Fuel cell performance of polymer electrolyte membrane based on hexafluorinated sulfonated poly(ether sulfone)
Abstract The potential-current fuel cell characteristics of membrane electrode assemblies (MEAs) using hexafluorinated sulfonated poly(ether sulfone) copolymer are compared to those of $ Nafion^{®} $ based MEAs in the case of proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (...
Ausführliche Beschreibung
Autor*in: |
Krishnan, N. Nambi [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2008 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag 2008 |
---|
Übergeordnetes Werk: |
Enthalten in: Polymer bulletin - Springer-Verlag, 1978, 62(2008), 4 vom: 24. Dez., Seite 457-468 |
---|---|
Übergeordnetes Werk: |
volume:62 ; year:2008 ; number:4 ; day:24 ; month:12 ; pages:457-468 |
Links: |
---|
DOI / URN: |
10.1007/s00289-008-0022-y |
---|
Katalog-ID: |
OLC2042633496 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2042633496 | ||
003 | DE-627 | ||
005 | 20230331083656.0 | ||
007 | tu | ||
008 | 200819s2008 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00289-008-0022-y |2 doi | |
035 | |a (DE-627)OLC2042633496 | ||
035 | |a (DE-He213)s00289-008-0022-y-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |a 530 |a 660 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
100 | 1 | |a Krishnan, N. Nambi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Fuel cell performance of polymer electrolyte membrane based on hexafluorinated sulfonated poly(ether sulfone) |
264 | 1 | |c 2008 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2008 | ||
520 | |a Abstract The potential-current fuel cell characteristics of membrane electrode assemblies (MEAs) using hexafluorinated sulfonated poly(ether sulfone) copolymer are compared to those of $ Nafion^{®} $ based MEAs in the case of proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC). The hexafluorinated copolymer with 60 mol% of monosulfonated comonomer based acid form membrane is chosen for this study due to its high proton conductivity, high thermal stability, low methanol permeability, and its insolubility in boiling water. The catalyst powder is directly coated on the membrane and the catalyst coated membrane is used to fabricate MEAs for both fuel cells. A current density of 530 mA $ cm^{−2} $ at 0.6 V is obtained at 70 °C with $ H_{2} $/air as the fuel and oxidant. The peak power density of 110 mW $ cm^{−2} $ is obtained at 80 °C under specific DMFC operating conditions. Other electrochemical characteristics such as electrochemical impedance spectroscopy, cyclic voltammetry, and linear sweep voltammetry are also studied. | ||
650 | 4 | |a Membrane electrode assembly | |
650 | 4 | |a Electrolyte membrane | |
650 | 4 | |a Polymer electrolyte fuel cell | |
700 | 1 | |a Kim, Hyoung-Juhn |4 aut | |
700 | 1 | |a Jang, Jong Hyun |4 aut | |
700 | 1 | |a Cho, EunAe |4 aut | |
700 | 1 | |a Lee, Sang-Yeop |4 aut | |
700 | 1 | |a Lim, Tae-Hoon |4 aut | |
700 | 1 | |a Hong, Seong Ahn |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Polymer bulletin |d Springer-Verlag, 1978 |g 62(2008), 4 vom: 24. Dez., Seite 457-468 |w (DE-627)129092916 |w (DE-600)6871-8 |w (DE-576)01442861X |x 0170-0839 |7 nnns |
773 | 1 | 8 | |g volume:62 |g year:2008 |g number:4 |g day:24 |g month:12 |g pages:457-468 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00289-008-0022-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2411 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 62 |j 2008 |e 4 |b 24 |c 12 |h 457-468 |
author_variant |
n n k nn nnk h j k hjk j h j jh jhj e c ec s y l syl t h l thl s a h sa sah |
---|---|
matchkey_str |
article:01700839:2008----::ulelefracoplmrlcrltmmrnbsdnealoiae |
hierarchy_sort_str |
2008 |
publishDate |
2008 |
allfields |
10.1007/s00289-008-0022-y doi (DE-627)OLC2042633496 (DE-He213)s00289-008-0022-y-p DE-627 ger DE-627 rakwb eng 540 530 660 VZ BIODIV DE-30 fid Krishnan, N. Nambi verfasserin aut Fuel cell performance of polymer electrolyte membrane based on hexafluorinated sulfonated poly(ether sulfone) 2008 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2008 Abstract The potential-current fuel cell characteristics of membrane electrode assemblies (MEAs) using hexafluorinated sulfonated poly(ether sulfone) copolymer are compared to those of $ Nafion^{®} $ based MEAs in the case of proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC). The hexafluorinated copolymer with 60 mol% of monosulfonated comonomer based acid form membrane is chosen for this study due to its high proton conductivity, high thermal stability, low methanol permeability, and its insolubility in boiling water. The catalyst powder is directly coated on the