Influence of poly(acrylic acid) xerogel structure on swelling kinetics in distilled water
Summary The basic structural properties of xerogels of crosslinked poly(acrylic acid) were defined and determined: xerogel density ($ ρ_{xg} $), xerogel volume fraction in the equilibrium-swollen state (v2), the number average molar mass between network crosslinks $(\bar{M}_{c})$, the crosslink dens...
Ausführliche Beschreibung
Autor*in: |
Jovanovic, Jelena [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2006 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag 2006 |
---|
Übergeordnetes Werk: |
Enthalten in: Polymer bulletin - Springer-Verlag, 1978, 58(2006), 1 vom: 19. Juni, Seite 243-252 |
---|---|
Übergeordnetes Werk: |
volume:58 ; year:2006 ; number:1 ; day:19 ; month:06 ; pages:243-252 |
Links: |
---|
DOI / URN: |
10.1007/s00289-006-0591-6 |
---|
Katalog-ID: |
OLC204262974X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC204262974X | ||
003 | DE-627 | ||
005 | 20230331083345.0 | ||
007 | tu | ||
008 | 200819s2006 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00289-006-0591-6 |2 doi | |
035 | |a (DE-627)OLC204262974X | ||
035 | |a (DE-He213)s00289-006-0591-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |a 530 |a 660 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
100 | 1 | |a Jovanovic, Jelena |e verfasserin |4 aut | |
245 | 1 | 0 | |a Influence of poly(acrylic acid) xerogel structure on swelling kinetics in distilled water |
264 | 1 | |c 2006 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2006 | ||
520 | |a Summary The basic structural properties of xerogels of crosslinked poly(acrylic acid) were defined and determined: xerogel density ($ ρ_{xg} $), xerogel volume fraction in the equilibrium-swollen state (v2), the number average molar mass between network crosslinks $(\bar{M}_{c})$, the crosslink density ($ ρ_{c} $) and the distance between macromolecular chains (d). A crosslinking ratio (X) increase leads to a linear increase in the values for $ ρ_{xg} $ and $ ρ_{c} $, while the values $\bar{M}_{c}$ and d decrease. The isothermal swelling kinetic curves of four samples of structurally different poly(acrylic acid) xerogels in bidistilled water at different temperatures ranging from 25 to 45 °C were determined. It is shown that isothermal kinetic swelling curves could not be described with the model of first-order reaction kinetics in entire. It was found that these curves could be described by the Johanson-Mampel-Avrami (JMA) equation. For all of the investigated xerogel samples, the initial swelling rate (vin), effective reaction rate constant (k) and equilibrium swelling degree increased with swelling temperature increase. Based on the determined values of the vin and k, the activation energy (Ea) and pre-exponential factor (lnA) were determined. It was concluded that the activation energy linearly increased with increasing distance between macromolecular chains (d) and molar mass between the network crosslinks $(\bar{M}_{c})$. The relationship between the activation energy changes with pre-exponential factor (compensation effect) caused by xerogel structural properties was established. Isothermal swelling kinetics could be completely described by the kinetics of phase transition of the xerogel transformation from glassy to rubbery state, i.e. with the JMA kinetic equation. | ||
650 | 4 | |a Acrylic Acid | |
650 | 4 | |a Crosslink Density | |
650 | 4 | |a Bidistilled Water | |
650 | 4 | |a Macromolecular Chain | |
650 | 4 | |a Network Crosslinks | |
700 | 1 | |a Adnadjevic, Borivoj |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Polymer bulletin |d Springer-Verlag, 1978 |g 58(2006), 1 vom: 19. Juni, Seite 243-252 |w (DE-627)129092916 |w (DE-600)6871-8 |w (DE-576)01442861X |x 0170-0839 |7 nnns |
773 | 1 | 8 | |g volume:58 |g year:2006 |g number:1 |g day:19 |g month:06 |g pages:243-252 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00289-006-0591-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2411 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 58 |j 2006 |e 1 |b 19 |c 06 |h 243-252 |
author_variant |
j j jj b a ba |
---|---|
matchkey_str |
article:01700839:2006----::nlecoplarlccdeoesrcuenwligie |
hierarchy_sort_str |
2006 |
publishDate |
2006 |
allfields |
