Phosphorus-Doped Carbon Composites with Rich Graphene Derived from Phenol Resin as Supercapacitor Electrode Materials with High Window Potential and Energy Density
Abstract We reported a simple one-step way for synthesizing phosphorus-doped (P-doped) carbon composites with rich graphene (P-CCG) in this study. We prepared P-CCG in the presence of KCl molten salt at 750°C by using soluble phenolic resole and triphenylphosphine as carbon and phosphorus resources,...
Ausführliche Beschreibung
Autor*in: |
Zhang, Jianyu [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Minerals, Metals & Materials Society 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of electronic materials - Springer US, 1972, 48(2019), 7 vom: 10. Apr., Seite 4196-4206 |
---|---|
Übergeordnetes Werk: |
volume:48 ; year:2019 ; number:7 ; day:10 ; month:04 ; pages:4196-4206 |
Links: |
---|
DOI / URN: |
10.1007/s11664-019-07188-5 |
---|
Katalog-ID: |
OLC2042372838 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2042372838 | ||
003 | DE-627 | ||
005 | 20230401130736.0 | ||
007 | tu | ||
008 | 200820s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11664-019-07188-5 |2 doi | |
035 | |a (DE-627)OLC2042372838 | ||
035 | |a (DE-He213)s11664-019-07188-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Zhang, Jianyu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Phosphorus-Doped Carbon Composites with Rich Graphene Derived from Phenol Resin as Supercapacitor Electrode Materials with High Window Potential and Energy Density |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Minerals, Metals & Materials Society 2019 | ||
520 | |a Abstract We reported a simple one-step way for synthesizing phosphorus-doped (P-doped) carbon composites with rich graphene (P-CCG) in this study. We prepared P-CCG in the presence of KCl molten salt at 750°C by using soluble phenolic resole and triphenylphosphine as carbon and phosphorus resources, respectively. Using x-ray photoelectron spectroscopy and elemental mapping, we detected the existence of P while the structure and morphology of P-CCG were analyzed by x-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The morphology of P-CCG displayed that where scattered porous carbons exist, the graphene sheets chiefly constituted the composites. To further inquire into the influence of P doping, the electrochemical properties of P-CCG were tested by using P-CCG as the electrode material of button-type supercapacitors whose aqueous electrolyte was 6 M KOH. The results suggested P-CCG showed great improvements such as higher specific capacitance and strengthened cycling stability after 5000 cycles, compared with undoped carbon composites. The ideal sample, P0.4-CCG, offered outstanding capacitive behavior, including a larger specific capacitance of 277 F $ g^{−1} $, wide voltage window of 1.6 V and, a higher energy density of 26.42 Wh $ kg^{−1} $. | ||
650 | 4 | |a Phosphorus-doped | |
650 | 4 | |a graphene | |
650 | 4 | |a supercapacitor | |
650 | 4 | |a wide voltage | |
650 | 4 | |a high specific capacitance | |
650 | 4 | |a high energy density | |
700 | 1 | |a Ali, Sikander |4 aut | |
700 | 1 | |a Liu, Fugui |4 aut | |
700 | 1 | |a Ali, Ahmad |4 aut | |
700 | 1 | |a Wang, Kang |4 aut | |
700 | 1 | |a Wang, Xitao |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of electronic materials |d Springer US, 1972 |g 48(2019), 7 vom: 10. Apr., Seite 4196-4206 |w (DE-627)129398233 |w (DE-600)186069-0 |w (DE-576)014781387 |x 0361-5235 |7 nnns |
773 | 1 | 8 | |g volume:48 |g year:2019 |g number:7 |g day:10 |g month:04 |g pages:4196-4206 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11664-019-07188-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 48 |j 2019 |e 7 |b 10 |c 04 |h 4196-4206 |
author_variant |
j z jz s a sa f l fl a a aa k w kw x w xw |
---|---|
matchkey_str |
article:03615235:2019----::hshrsoecrocmoiewtrcgahndrvdrmhnleiaspraaioeetoeaeilw |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s11664-019-07188-5 doi (DE-627)OLC2042372838 (DE-He213)s11664-019-07188-5-p DE-627 ger DE-627 rakwb eng 670 VZ Zhang, Jianyu verfasserin aut Phosphorus-Doped Carbon Composites with Rich Graphene Derived from Phenol Resin as Supercapacitor Electrode Materials with High Window Potential and Energy Density 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society 2019 Abstract We reported a simple one-step way for synthesizing phosphorus-doped (P-doped) carbon composites with rich graphene (P-CCG) in this study. We prepared P-CCG in the presence of KCl molten salt at 750°C by using soluble phenolic resole and triphenylphosphine as carbon and phosphorus resources, respectively. Using x-ray photoelectron spectroscopy and elemental mapping, we detected the existence of P while the structure and morphology of P-CCG were analyzed by x-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The morphology of P-CCG displayed that where scattered porous carbons exist, the graphene sheets chiefly constituted the composites. To further inquire into the influence of P