membrane and the catalyst coated membrane is used to fabricate MEAs for both fuel cells. A current density of 530 mA $ cm^{−2} $ at 0.6 V is obtained at 70 °C with $ H_{2} $/air as the fuel and oxidant. The peak power density of 110 mW $ cm^{−2} $ is obtained at 80 °C under specific DMFC operating conditions. Other electrochemical characteristics such as electrochemical impedance spectroscopy, cyclic voltammetry, and linear sweep voltammetry are also studied. Membrane electrode assembly Electrolyte membrane Polymer electrolyte fuel cell Kim, Hyoung-Juhn aut Jang, Jong Hyun aut Cho, EunAe aut Lee, Sang-Yeop aut Lim, Tae-Hoon aut Hong, Seong Ahn aut Enthalten in Polymer bulletin Springer-Verlag, 1978 62(2008), 4 vom: 24. Dez., Seite 457-468 (DE-627)129092916 (DE-600)6871-8 (DE-576)01442861X 0170-0839 nnns volume:62 year:2008 number:4 day:24 month:12 pages:457-468 https://doi.org/10.1007/s00289-008-0022-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2411 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4277 AR 62 2008 4 24 12 457-468 |
spelling |
10.1007/s00289-008-0022-y doi (DE-627)OLC2042633496 (DE-He213)s00289-008-0022-y-p DE-627 ger DE-627 rakwb eng 540 530 660 VZ BIODIV DE-30 fid Krishnan, N. Nambi verfasserin aut Fuel cell performance of polymer electrolyte membrane based on hexafluorinated sulfonated poly(ether sulfone) 2008 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2008 Abstract The potential-current fuel cell characteristics of membrane electrode assemblies (MEAs) using hexafluorinated sulfonated poly(ether sulfone) copolymer are compared to those of $ Nafion^{®} $ based MEAs in the case of proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC). The hexafluorinated copolymer with 60 mol% of monosulfonated comonomer based acid form membrane is chosen for this study due to its high proton conductivity, high thermal stability, low methanol permeability, and its insolubility in boiling water. The catalyst powder is directly coated on the membrane and the catalyst coated membrane is used to fabricate MEAs for both fuel cells. A current density of 530 mA $ cm^{−2} $ at 0.6 V is obtained at 70 °C with $ H_{2} $/air as the fuel and oxidant. The peak power density of 110 mW $ cm^{−2} $ is obtained at 80 °C under specific DMFC operating conditions. Other electrochemical characteristics such as electrochemical impedance spectroscopy, cyclic voltammetry, and linear sweep voltammetry are also studied. Membrane electrode assembly Electrolyte membrane Polymer electrolyte fuel cell Kim, Hyoung-Juhn aut Jang, Jong Hyun aut Cho, EunAe aut Lee, Sang-Yeop aut Lim, Tae-Hoon aut Hong, Seong Ahn aut Enthalten in Polymer bulletin Springer-Verlag, 1978 62(2008), 4 vom: 24. Dez., Seite 457-468 (DE-627)129092916 (DE-600)6871-8 (DE-576)01442861X 0170-0839 nnns volume:62 year:2008 number:4 day:24 month:12 pages:457-468 https://doi.org/10.1007/s00289-008-0022-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2411 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4277 AR 62 2008 4 24 12 457-468 |
allfields_unstemmed |
10.1007/s00289-008-0022-y doi (DE-627)OLC2042633496 (DE-He213)s00289-008-0022-y-p DE-627 ger DE-627 rakwb eng 540 530 660 VZ BIODIV DE-30 fid Krishnan, N. Nambi verfasserin aut Fuel cell performance of polymer electrolyte membrane based on hexafluorinated sulfonated poly(ether sulfone) 2008 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2008 Abstract The potential-current fuel cell characteristics of membrane electrode assemblies (MEAs) using hexafluorinated sulfonated poly(ether sulfone) copolymer are compared to those of $ Nafion^{®} $ based MEAs in the case of proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC). The hexafluorinated copolymer with 60 mol% of monosulfonated comonomer based acid form membrane is chosen for this study due to its high proton conductivity, high thermal stability, low methanol permeability, and its insolubility in boiling water. The catalyst powder is directly coated on the membrane and the catalyst coated membrane is used to fabricate MEAs for both fuel cells. A current density of 530 mA $ cm^{−2} $ at 0.6 V is obtained at 70 °C with $ H_{2} $/air as the fuel and oxidant. The peak power density of 110 mW $ cm^{−2} $ is obtained at 80 °C under specific DMFC operating conditions. Other electrochemical characteristics such as electrochemical impedance spectroscopy, cyclic voltammetry, and linear sweep voltammetry are also studied. Membrane electrode assembly Electrolyte membrane Polymer electrolyte fuel cell Kim, Hyoung-Juhn aut Jang, Jong Hyun aut Cho, EunAe aut Lee, Sang-Yeop aut Lim, Tae-Hoon aut Hong, Seong Ahn aut Enthalten in Polymer bulletin Springer-Verlag, 1978 62(2008), 4 vom: 24. Dez., Seite 457-468 (DE-627)129092916 (DE-600)6871-8 (DE-576)01442861X 0170-0839 nnns volume:62 year:2008 number:4 day:24 month:12 pages:457-468 https://doi.org/10.1007/s00289-008-0022-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2411 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4277 AR 62 2008 4 24 12 457-468 |