10.1007/s00289-006-0591-6 doi (DE-627)OLC204262974X (DE-He213)s00289-006-0591-6-p DE-627 ger DE-627 rakwb eng 540 530 660 VZ BIODIV DE-30 fid Jovanovic, Jelena verfasserin aut Influence of poly(acrylic acid) xerogel structure on swelling kinetics in distilled water 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2006 Summary The basic structural properties of xerogels of crosslinked poly(acrylic acid) were defined and determined: xerogel density ($ ρ_{xg} $), xerogel volume fraction in the equilibrium-swollen state (v2), the number average molar mass between network crosslinks $(\bar{M}_{c})$, the crosslink density ($ ρ_{c} $) and the distance between macromolecular chains (d). A crosslinking ratio (X) increase leads to a linear increase in the values for $ ρ_{xg} $ and $ ρ_{c} $, while the values $\bar{M}_{c}$ and d decrease. The isothermal swelling kinetic curves of four samples of structurally different poly(acrylic acid) xerogels in bidistilled water at different temperatures ranging from 25 to 45 °C were determined. It is shown that isothermal kinetic swelling curves could not be described with the model of first-order reaction kinetics in entire. It was found that these curves could be described by the Johanson-Mampel-Avrami (JMA) equation. For all of the investigated xerogel samples, the initial swelling rate (vin), effective reaction rate constant (k) and equilibrium swelling degree increased with swelling temperature increase. Based on the determined values of the vin and k, the activation energy (Ea) and pre-exponential factor (lnA) were determined. It was concluded that the activation energy linearly increased with increasing distance between macromolecular chains (d) and molar mass between the network crosslinks $(\bar{M}_{c})$. The relationship between the activation energy changes with pre-exponential factor (compensation effect) caused by xerogel structural properties was established. Isothermal swelling kinetics could be completely described by the kinetics of phase transition of the xerogel transformation from glassy to rubbery state, i.e. with the JMA kinetic equation. Acrylic Acid Crosslink Density Bidistilled Water Macromolecular Chain Network Crosslinks Adnadjevic, Borivoj aut Enthalten in Polymer bulletin Springer-Verlag, 1978 58(2006), 1 vom: 19. Juni, Seite 243-252 (DE-627)129092916 (DE-600)6871-8 (DE-576)01442861X 0170-0839 nnns volume:58 year:2006 number:1 day:19 month:06 pages:243-252 https://doi.org/10.1007/s00289-006-0591-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2411 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4277 AR 58 2006 1 19 06 243-252 |
spelling |
10.1007/s00289-006-0591-6 doi (DE-627)OLC204262974X (DE-He213)s00289-006-0591-6-p DE-627 ger DE-627 rakwb eng 540 530 660 VZ BIODIV DE-30 fid Jovanovic, Jelena verfasserin aut Influence of poly(acrylic acid) xerogel structure on swelling kinetics in distilled water 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2006 Summary The basic structural properties of xerogels of crosslinked poly(acrylic acid) were defined and determined: xerogel density ($ ρ_{xg} $), xerogel volume fraction in the equilibrium-swollen state (v2), the number average molar mass between network crosslinks $(\bar{M}_{c})$, the crosslink density ($ ρ_{c} $) and the distance between macromolecular chains (d). A crosslinking ratio (X) increase leads to a linear increase in the values for $ ρ_{xg} $ and $ ρ_{c} $, while the values $\bar{M}_{c}$ and d decrease. The isothermal swelling kinetic curves of four samples of structurally different poly(acrylic acid) xerogels in bidistilled water at different temperatures ranging from 25 to 45 °C were determined. It is shown that isothermal kinetic swelling curves could not be described with the model of first-order reaction kinetics in entire. It was found that these curves could be described by the Johanson-Mampel-Avrami (JMA) equation. For all of the investigated xerogel samples, the initial swelling rate (vin), effective reaction rate constant (k) and equilibrium swelling degree increased with swelling temperature increase. Based on the determined values of the vin and k, the activation energy (Ea) and pre-exponential factor (lnA) were determined. It was concluded that the activation energy linearly increased with increasing distance between macromolecular chains (d) and molar mass between the network crosslinks $(\bar{M}_{c})$. The relationship