doping, the electrochemical properties of P-CCG were tested by using P-CCG as the electrode material of button-type supercapacitors whose aqueous electrolyte was 6 M KOH. The results suggested P-CCG showed great improvements such as higher specific capacitance and strengthened cycling stability after 5000 cycles, compared with undoped carbon composites. The ideal sample, P0.4-CCG, offered outstanding capacitive behavior, including a larger specific capacitance of 277 F $ g^{−1} $, wide voltage window of 1.6 V and, a higher energy density of 26.42 Wh $ kg^{−1} $. Phosphorus-doped graphene supercapacitor wide voltage high specific capacitance high energy density Ali, Sikander aut Liu, Fugui aut Ali, Ahmad aut Wang, Kang aut Wang, Xitao aut Enthalten in Journal of electronic materials Springer US, 1972 48(2019), 7 vom: 10. Apr., Seite 4196-4206 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:48 year:2019 number:7 day:10 month:04 pages:4196-4206 https://doi.org/10.1007/s11664-019-07188-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 48 2019 7 10 04 4196-4206 |
spelling |
10.1007/s11664-019-07188-5 doi (DE-627)OLC2042372838 (DE-He213)s11664-019-07188-5-p DE-627 ger DE-627 rakwb eng 670 VZ Zhang, Jianyu verfasserin aut Phosphorus-Doped Carbon Composites with Rich Graphene Derived from Phenol Resin as Supercapacitor Electrode Materials with High Window Potential and Energy Density 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society 2019 Abstract We reported a simple one-step way for synthesizing phosphorus-doped (P-doped) carbon composites with rich graphene (P-CCG) in this study. We prepared P-CCG in the presence of KCl molten salt at 750°C by using soluble phenolic resole and triphenylphosphine as carbon and phosphorus resources, respectively. Using x-ray photoelectron spectroscopy and elemental mapping, we detected the existence of P while the structure and morphology of P-CCG were analyzed by x-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The morphology of P-CCG displayed that where scattered porous carbons exist, the graphene sheets chiefly constituted the composites. To further inquire into the influence of P doping, the electrochemical properties of P-CCG were tested by using P-CCG as the electrode material of button-type supercapacitors whose aqueous electrolyte was 6 M KOH. The results suggested P-CCG showed great improvements such as higher specific capacitance and strengthened cycling stability after 5000 cycles, compared with undoped carbon composites. The ideal sample, P0.4-CCG, offered outstanding capacitive behavior, including a larger specific capacitance of 277 F $ g^{−1} $, wide voltage window of 1.6 V and, a higher energy density of 26.42 Wh $ kg^{−1} $. Phosphorus-doped graphene supercapacitor wide voltage high specific capacitance high energy density Ali, Sikander aut Liu, Fugui aut Ali, Ahmad aut Wang, Kang aut Wang, Xitao aut Enthalten in Journal of electronic materials Springer US, 1972 48(2019), 7 vom: 10. Apr., Seite 4196-4206 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:48 year:2019 number:7 day:10 month:04 pages:4196-4206 https://doi.org/10.1007/s11664-019-07188-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 48 2019 7 10 04 4196-4206 |
allfields_unstemmed |
10.1007/s11664-019-07188-5 doi (DE-627)OLC2042372838 (DE-He213)s11664-019-07188-5-p DE-627 ger DE-627 rakwb eng 670 VZ Zhang, Jianyu verfasserin aut Phosphorus-Doped Carbon Composites with Rich Graphene Derived from Phenol Resin as Supercapacitor Electrode Materials with High Window Potential and Energy Density 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society 2019 Abstract We reported a simple one-step way for synthesizing phosphorus-doped (P-doped) carbon composites with rich graphene (P-CCG) in this study. We prepared P-CCG in the presence of KCl molten salt at 750°C by using soluble phenolic resole and triphenylphosphine as carbon and phosphorus resources, respectively. Using x-ray photoelectron spectroscopy and elemental mapping, we detected the existence of P while the structure and morphology of P-CCG were analyzed by x-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The morphology of P-CCG displayed that where scattered porous carbons exist, the graphene sheets chiefly constituted the composites. To further inquire into the influence of P doping, the electrochemical properties of P-CCG were tested by using P-CCG as the electrode material of button-type supercapacitors whose aqueous electrolyte was 6 M KOH. The results suggested P-CCG showed great improvements such as higher specific capacitance and strengthened cycling stability after 5000 cycles, compared with undoped carbon composites. The ideal sample, P0.4-CCG, offered outstanding capacitive behavior, including a larger specific capacitance of 277 F $ g^{−1} $, wide voltage window of 1.6 V and, a higher energy density of 26.42 Wh $ kg^{−1} $. Phosphorus-doped graphene supercapacitor wide voltage high specific capacitance high energy density Ali, Sikander aut Liu, Fugui aut Ali, Ahmad aut Wang, Kang aut Wang, Xitao aut Enthalten in Journal of electronic materials Springer US, 1972 48(2019), 7 vom: 10. Apr., Seite 4196-4206 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:48 year:2019 number:7 day:10 month:04 pages:4196-4206 https://doi.org/10.1007/s11664-019-07188-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 48 2019 7 10 04 4196-4206 |