allfieldsGer |
10.1007/s00289-008-0022-y doi (DE-627)OLC2042633496 (DE-He213)s00289-008-0022-y-p DE-627 ger DE-627 rakwb eng 540 530 660 VZ BIODIV DE-30 fid Krishnan, N. Nambi verfasserin aut Fuel cell performance of polymer electrolyte membrane based on hexafluorinated sulfonated poly(ether sulfone) 2008 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2008 Abstract The potential-current fuel cell characteristics of membrane electrode assemblies (MEAs) using hexafluorinated sulfonated poly(ether sulfone) copolymer are compared to those of $ Nafion^{®} $ based MEAs in the case of proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC). The hexafluorinated copolymer with 60 mol% of monosulfonated comonomer based acid form membrane is chosen for this study due to its high proton conductivity, high thermal stability, low methanol permeability, and its insolubility in boiling water. The catalyst powder is directly coated on the membrane and the catalyst coated membrane is used to fabricate MEAs for both fuel cells. A current density of 530 mA $ cm^{−2} $ at 0.6 V is obtained at 70 °C with $ H_{2} $/air as the fuel and oxidant. The peak power density of 110 mW $ cm^{−2} $ is obtained at 80 °C under specific DMFC operating conditions. Other electrochemical characteristics such as electrochemical impedance spectroscopy, cyclic voltammetry, and linear sweep voltammetry are also studied. Membrane electrode assembly Electrolyte membrane Polymer electrolyte fuel cell Kim, Hyoung-Juhn aut Jang, Jong Hyun aut Cho, EunAe aut Lee, Sang-Yeop aut Lim, Tae-Hoon aut Hong, Seong Ahn aut Enthalten in Polymer bulletin Springer-Verlag, 1978 62(2008), 4 vom: 24. Dez., Seite 457-468 (DE-627)129092916 (DE-600)6871-8 (DE-576)01442861X 0170-0839 nnns volume:62 year:2008 number:4 day:24 month:12 pages:457-468 https://doi.org/10.1007/s00289-008-0022-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2411 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4277 AR 62 2008 4 24 12 457-468 |
allfieldsSound |
10.1007/s00289-008-0022-y doi (DE-627)OLC2042633496 (DE-He213)s00289-008-0022-y-p DE-627 ger DE-627 rakwb eng 540 530 660 VZ BIODIV DE-30 fid Krishnan, N. Nambi verfasserin aut Fuel cell performance of polymer electrolyte membrane based on hexafluorinated sulfonated poly(ether sulfone) 2008 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2008 Abstract The potential-current fuel cell characteristics of membrane electrode assemblies (MEAs) using hexafluorinated sulfonated poly(ether sulfone) copolymer are compared to those of $ Nafion^{®} $ based MEAs in the case of proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC). The hexafluorinated copolymer with 60 mol% of monosulfonated comonomer based acid form membrane is chosen for this study due to its high proton conductivity, high thermal stability, low methanol permeability, and its insolubility in boiling water. The catalyst powder is directly coated on the membrane and the catalyst coated membrane is used to fabricate MEAs for both fuel cells. A current density of 530 mA $ cm^{−2} $ at 0.6 V is obtained at 70 °C with $ H_{2} $/air as the fuel and oxidant. The peak power density of 110 mW $ cm^{−2} $ is obtained at 80 °C under specific DMFC operating conditions. Other electrochemical characteristics such as electrochemical impedance spectroscopy, cyclic voltammetry, and linear sweep voltammetry are also studied. Membrane electrode assembly Electrolyte membrane Polymer electrolyte fuel cell Kim, Hyoung-Juhn aut Jang, Jong Hyun aut Cho, EunAe aut Lee, Sang-Yeop aut Lim, Tae-Hoon aut Hong, Seong Ahn aut Enthalten in Polymer bulletin Springer-Verlag, 1978 62(2008), 4 vom: 24. Dez., Seite 457-468 (DE-627)129092916 (DE-600)6871-8 (DE-576)01442861X 0170-0839 nnns volume:62 year:2008 number:4 day:24 month:12 pages:457-468 https://doi.org/10.1007/s00289-008-0022-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2411 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4277 AR 62 2008 4 24 12 457-468 |
language |
English |
source |
Enthalten in Polymer bulletin 62(2008), 4 vom: 24. Dez., Seite 457-468 volume:62 year:2008 number:4 day:24 month:12 pages:457-468 |
sourceStr |
Enthalten in Polymer bulletin 62(2008), 4 vom: 24. Dez., Seite 457-468 volume:62 year:2008 number:4 day:24 month:12 pages:457-468 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Membrane electrode assembly Electrolyte membrane Polymer electrolyte fuel cell |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Polymer bulletin |