between the activation energy changes with pre-exponential factor (compensation effect) caused by xerogel structural properties was established. Isothermal swelling kinetics could be completely described by the kinetics of phase transition of the xerogel transformation from glassy to rubbery state, i.e. with the JMA kinetic equation. Acrylic Acid Crosslink Density Bidistilled Water Macromolecular Chain Network Crosslinks Adnadjevic, Borivoj aut Enthalten in Polymer bulletin Springer-Verlag, 1978 58(2006), 1 vom: 19. Juni, Seite 243-252 (DE-627)129092916 (DE-600)6871-8 (DE-576)01442861X 0170-0839 nnns volume:58 year:2006 number:1 day:19 month:06 pages:243-252 https://doi.org/10.1007/s00289-006-0591-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2411 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4277 AR 58 2006 1 19 06 243-252 |
allfields_unstemmed |
10.1007/s00289-006-0591-6 doi (DE-627)OLC204262974X (DE-He213)s00289-006-0591-6-p DE-627 ger DE-627 rakwb eng 540 530 660 VZ BIODIV DE-30 fid Jovanovic, Jelena verfasserin aut Influence of poly(acrylic acid) xerogel structure on swelling kinetics in distilled water 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2006 Summary The basic structural properties of xerogels of crosslinked poly(acrylic acid) were defined and determined: xerogel density ($ ρ_{xg} $), xerogel volume fraction in the equilibrium-swollen state (v2), the number average molar mass between network crosslinks $(\bar{M}_{c})$, the crosslink density ($ ρ_{c} $) and the distance between macromolecular chains (d). A crosslinking ratio (X) increase leads to a linear increase in the values for $ ρ_{xg} $ and $ ρ_{c} $, while the values $\bar{M}_{c}$ and d decrease. The isothermal swelling kinetic curves of four samples of structurally different poly(acrylic acid) xerogels in bidistilled water at different temperatures ranging from 25 to 45 °C were determined. It is shown that isothermal kinetic swelling curves could not be described with the model of first-order reaction kinetics in entire. It was found that these curves could be described by the Johanson-Mampel-Avrami (JMA) equation. For all of the investigated xerogel samples, the initial swelling rate (vin), effective reaction rate constant (k) and equilibrium swelling degree increased with swelling temperature increase. Based on the determined values of the vin and k, the activation energy (Ea) and pre-exponential factor (lnA) were determined. It was concluded that the activation energy linearly increased with increasing distance between macromolecular chains (d) and molar mass between the network crosslinks $(\bar{M}_{c})$. The relationship between the activation energy changes with pre-exponential factor (compensation effect) caused by xerogel structural properties was established. Isothermal swelling kinetics could be completely described by the kinetics of phase transition of the xerogel transformation from glassy to rubbery state, i.e. with the JMA kinetic equation. Acrylic Acid Crosslink Density Bidistilled Water Macromolecular Chain Network Crosslinks Adnadjevic, Borivoj aut Enthalten in Polymer bulletin Springer-Verlag, 1978 58(2006), 1 vom: 19. Juni, Seite 243-252 (DE-627)129092916 (DE-600)6871-8 (DE-576)01442861X 0170-0839 nnns volume:58 year:2006 number:1 day:19 month:06 pages:243-252 https://doi.org/10.1007/s00289-006-0591-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2411 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4277 AR 58 2006 1 19 06 243-252 |
allfieldsGer |
10.1007/s00289-006-0591-6 doi (DE-627)OLC204262974X (DE-He213)s00289-006-0591-6-p DE-627 ger DE-627 rakwb eng 540 530 660 VZ BIODIV DE-30 fid Jovanovic, Jelena verfasserin aut Influence of poly(acrylic acid) xerogel structure on swelling kinetics in distilled water 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2006 Summary The basic structural properties of xerogels of crosslinked poly(acrylic acid) were defined and determined: xerogel density ($ ρ_{xg} $), xerogel volume fraction in the equilibrium-swollen state (v2), the number average molar mass between network crosslinks $(\bar{M}_{c})$, the crosslink density ($ ρ_{c} $) and the distance between macromolecular chains (d). A crosslinking ratio (X) increase leads to a linear increase in the values for $ ρ_{xg} $ and $ ρ_{c} $, while the values $\bar{M}_{c}$ and d decrease. The