allfieldsGer |
10.1007/s11664-019-07188-5 doi (DE-627)OLC2042372838 (DE-He213)s11664-019-07188-5-p DE-627 ger DE-627 rakwb eng 670 VZ Zhang, Jianyu verfasserin aut Phosphorus-Doped Carbon Composites with Rich Graphene Derived from Phenol Resin as Supercapacitor Electrode Materials with High Window Potential and Energy Density 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society 2019 Abstract We reported a simple one-step way for synthesizing phosphorus-doped (P-doped) carbon composites with rich graphene (P-CCG) in this study. We prepared P-CCG in the presence of KCl molten salt at 750°C by using soluble phenolic resole and triphenylphosphine as carbon and phosphorus resources, respectively. Using x-ray photoelectron spectroscopy and elemental mapping, we detected the existence of P while the structure and morphology of P-CCG were analyzed by x-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The morphology of P-CCG displayed that where scattered porous carbons exist, the graphene sheets chiefly constituted the composites. To further inquire into the influence of P doping, the electrochemical properties of P-CCG were tested by using P-CCG as the electrode material of button-type supercapacitors whose aqueous electrolyte was 6 M KOH. The results suggested P-CCG showed great improvements such as higher specific capacitance and strengthened cycling stability after 5000 cycles, compared with undoped carbon composites. The ideal sample, P0.4-CCG, offered outstanding capacitive behavior, including a larger specific capacitance of 277 F $ g^{−1} $, wide voltage window of 1.6 V and, a higher energy density of 26.42 Wh $ kg^{−1} $. Phosphorus-doped graphene supercapacitor wide voltage high specific capacitance high energy density Ali, Sikander aut Liu, Fugui aut Ali, Ahmad aut Wang, Kang aut Wang, Xitao aut Enthalten in Journal of electronic materials Springer US, 1972 48(2019), 7 vom: 10. Apr., Seite 4196-4206 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:48 year:2019 number:7 day:10 month:04 pages:4196-4206 https://doi.org/10.1007/s11664-019-07188-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 48 2019 7 10 04 4196-4206 |
allfieldsSound |
10.1007/s11664-019-07188-5 doi (DE-627)OLC2042372838 (DE-He213)s11664-019-07188-5-p DE-627 ger DE-627 rakwb eng 670 VZ Zhang, Jianyu verfasserin aut Phosphorus-Doped Carbon Composites with Rich Graphene Derived from Phenol Resin as Supercapacitor Electrode Materials with High Window Potential and Energy Density 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Minerals, Metals & Materials Society 2019 Abstract We reported a simple one-step way for synthesizing phosphorus-doped (P-doped) carbon composites with rich graphene (P-CCG) in this study. We prepared P-CCG in the presence of KCl molten salt at 750°C by using soluble phenolic resole and triphenylphosphine as carbon and phosphorus resources, respectively. Using x-ray photoelectron spectroscopy and elemental mapping, we detected the existence of P while the structure and morphology of P-CCG were analyzed by x-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The morphology of P-CCG displayed that where scattered porous carbons exist, the graphene sheets chiefly constituted the composites. To further inquire into the influence of P doping, the electrochemical properties of P-CCG were tested by using P-CCG as the electrode material of button-type supercapacitors whose aqueous electrolyte was 6 M KOH. The results suggested P-CCG showed great improvements such as higher specific capacitance and strengthened cycling stability after 5000 cycles, compared with undoped carbon composites. The ideal sample, P0.4-CCG, offered outstanding capacitive behavior, including a larger specific capacitance of 277 F $ g^{−1} $, wide voltage window of 1.6 V and, a higher energy density of 26.42 Wh $ kg^{−1} $. Phosphorus-doped graphene supercapacitor wide voltage high specific capacitance high energy density Ali, Sikander aut Liu, Fugui aut Ali, Ahmad aut Wang, Kang aut Wang, Xitao aut Enthalten in Journal of electronic materials Springer US, 1972 48(2019), 7 vom: 10. Apr., Seite 4196-4206 (DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 0361-5235 nnns volume:48 year:2019 number:7 day:10 month:04 pages:4196-4206 https://doi.org/10.1007/s11664-019-07188-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 48 2019 7 10 04 4196-4206 |
language |
English |
source |
Enthalten in Journal of electronic materials 48(2019), 7 vom: 10. Apr., Seite 4196-4206 volume:48 year:2019 number:7 day:10 month:04 pages:4196-4206 |
sourceStr |