authorswithroles_txt_mv |
Krishnan, N. Nambi @@aut@@ Kim, Hyoung-Juhn @@aut@@ Jang, Jong Hyun @@aut@@ Cho, EunAe @@aut@@ Lee, Sang-Yeop @@aut@@ Lim, Tae-Hoon @@aut@@ Hong, Seong Ahn @@aut@@ |
publishDateDaySort_date |
2008-12-24T00:00:00Z |
hierarchy_top_id |
129092916 |
dewey-sort |
3540 |
id |
OLC2042633496 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2042633496</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331083656.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2008 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00289-008-0022-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2042633496</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00289-008-0022-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">530</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krishnan, N. Nambi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fuel cell performance of polymer electrolyte membrane based on hexafluorinated sulfonated poly(ether sulfone)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2008</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2008</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The potential-current fuel cell characteristics of membrane electrode assemblies (MEAs) using hexafluorinated sulfonated poly(ether sulfone) copolymer are compared to those of $ Nafion^{®} $ based MEAs in the case of proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC). The hexafluorinated copolymer with 60 mol% of monosulfonated comonomer based acid form membrane is chosen for this study due to its high proton conductivity, high thermal stability, low methanol permeability, and its insolubility in boiling water. The catalyst powder is directly coated on the membrane and the catalyst coated membrane is used to fabricate MEAs for both fuel cells. A current density of 530 mA $ cm^{−2} $ at 0.6 V is obtained at 70 °C with $ H_{2} $/air as the fuel and oxidant. The peak power density of 110 mW $ cm^{−2} $ is obtained at 80 °C under specific DMFC operating conditions. Other electrochemical characteristics such as electrochemical impedance spectroscopy, cyclic voltammetry, and linear sweep voltammetry are also studied.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Membrane electrode assembly</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrolyte membrane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polymer electrolyte fuel cell</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Hyoung-Juhn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jang, Jong Hyun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cho, EunAe</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Sang-Yeop</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lim, Tae-Hoon</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hong, Seong Ahn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Polymer bulletin</subfield><subfield code="d">Springer-Verlag, 1978</subfield><subfield code="g">62(2008), 4 vom: 24. Dez., Seite 457-468</subfield><subfield code="w">(DE-627)129092916</subfield><subfield code="w">(DE-600)6871-8</subfield><subfield code="w">(DE-576)01442861X</subfield><subfield code="x">0170-0839</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:62</subfield><subfield code="g">year:2008</subfield><subfield code="g">number:4</subfield><subfield code="g">day:24</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:457-468</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00289-008-0022-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2411</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">62</subfield><subfield code="j">2008</subfield><subfield code="e">4</subfield><subfield code="b">24</subfield><subfield code="c">12</subfield><subfield code="h">457-468</subfield></datafield></record></collection>
|
author |
Krishnan, N. Nambi |
spellingShingle |
Krishnan, N. Nambi ddc 540 fid BIODIV misc Membrane electrode assembly misc Electrolyte membrane misc Polymer electrolyte fuel cell Fuel cell performance of polymer electrolyte membrane based on hexafluorinated sulfonated poly(ether sulfone) |
authorStr |
Krishnan, N. Nambi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129092916 |
format |
Article |
dewey-ones |
540 - Chemistry & allied sciences 530 - Physics 660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0170-0839 |
topic_title |
540 530 660 VZ BIODIV DE-30 fid Fuel cell performance of polymer electrolyte membrane based on hexafluorinated sulfonated poly(ether sulfone) Membrane electrode assembly Electrolyte membrane Polymer electrolyte fuel cell |