isothermal swelling kinetic curves of four samples of structurally different poly(acrylic acid) xerogels in bidistilled water at different temperatures ranging from 25 to 45 °C were determined. It is shown that isothermal kinetic swelling curves could not be described with the model of first-order reaction kinetics in entire. It was found that these curves could be described by the Johanson-Mampel-Avrami (JMA) equation. For all of the investigated xerogel samples, the initial swelling rate (vin), effective reaction rate constant (k) and equilibrium swelling degree increased with swelling temperature increase. Based on the determined values of the vin and k, the activation energy (Ea) and pre-exponential factor (lnA) were determined. It was concluded that the activation energy linearly increased with increasing distance between macromolecular chains (d) and molar mass between the network crosslinks $(\bar{M}_{c})$. The relationship between the activation energy changes with pre-exponential factor (compensation effect) caused by xerogel structural properties was established. Isothermal swelling kinetics could be completely described by the kinetics of phase transition of the xerogel transformation from glassy to rubbery state, i.e. with the JMA kinetic equation. Acrylic Acid Crosslink Density Bidistilled Water Macromolecular Chain Network Crosslinks Adnadjevic, Borivoj aut Enthalten in Polymer bulletin Springer-Verlag, 1978 58(2006), 1 vom: 19. Juni, Seite 243-252 (DE-627)129092916 (DE-600)6871-8 (DE-576)01442861X 0170-0839 nnns volume:58 year:2006 number:1 day:19 month:06 pages:243-252 https://doi.org/10.1007/s00289-006-0591-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2411 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4277 AR 58 2006 1 19 06 243-252 |
allfieldsSound |
10.1007/s00289-006-0591-6 doi (DE-627)OLC204262974X (DE-He213)s00289-006-0591-6-p DE-627 ger DE-627 rakwb eng 540 530 660 VZ BIODIV DE-30 fid Jovanovic, Jelena verfasserin aut Influence of poly(acrylic acid) xerogel structure on swelling kinetics in distilled water 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2006 Summary The basic structural properties of xerogels of crosslinked poly(acrylic acid) were defined and determined: xerogel density ($ ρ_{xg} $), xerogel volume fraction in the equilibrium-swollen state (v2), the number average molar mass between network crosslinks $(\bar{M}_{c})$, the crosslink density ($ ρ_{c} $) and the distance between macromolecular chains (d). A crosslinking ratio (X) increase leads to a linear increase in the values for $ ρ_{xg} $ and $ ρ_{c} $, while the values $\bar{M}_{c}$ and d decrease. The isothermal swelling kinetic curves of four samples of structurally different poly(acrylic acid) xerogels in bidistilled water at different temperatures ranging from 25 to 45 °C were determined. It is shown that isothermal kinetic swelling curves could not be described with the model of first-order reaction kinetics in entire. It was found that these curves could be described by the Johanson-Mampel-Avrami (JMA) equation. For all of the investigated xerogel samples, the initial swelling rate (vin), effective reaction rate constant (k) and equilibrium swelling degree increased with swelling temperature increase. Based on the determined values of the vin and k, the activation energy (Ea) and pre-exponential factor (lnA) were determined. It was concluded that the activation energy linearly increased with increasing distance between macromolecular chains (d) and molar mass between the network crosslinks $(\bar{M}_{c})$. The relationship between the activation energy changes with pre-exponential factor (compensation effect) caused by xerogel structural properties was established. Isothermal swelling kinetics could be completely described by the kinetics of phase transition of the xerogel transformation from glassy to rubbery state, i.e. with the JMA kinetic equation. Acrylic Acid Crosslink Density Bidistilled Water Macromolecular Chain Network Crosslinks Adnadjevic, Borivoj aut Enthalten in Polymer bulletin Springer-Verlag, 1978 58(2006), 1 vom: 19. Juni, Seite 243-252 (DE-627)129092916 (DE-600)6871-8 (DE-576)01442861X 0170-0839 nnns volume:58 year:2006 number:1 day:19 month:06 pages:243-252 https://doi.org/10.1007/s00289-006-0591-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2411 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4277 AR 58 2006 1 19 06 243-252 |