Enthalten in Journal of electronic materials 48(2019), 7 vom: 10. Apr., Seite 4196-4206 volume:48 year:2019 number:7 day:10 month:04 pages:4196-4206 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Phosphorus-doped graphene supercapacitor wide voltage high specific capacitance high energy density |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of electronic materials |
authorswithroles_txt_mv |
Zhang, Jianyu @@aut@@ Ali, Sikander @@aut@@ Liu, Fugui @@aut@@ Ali, Ahmad @@aut@@ Wang, Kang @@aut@@ Wang, Xitao @@aut@@ |
publishDateDaySort_date |
2019-04-10T00:00:00Z |
hierarchy_top_id |
129398233 |
dewey-sort |
3670 |
id |
OLC2042372838 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2042372838</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401130736.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11664-019-07188-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2042372838</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11664-019-07188-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Jianyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phosphorus-Doped Carbon Composites with Rich Graphene Derived from Phenol Resin as Supercapacitor Electrode Materials with High Window Potential and Energy Density</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Minerals, Metals & Materials Society 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We reported a simple one-step way for synthesizing phosphorus-doped (P-doped) carbon composites with rich graphene (P-CCG) in this study. We prepared P-CCG in the presence of KCl molten salt at 750°C by using soluble phenolic resole and triphenylphosphine as carbon and phosphorus resources, respectively. Using x-ray photoelectron spectroscopy and elemental mapping, we detected the existence of P while the structure and morphology of P-CCG were analyzed by x-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The morphology of P-CCG displayed that where scattered porous carbons exist, the graphene sheets chiefly constituted the composites. To further inquire into the influence of P doping, the electrochemical properties of P-CCG were tested by using P-CCG as the electrode material of button-type supercapacitors whose aqueous electrolyte was 6 M KOH. The results suggested P-CCG showed great improvements such as higher specific capacitance and strengthened cycling stability after 5000 cycles, compared with undoped carbon composites. The ideal sample, P0.4-CCG, offered outstanding capacitive behavior, including a larger specific capacitance of 277 F $ g^{−1} $, wide voltage window of 1.6 V and, a higher energy density of 26.42 Wh $ kg^{−1} $.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phosphorus-doped</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">graphene</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">supercapacitor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wide voltage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high specific capacitance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high energy density</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ali, Sikander</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Fugui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ali, Ahmad</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Kang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xitao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of electronic materials</subfield><subfield code="d">Springer US, 1972</subfield><subfield code="g">48(2019), 7 vom: 10. Apr., Seite 4196-4206</subfield><subfield code="w">(DE-627)129398233</subfield><subfield code="w">(DE-600)186069-0</subfield><subfield code="w">(DE-576)014781387</subfield><subfield code="x">0361-5235</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:7</subfield><subfield code="g">day:10</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:4196-4206</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11664-019-07188-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield><subfield code="j">2019</subfield><subfield code="e">7</subfield><subfield code="b">10</subfield><subfield code="c">04</subfield><subfield code="h">4196-4206</subfield></datafield></record></collection>
|
author |
Zhang, Jianyu |
spellingShingle |
Zhang, Jianyu ddc 670 misc Phosphorus-doped misc graphene misc supercapacitor misc wide voltage misc high specific capacitance misc high energy density Phosphorus-Doped Carbon Composites with Rich Graphene Derived from Phenol Resin as Supercapacitor Electrode Materials with High Window Potential and Energy Density |
authorStr |
Zhang, Jianyu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129398233 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0361-5235 |
topic_title |
670 VZ Phosphorus-Doped Carbon Composites with Rich Graphene Derived from Phenol Resin as Supercapacitor Electrode Materials with High Window Potential and Energy Density Phosphorus-doped graphene supercapacitor wide voltage high specific capacitance high energy density |
topic |
ddc 670 misc Phosphorus-doped misc graphene misc supercapacitor misc wide voltage misc high specific capacitance misc high energy density |