topic |
ddc 540 fid BIODIV misc Membrane electrode assembly misc Electrolyte membrane misc Polymer electrolyte fuel cell |
topic_unstemmed |
ddc 540 fid BIODIV misc Membrane electrode assembly misc Electrolyte membrane misc Polymer electrolyte fuel cell |
topic_browse |
ddc 540 fid BIODIV misc Membrane electrode assembly misc Electrolyte membrane misc Polymer electrolyte fuel cell |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Polymer bulletin |
hierarchy_parent_id |
129092916 |
dewey-tens |
540 - Chemistry 530 - Physics 660 - Chemical engineering |
hierarchy_top_title |
Polymer bulletin |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129092916 (DE-600)6871-8 (DE-576)01442861X |
title |
Fuel cell performance of polymer electrolyte membrane based on hexafluorinated sulfonated poly(ether sulfone) |
ctrlnum |
(DE-627)OLC2042633496 (DE-He213)s00289-008-0022-y-p |
title_full |
Fuel cell performance of polymer electrolyte membrane based on hexafluorinated sulfonated poly(ether sulfone) |
author_sort |
Krishnan, N. Nambi |
journal |
Polymer bulletin |
journalStr |
Polymer bulletin |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2008 |
contenttype_str_mv |
txt |
container_start_page |
457 |
author_browse |
Krishnan, N. Nambi Kim, Hyoung-Juhn Jang, Jong Hyun Cho, EunAe Lee, Sang-Yeop Lim, Tae-Hoon Hong, Seong Ahn |
container_volume |
62 |
class |
540 530 660 VZ BIODIV DE-30 fid |
format_se |
Aufsätze |
author-letter |
Krishnan, N. Nambi |
doi_str_mv |
10.1007/s00289-008-0022-y |
dewey-full |
540 530 660 |
title_sort |
fuel cell performance of polymer electrolyte membrane based on hexafluorinated sulfonated poly(ether sulfone) |
title_auth |
Fuel cell performance of polymer electrolyte membrane based on hexafluorinated sulfonated poly(ether sulfone) |
abstract |
Abstract The potential-current fuel cell characteristics of membrane electrode assemblies (MEAs) using hexafluorinated sulfonated poly(ether sulfone) copolymer are compared to those of $ Nafion^{®} $ based MEAs in the case of proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC). The hexafluorinated copolymer with 60 mol% of monosulfonated comonomer based acid form membrane is chosen for this study due to its high proton conductivity, high thermal stability, low methanol permeability, and its insolubility in boiling water. The catalyst powder is directly coated on the membrane and the catalyst coated membrane is used to fabricate MEAs for both fuel cells. A current density of 530 mA $ cm^{−2} $ at 0.6 V is obtained at 70 °C with $ H_{2} $/air as the fuel and oxidant. The peak power density of 110 mW $ cm^{−2} $ is obtained at 80 °C under specific DMFC operating conditions. Other electrochemical characteristics such as electrochemical impedance spectroscopy, cyclic voltammetry, and linear sweep voltammetry are also studied. © Springer-Verlag 2008 |
abstractGer |
Abstract The potential-current fuel cell characteristics of membrane electrode assemblies (MEAs) using hexafluorinated sulfonated poly(ether sulfone) copolymer are compared to those of $ Nafion^{®} $ based MEAs in the case of proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC). The hexafluorinated copolymer with 60 mol% of monosulfonated comonomer based acid form membrane is chosen for this study due to its high proton conductivity, high thermal stability, low methanol permeability, and its insolubility in boiling water. The catalyst powder is directly coated on the membrane and the catalyst coated membrane is used to fabricate MEAs for both fuel cells. A current density of 530 mA $ cm^{−2} $ at 0.6 V is obtained at 70 °C with $ H_{2} $/air as the fuel and oxidant. The peak power density of 110 mW $ cm^{−2} $ is obtained at 80 °C under specific DMFC operating conditions. Other electrochemical characteristics such as electrochemical impedance spectroscopy, cyclic voltammetry, and linear sweep voltammetry are also studied. © Springer-Verlag 2008 |
abstract_unstemmed |
Abstract The potential-current fuel cell characteristics of membrane electrode assemblies (MEAs) using hexafluorinated sulfonated poly(ether sulfone) copolymer are compared to those of $ Nafion^{®} $ based MEAs in the case of proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC). The hexafluorinated copolymer with 60 mol% of monosulfonated comonomer based acid form membrane is chosen for this study due to its high proton conductivity, high thermal stability, low methanol permeability, and its insolubility in boiling water. The catalyst powder is directly coated on the membrane and the catalyst coated membrane is used to fabricate MEAs for both fuel cells. A current density of 530 mA $ cm^{−2} $ at 0.6 V is obtained at 70 °C with $ H_{2} $/air as the fuel and oxidant. The peak power density of 110 mW $ cm^{−2} $ is obtained at 80 °C under specific DMFC operating conditions. Other electrochemical characteristics such as electrochemical impedance spectroscopy, cyclic voltammetry, and linear sweep voltammetry are also studied. © Springer-Verlag 2008 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_40 GBV_ILN_70 GBV_ILN_285 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2018 GBV_ILN_2411 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4277 |