language |
English |
source |
Enthalten in Polymer bulletin 58(2006), 1 vom: 19. Juni, Seite 243-252 volume:58 year:2006 number:1 day:19 month:06 pages:243-252 |
sourceStr |
Enthalten in Polymer bulletin 58(2006), 1 vom: 19. Juni, Seite 243-252 volume:58 year:2006 number:1 day:19 month:06 pages:243-252 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Acrylic Acid Crosslink Density Bidistilled Water Macromolecular Chain Network Crosslinks |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Polymer bulletin |
authorswithroles_txt_mv |
Jovanovic, Jelena @@aut@@ Adnadjevic, Borivoj @@aut@@ |
publishDateDaySort_date |
2006-06-19T00:00:00Z |
hierarchy_top_id |
129092916 |
dewey-sort |
3540 |
id |
OLC204262974X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC204262974X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331083345.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2006 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00289-006-0591-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC204262974X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00289-006-0591-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">530</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jovanovic, Jelena</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Influence of poly(acrylic acid) xerogel structure on swelling kinetics in distilled water</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2006</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2006</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary The basic structural properties of xerogels of crosslinked poly(acrylic acid) were defined and determined: xerogel density ($ ρ_{xg} $), xerogel volume fraction in the equilibrium-swollen state (v2), the number average molar mass between network crosslinks $(\bar{M}_{c})$, the crosslink density ($ ρ_{c} $) and the distance between macromolecular chains (d). A crosslinking ratio (X) increase leads to a linear increase in the values for $ ρ_{xg} $ and $ ρ_{c} $, while the values $\bar{M}_{c}$ and d decrease. The isothermal swelling kinetic curves of four samples of structurally different poly(acrylic acid) xerogels in bidistilled water at different temperatures ranging from 25 to 45 °C were determined. It is shown that isothermal kinetic swelling curves could not be described with the model of first-order reaction kinetics in entire. It was found that these curves could be described by the Johanson-Mampel-Avrami (JMA) equation. For all of the investigated xerogel samples, the initial swelling rate (vin), effective reaction rate constant (k) and equilibrium swelling degree increased with swelling temperature increase. Based on the determined values of the vin and k, the activation energy (Ea) and pre-exponential factor (lnA) were determined. It was concluded that the activation energy linearly increased with increasing distance between macromolecular chains (d) and molar mass between the network crosslinks $(\bar{M}_{c})$. The relationship between the activation energy changes with pre-exponential factor (compensation effect) caused by xerogel structural properties was established. Isothermal swelling kinetics could be completely described by the kinetics of phase transition of the xerogel transformation from glassy to rubbery state, i.e. with the JMA kinetic equation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acrylic Acid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crosslink Density</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bidistilled Water</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Macromolecular Chain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Network Crosslinks</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adnadjevic, Borivoj</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Polymer bulletin</subfield><subfield code="d">Springer-Verlag, 1978</subfield><subfield code="g">58(2006), 1 vom: 19. Juni, Seite 243-252</subfield><subfield code="w">(DE-627)129092916</subfield><subfield code="w">(DE-600)6871-8</subfield><subfield code="w">(DE-576)01442861X</subfield><subfield code="x">0170-0839</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:58</subfield><subfield code="g">year:2006</subfield><subfield code="g">number:1</subfield><subfield code="g">day:19</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:243-252</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00289-006-0591-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2411</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">58</subfield><subfield code="j">2006</subfield><subfield code="e">1</subfield><subfield code="b">19</subfield><subfield code="c">06</subfield><subfield code="h">243-252</subfield></datafield></record></collection>
