Abstract A facile and economic procedure was provided to synthesize α-$ Fe_{2} $$ O_{3} $ nanofibers. In this procedure, porous α-$ Fe_{2} $$ O_{3} $ nanofibers were obtained by a single-polymer/binary-solvent system, while solid α-$ Fe_{2} $$ O_{3} $ nanofibers were prepared by a single-polymer/single-solvent system. The crystal structure and morphology of both samples were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption isotherms. The formation mechanism of porous structure was based on solvent evaporation-induced phase separation by the use of mixed solvents with different volatility. Furthermore, ethanol-sensing performance of the porous α-$ Fe_{2} $$ O_{3} $ nanofibers was evaluated and compared with solid α-$ Fe_{2} $$ O_{3} $ nanofibers. Results from gas-sensing measurements reveal that porous α-$ Fe_{2} $$ O_{3} $ nanofibers exhibit higher sensitivity and slightly longer recovery time than solid α-$ Fe_{2} $$ O_{3} $ nanofibers. Over all, the gas sensor based on porous α-$ Fe_{2} $$ O_{3} $ nanofibers shows excellent ethanol-sensing capability with high sensitivity and ultrafast response/recovery behaviors, indicating its potential application as a real-time monitoring gas sensor. © The Minerals, Metals & Materials Society 2018 |
abstract_unstemmed |
Abstract A facile and economic procedure was provided to synthesize α-$ Fe_{2} $$ O_{3} $ nanofibers. In this procedure, porous α-$ Fe_{2} $$ O_{3} $ nanofibers were obtained by a single-polymer/binary-solvent system, while solid α-$ Fe_{2} $$ O_{3} $ nanofibers were prepared by a single-polymer/single-solvent system. The crystal structure and morphology of both samples were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption isotherms. The formation mechanism of porous structure was based on solvent evaporation-induced phase separation by the use of mixed solvents with different volatility. Furthermore, ethanol-sensing performance of the porous α-$ Fe_{2} $$ O_{3} $ nanofibers was evaluated and compared with solid α-$ Fe_{2} $$ O_{3} $ nanofibers. Results from gas-sensing measurements reveal that porous α-$ Fe_{2} $$ O_{3} $ nanofibers exhibit higher sensitivity and slightly longer recovery time than solid α-$ Fe_{2} $$ O_{3} $ nanofibers. Over all, the gas sensor based on porous α-$ Fe_{2} $$ O_{3} $ nanofibers shows excellent ethanol-sensing capability with high sensitivity and ultrafast response/recovery behaviors, indicating its potential application as a real-time monitoring gas sensor. © The Minerals, Metals & Materials Society 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 |
container_issue |
7 |
title_short |
A Phase Separation Route to Synthesize α-$ Fe_{2} $$ O_{3} $ Porous Nanofibers via Electrospinning for Ultrafast Ethanol Sensing |
url |
https://doi.org/10.1007/s11664-018-6274-x |
remote_bool |
false |
author2 |
Yan, Shuang Gao, Wenyuan Liu, Guishan Hao, Hongshun |
author2Str |
Yan, Shuang Gao, Wenyuan Liu, Guishan Hao, Hongshun |
ppnlink |
129398233 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11664-018-6274-x |
up_date |
2024-07-03T14:53:53.924Z |
_version_ |
1803570049371340800 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC204236228X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401130512.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11664-018-6274-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC204236228X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11664-018-6274-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dong, Shuwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Phase Separation Route to Synthesize α-$ Fe_{2} $$ O_{3} $ Porous Nanofibers via Electrospinning for Ultrafast Ethanol Sensing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Minerals, Metals & Materials Society 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A facile and economic procedure was provided to synthesize α-$ Fe_{2} $$ O_{3} $ nanofibers. In this procedure, porous α-$ Fe_{2} $$ O_{3} $ nanofibers were obtained by a single-polymer/binary-solvent system, while solid α-$ Fe_{2} $$ O_{3} $ nanofibers were prepared by a single-polymer/single-solvent system. The crystal structure and morphology of both samples were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption isotherms. The formation mechanism of porous structure was based on solvent evaporation-induced phase separation by the use of mixed solvents with different volatility. Furthermore, ethanol-sensing performance of the porous α-$ Fe_{2} $$ O_{3} $ nanofibers was evaluated and compared with solid α-$ Fe_{2} $$ O_{3} $ nanofibers. Results from gas-sensing measurements reveal that porous α-$ Fe_{2} $$ O_{3} $ nanofibers exhibit higher sensitivity and slightly longer recovery time than solid α-$ Fe_{2} $$ O_{3} $ nanofibers. Over all, the gas sensor based on porous α-$ Fe_{2} $$ O_{3} $ nanofibers shows excellent ethanol-sensing capability with high sensitivity and ultrafast response/recovery behaviors, indicating its potential application as a real-time monitoring gas sensor.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">α-Fe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">O</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanofibers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">porous</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phase separation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ethanol sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ultrafast response/recovery</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Shuang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Wenyuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Guishan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hao, Hongshun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of electronic materials</subfield><subfield code="d">Springer US, 1972</subfield><subfield code="g">47(2018), 7 vom: 13. Apr., Seite 3934-3941</subfield><subfield code="w">(DE-627)129398233</subfield><subfield code="w">(DE-600)186069-0</subfield><subfield code="w">(DE-576)014781387</subfield><subfield code="x">0361-5235</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:47</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:7</subfield><subfield code="g">day:13</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:3934-3941</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11664-018-6274-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">47</subfield><subfield code="j">2018</subfield><subfield code="e">7</subfield><subfield code="b">13</subfield><subfield code="c">04</subfield><subfield code="h">3934-3941</subfield></datafield></record></collection>
|
score |
7.400899 |