topic_unstemmed |
ddc 670 misc Phosphorus-doped misc graphene misc supercapacitor misc wide voltage misc high specific capacitance misc high energy density |
topic_browse |
ddc 670 misc Phosphorus-doped misc graphene misc supercapacitor misc wide voltage misc high specific capacitance misc high energy density |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of electronic materials |
hierarchy_parent_id |
129398233 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of electronic materials |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129398233 (DE-600)186069-0 (DE-576)014781387 |
title |
Phosphorus-Doped Carbon Composites with Rich Graphene Derived from Phenol Resin as Supercapacitor Electrode Materials with High Window Potential and Energy Density |
ctrlnum |
(DE-627)OLC2042372838 (DE-He213)s11664-019-07188-5-p |
title_full |
Phosphorus-Doped Carbon Composites with Rich Graphene Derived from Phenol Resin as Supercapacitor Electrode Materials with High Window Potential and Energy Density |
author_sort |
Zhang, Jianyu |
journal |
Journal of electronic materials |
journalStr |
Journal of electronic materials |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
4196 |
author_browse |
Zhang, Jianyu Ali, Sikander Liu, Fugui Ali, Ahmad Wang, Kang Wang, Xitao |
container_volume |
48 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Zhang, Jianyu |
doi_str_mv |
10.1007/s11664-019-07188-5 |
dewey-full |
670 |
title_sort |
phosphorus-doped carbon composites with rich graphene derived from phenol resin as supercapacitor electrode materials with high window potential and energy density |
title_auth |
Phosphorus-Doped Carbon Composites with Rich Graphene Derived from Phenol Resin as Supercapacitor Electrode Materials with High Window Potential and Energy Density |
abstract |
Abstract We reported a simple one-step way for synthesizing phosphorus-doped (P-doped) carbon composites with rich graphene (P-CCG) in this study. We prepared P-CCG in the presence of KCl molten salt at 750°C by using soluble phenolic resole and triphenylphosphine as carbon and phosphorus resources, respectively. Using x-ray photoelectron spectroscopy and elemental mapping, we detected the existence of P while the structure and morphology of P-CCG were analyzed by x-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The morphology of P-CCG displayed that where scattered porous carbons exist, the graphene sheets chiefly constituted the composites. To further inquire into the influence of P doping, the electrochemical properties of P-CCG were tested by using P-CCG as the electrode material of button-type supercapacitors whose aqueous electrolyte was 6 M KOH. The results suggested P-CCG showed great improvements such as higher specific capacitance and strengthened cycling stability after 5000 cycles, compared with undoped carbon composites. The ideal sample, P0.4-CCG, offered outstanding capacitive behavior, including a larger specific capacitance of 277 F $ g^{−1} $, wide voltage window of 1.6 V and, a higher energy density of 26.42 Wh $ kg^{−1} $. © The Minerals, Metals & Materials Society 2019 |
abstractGer |
Abstract We reported a simple one-step way for synthesizing phosphorus-doped (P-doped) carbon composites with rich graphene (P-CCG) in this study. We prepared P-CCG in the presence of KCl molten salt at 750°C by using soluble phenolic resole and triphenylphosphine as carbon and phosphorus resources, respectively. Using x-ray photoelectron spectroscopy and elemental mapping, we detected the existence of P while the structure and morphology of P-CCG were analyzed by x-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The morphology of P-CCG displayed that where scattered porous carbons exist, the graphene sheets chiefly constituted the composites. To further inquire into the influence of P doping, the electrochemical properties of P-CCG were tested by using P-CCG as the electrode material of button-type supercapacitors whose aqueous electrolyte was 6 M KOH. The results suggested P-CCG showed great improvements such as higher specific capacitance and strengthened cycling stability after 5000 cycles, compared with undoped carbon composites. The ideal sample, P0.4-CCG, offered outstanding capacitive behavior, including a larger specific capacitance of 277 F $ g^{−1} $, wide voltage window of 1.6 V and, a higher energy density of 26.42 Wh $ kg^{−1} $. © The Minerals, Metals & Materials Society 2019 |
abstract_unstemmed |