|
author |
Jovanovic, Jelena |
spellingShingle |
Jovanovic, Jelena ddc 540 fid BIODIV misc Acrylic Acid misc Crosslink Density misc Bidistilled Water misc Macromolecular Chain misc Network Crosslinks Influence of poly(acrylic acid) xerogel structure on swelling kinetics in distilled water |
authorStr |
Jovanovic, Jelena |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129092916 |
format |
Article |
dewey-ones |
540 - Chemistry & allied sciences 530 - Physics 660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0170-0839 |
topic_title |
540 530 660 VZ BIODIV DE-30 fid Influence of poly(acrylic acid) xerogel structure on swelling kinetics in distilled water Acrylic Acid Crosslink Density Bidistilled Water Macromolecular Chain Network Crosslinks |
topic |
ddc 540 fid BIODIV misc Acrylic Acid misc Crosslink Density misc Bidistilled Water misc Macromolecular Chain misc Network Crosslinks |
topic_unstemmed |
ddc 540 fid BIODIV misc Acrylic Acid misc Crosslink Density misc Bidistilled Water misc Macromolecular Chain misc Network Crosslinks |
topic_browse |
ddc 540 fid BIODIV misc Acrylic Acid misc Crosslink Density misc Bidistilled Water misc Macromolecular Chain misc Network Crosslinks |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Polymer bulletin |
hierarchy_parent_id |
129092916 |
dewey-tens |
540 - Chemistry 530 - Physics 660 - Chemical engineering |
hierarchy_top_title |
Polymer bulletin |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129092916 (DE-600)6871-8 (DE-576)01442861X |
title |
Influence of poly(acrylic acid) xerogel structure on swelling kinetics in distilled water |
ctrlnum |
(DE-627)OLC204262974X (DE-He213)s00289-006-0591-6-p |
title_full |
Influence of poly(acrylic acid) xerogel structure on swelling kinetics in distilled water |
author_sort |
Jovanovic, Jelena |
journal |
Polymer bulletin |
journalStr |
Polymer bulletin |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2006 |
contenttype_str_mv |
txt |
container_start_page |
243 |
author_browse |
Jovanovic, Jelena Adnadjevic, Borivoj |
container_volume |
58 |
class |
540 530 660 VZ BIODIV DE-30 fid |
format_se |
Aufsätze |
author-letter |
Jovanovic, Jelena |
doi_str_mv |
10.1007/s00289-006-0591-6 |
dewey-full |
540 530 660 |
title_sort |
influence of poly(acrylic acid) xerogel structure on swelling kinetics in distilled water |
title_auth |
Influence of poly(acrylic acid) xerogel structure on swelling kinetics in distilled water |
abstract |
Summary The basic structural properties of xerogels of crosslinked poly(acrylic acid) were defined and determined: xerogel density ($ ρ_{xg} $), xerogel volume fraction in the equilibrium-swollen state (v2), the number average molar mass between network crosslinks $(\bar{M}_{c})$, the crosslink density ($ ρ_{c} $) and the distance between macromolecular chains (d). A crosslinking ratio (X) increase leads to a linear increase in the values for $ ρ_{xg} $ and $ ρ_{c} $, while the values $\bar{M}_{c}$ and d decrease. The isothermal swelling kinetic curves of four samples of structurally different poly(acrylic acid) xerogels in bidistilled water at different temperatures ranging from 25 to 45 °C were determined. It is shown that isothermal kinetic swelling curves could not be described with the model of first-order reaction kinetics in entire. It was found that these curves could be described by the Johanson-Mampel-Avrami (JMA) equation. For all of the investigated xerogel samples, the initial swelling rate (vin), effective reaction rate constant (k) and equilibrium swelling degree increased with swelling temperature increase. Based on the determined values of the vin and k, the activation energy (Ea) and pre-exponential factor (lnA) were determined. It was concluded that the activation energy linearly increased with increasing distance between macromolecular chains (d) and molar mass between the network crosslinks $(\bar{M}_{c})$. The relationship between the activation energy changes with pre-exponential factor (compensation effect) caused by xerogel structural properties was established. Isothermal swelling kinetics could be completely described by the kinetics of phase transition of the xerogel transformation from glassy to rubbery state, i.e. with the JMA kinetic equation. © Springer-Verlag 2006 |