container_issue |
4 |
title_short |
Fuel cell performance of polymer electrolyte membrane based on hexafluorinated sulfonated poly(ether sulfone) |
url |
https://doi.org/10.1007/s00289-008-0022-y |
remote_bool |
false |
author2 |
Kim, Hyoung-Juhn Jang, Jong Hyun Cho, EunAe Lee, Sang-Yeop Lim, Tae-Hoon Hong, Seong Ahn |
author2Str |
Kim, Hyoung-Juhn Jang, Jong Hyun Cho, EunAe Lee, Sang-Yeop Lim, Tae-Hoon Hong, Seong Ahn |
ppnlink |
129092916 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00289-008-0022-y |
up_date |
2024-07-03T16:02:59.398Z |
_version_ |
1803574396213788672 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2042633496</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331083656.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2008 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00289-008-0022-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2042633496</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00289-008-0022-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">530</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krishnan, N. Nambi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fuel cell performance of polymer electrolyte membrane based on hexafluorinated sulfonated poly(ether sulfone)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2008</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2008</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The potential-current fuel cell characteristics of membrane electrode assemblies (MEAs) using hexafluorinated sulfonated poly(ether sulfone) copolymer are compared to those of $ Nafion^{®} $ based MEAs in the case of proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC). The hexafluorinated copolymer with 60 mol% of monosulfonated comonomer based acid form membrane is chosen for this study due to its high proton conductivity, high thermal stability, low methanol permeability, and its insolubility in boiling water. The catalyst powder is directly coated on the membrane and the catalyst coated membrane is used to fabricate MEAs for both fuel cells. A current density of 530 mA $ cm^{−2} $ at 0.6 V is obtained at 70 °C with $ H_{2} $/air as the fuel and oxidant. The peak power density of 110 mW $ cm^{−2} $ is obtained at 80 °C under specific DMFC operating conditions. Other electrochemical characteristics such as electrochemical impedance spectroscopy, cyclic voltammetry, and linear sweep voltammetry are also studied.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Membrane electrode assembly</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrolyte membrane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polymer electrolyte fuel cell</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Hyoung-Juhn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jang, Jong Hyun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cho, EunAe</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Sang-Yeop</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lim, Tae-Hoon</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hong, Seong Ahn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Polymer bulletin</subfield><subfield code="d">Springer-Verlag, 1978</subfield><subfield code="g">62(2008), 4 vom: 24. Dez., Seite 457-468</subfield><subfield code="w">(DE-627)129092916</subfield><subfield code="w">(DE-600)6871-8</subfield><subfield code="w">(DE-576)01442861X</subfield><subfield code="x">0170-0839</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:62</subfield><subfield code="g">year:2008</subfield><subfield code="g">number:4</subfield><subfield code="g">day:24</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:457-468</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00289-008-0022-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2411</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">62</subfield><subfield code="j">2008</subfield><subfield code="e">4</subfield><subfield code="b">24</subfield><subfield code="c">12</subfield><subfield code="h">457-468</subfield></datafield></record></collection>
|
score |
7.400687 |