Abstract We reported a simple one-step way for synthesizing phosphorus-doped (P-doped) carbon composites with rich graphene (P-CCG) in this study. We prepared P-CCG in the presence of KCl molten salt at 750°C by using soluble phenolic resole and triphenylphosphine as carbon and phosphorus resources, respectively. Using x-ray photoelectron spectroscopy and elemental mapping, we detected the existence of P while the structure and morphology of P-CCG were analyzed by x-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The morphology of P-CCG displayed that where scattered porous carbons exist, the graphene sheets chiefly constituted the composites. To further inquire into the influence of P doping, the electrochemical properties of P-CCG were tested by using P-CCG as the electrode material of button-type supercapacitors whose aqueous electrolyte was 6 M KOH. The results suggested P-CCG showed great improvements such as higher specific capacitance and strengthened cycling stability after 5000 cycles, compared with undoped carbon composites. The ideal sample, P0.4-CCG, offered outstanding capacitive behavior, including a larger specific capacitance of 277 F $ g^{−1} $, wide voltage window of 1.6 V and, a higher energy density of 26.42 Wh $ kg^{−1} $. © The Minerals, Metals & Materials Society 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 |
container_issue |
7 |
title_short |
Phosphorus-Doped Carbon Composites with Rich Graphene Derived from Phenol Resin as Supercapacitor Electrode Materials with High Window Potential and Energy Density |
url |
https://doi.org/10.1007/s11664-019-07188-5 |
remote_bool |
false |
author2 |
Ali, Sikander Liu, Fugui Ali, Ahmad Wang, Kang Wang, Xitao |
author2Str |
Ali, Sikander Liu, Fugui Ali, Ahmad Wang, Kang Wang, Xitao |
ppnlink |
129398233 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11664-019-07188-5 |
up_date |
2024-07-03T14:56:56.894Z |
_version_ |
1803570241229291520 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2042372838</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230401130736.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11664-019-07188-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2042372838</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11664-019-07188-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Jianyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phosphorus-Doped Carbon Composites with Rich Graphene Derived from Phenol Resin as Supercapacitor Electrode Materials with High Window Potential and Energy Density</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Minerals, Metals & Materials Society 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We reported a simple one-step way for synthesizing phosphorus-doped (P-doped) carbon composites with rich graphene (P-CCG) in this study. We prepared P-CCG in the presence of KCl molten salt at 750°C by using soluble phenolic resole and triphenylphosphine as carbon and phosphorus resources, respectively. Using x-ray photoelectron spectroscopy and elemental mapping, we detected the existence of P while the structure and morphology of P-CCG were analyzed by x-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The morphology of P-CCG displayed that where scattered porous carbons exist, the graphene sheets chiefly constituted the composites. To further inquire into the influence of P doping, the electrochemical properties of P-CCG were tested by using P-CCG as the electrode material of button-type supercapacitors whose aqueous electrolyte was 6 M KOH. The results suggested P-CCG showed great improvements such as higher specific capacitance and strengthened cycling stability after 5000 cycles, compared with undoped carbon composites. The ideal sample, P0.4-CCG, offered outstanding capacitive behavior, including a larger specific capacitance of 277 F $ g^{−1} $, wide voltage window of 1.6 V and, a higher energy density of 26.42 Wh $ kg^{−1} $.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phosphorus-doped</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">graphene</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">supercapacitor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wide voltage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high specific capacitance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high energy density</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ali, Sikander</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Fugui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ali, Ahmad</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Kang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xitao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of electronic materials</subfield><subfield code="d">Springer US, 1972</subfield><subfield code="g">48(2019), 7 vom: 10. Apr., Seite 4196-4206</subfield><subfield code="w">(DE-627)129398233</subfield><subfield code="w">(DE-600)186069-0</subfield><subfield code="w">(DE-576)014781387</subfield><subfield code="x">0361-5235</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:7</subfield><subfield code="g">day:10</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:4196-4206</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11664-019-07188-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield><subfield code="j">2019</subfield><subfield code="e">7</subfield><subfield code="b">10</subfield><subfield code="c">04</subfield><subfield code="h">4196-4206</subfield></datafield></record></collection>
|
score |
7.399907 |