abstractGer |
Summary The basic structural properties of xerogels of crosslinked poly(acrylic acid) were defined and determined: xerogel density ($ ρ_{xg} $), xerogel volume fraction in the equilibrium-swollen state (v2), the number average molar mass between network crosslinks $(\bar{M}_{c})$, the crosslink density ($ ρ_{c} $) and the distance between macromolecular chains (d). A crosslinking ratio (X) increase leads to a linear increase in the values for $ ρ_{xg} $ and $ ρ_{c} $, while the values $\bar{M}_{c}$ and d decrease. The isothermal swelling kinetic curves of four samples of structurally different poly(acrylic acid) xerogels in bidistilled water at different temperatures ranging from 25 to 45 °C were determined. It is shown that isothermal kinetic swelling curves could not be described with the model of first-order reaction kinetics in entire. It was found that these curves could be described by the Johanson-Mampel-Avrami (JMA) equation. For all of the investigated xerogel samples, the initial swelling rate (vin), effective reaction rate constant (k) and equilibrium swelling degree increased with swelling temperature increase. Based on the determined values of the vin and k, the activation energy (Ea) and pre-exponential factor (lnA) were determined. It was concluded that the activation energy linearly increased with increasing distance between macromolecular chains (d) and molar mass between the network crosslinks $(\bar{M}_{c})$. The relationship between the activation energy changes with pre-exponential factor (compensation effect) caused by xerogel structural properties was established. Isothermal swelling kinetics could be completely described by the kinetics of phase transition of the xerogel transformation from glassy to rubbery state, i.e. with the JMA kinetic equation. © Springer-Verlag 2006 |
abstract_unstemmed |
Summary The basic structural properties of xerogels of crosslinked poly(acrylic acid) were defined and determined: xerogel density ($ ρ_{xg} $), xerogel volume fraction in the equilibrium-swollen state (v2), the number average molar mass between network crosslinks $(\bar{M}_{c})$, the crosslink density ($ ρ_{c} $) and the distance between macromolecular chains (d). A crosslinking ratio (X) increase leads to a linear increase in the values for $ ρ_{xg} $ and $ ρ_{c} $, while the values $\bar{M}_{c}$ and d decrease. The isothermal swelling kinetic curves of four samples of structurally different poly(acrylic acid) xerogels in bidistilled water at different temperatures ranging from 25 to 45 °C were determined. It is shown that isothermal kinetic swelling curves could not be described with the model of first-order reaction kinetics in entire. It was found that these curves could be described by the Johanson-Mampel-Avrami (JMA) equation. For all of the investigated xerogel samples, the initial swelling rate (vin), effective reaction rate constant (k) and equilibrium swelling degree increased with swelling temperature increase. Based on the determined values of the vin and k, the activation energy (Ea) and pre-exponential factor (lnA) were determined. It was concluded that the activation energy linearly increased with increasing distance between macromolecular chains (d) and molar mass between the network crosslinks $(\bar{M}_{c})$. The relationship between the activation energy changes with pre-exponential factor (compensation effect) caused by xerogel structural properties was established. Isothermal swelling kinetics could be completely described by the kinetics of phase transition of the xerogel transformation from glassy to rubbery state, i.e. with the JMA kinetic equation. © Springer-Verlag 2006 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2411 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4277 |
container_issue |
1 |
title_short |
Influence of poly(acrylic acid) xerogel structure on swelling kinetics in distilled water |
url |
https://doi.org/10.1007/s00289-006-0591-6 |
remote_bool |
false |
author2 |
Adnadjevic, Borivoj |
author2Str |
Adnadjevic, Borivoj |
ppnlink |
129092916 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00289-006-0591-6 |
up_date |
2024-07-03T16:02:01.808Z |
_version_ |
1803574335828393984 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC204262974X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331083345.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2006 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00289-006-0591-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC204262974X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00289-006-0591-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">530</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jovanovic, Jelena</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Influence of poly(acrylic acid) xerogel structure on swelling kinetics in distilled water</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2006</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2006</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary The basic structural properties of xerogels of crosslinked poly(acrylic acid) were defined and determined: xerogel density ($ ρ_{xg} $), xerogel volume fraction in the equilibrium-swollen state (v2), the number average molar mass between network crosslinks $(\bar{M}_{c})$, the crosslink density ($ ρ_{c} $) and the distance between macromolecular chains (d). A crosslinking ratio (X) increase leads to a linear increase in the values for $ ρ_{xg} $ and $ ρ_{c} $, while the values $\bar{M}_{c}$ and d decrease. The isothermal swelling kinetic curves of four samples of structurally different poly(acrylic acid) xerogels in bidistilled water at different temperatures ranging from 25 to 45 °C were determined. It is shown that isothermal kinetic swelling curves could not be described with the model of first-order reaction kinetics in entire. It was found that these curves could be described by the Johanson-Mampel-Avrami (JMA) equation. For all of the investigated xerogel samples, the initial swelling rate (vin), effective reaction rate constant (k) and equilibrium swelling degree increased with swelling temperature increase. Based on the determined values of the vin and k, the activation energy (Ea) and pre-exponential factor (lnA) were determined. It was concluded that the activation energy linearly increased with increasing distance between macromolecular chains (d) and molar mass between the network crosslinks $(\bar{M}_{c})$. The relationship between the activation energy changes with pre-exponential factor (compensation effect) caused by xerogel structural properties was established. Isothermal swelling kinetics could be completely described by the kinetics of phase transition of the xerogel transformation from glassy to rubbery state, i.e. with the JMA kinetic equation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acrylic Acid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crosslink Density</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bidistilled Water</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Macromolecular Chain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Network Crosslinks</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adnadjevic, Borivoj</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Polymer bulletin</subfield><subfield code="d">Springer-Verlag, 1978</subfield><subfield code="g">58(2006), 1 vom: 19. Juni, Seite 243-252</subfield><subfield code="w">(DE-627)129092916</subfield><subfield code="w">(DE-600)6871-8</subfield><subfield code="w">(DE-576)01442861X</subfield><subfield code="x">0170-0839</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:58</subfield><subfield code="g">year:2006</subfield><subfield code="g">number:1</subfield><subfield code="g">day:19</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:243-252</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00289-006-0591-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2411</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">58</subfield><subfield code="j">2006</subfield><subfield code="e">1</subfield><subfield code="b">19</subfield><subfield code="c">06</subfield><subfield code="h">243-252</subfield></datafield></record></collection>
|
score |
7.399868 |