Stability and local bifurcation of parameter-excited vibration of pipes conveying pulsating fluid under thermal loading
Abstract The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been studied. The stability and the local bifurcations of the lateral parametri...
Ausführliche Beschreibung
Autor*in: |
Zhao, Demin [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Shanghai University and Springer-Verlag Berlin Heidelberg 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Ying yong shu xue he li xue / English edition - Shanghai University, 1980, 36(2015), 8 vom: Aug., Seite 1017-1032 |
---|---|
Übergeordnetes Werk: |
volume:36 ; year:2015 ; number:8 ; month:08 ; pages:1017-1032 |
Links: |
---|
DOI / URN: |
10.1007/s10483-015-1960-7 |
---|
Katalog-ID: |
OLC2042874752 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2042874752 | ||
003 | DE-627 | ||
005 | 20230502204329.0 | ||
007 | tu | ||
008 | 200820s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10483-015-1960-7 |2 doi | |
035 | |a (DE-627)OLC2042874752 | ||
035 | |a (DE-He213)s10483-015-1960-7-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
100 | 1 | |a Zhao, Demin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Stability and local bifurcation of parameter-excited vibration of pipes conveying pulsating fluid under thermal loading |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Shanghai University and Springer-Verlag Berlin Heidelberg 2015 | ||
520 | |a Abstract The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been studied. The stability and the local bifurcations of the lateral parametric resonance of the pipe induced by the pulsating fluid velocity and the thermal loading are studied. A mathematical model for a simply supported pipe is developed according to the Hamilton principle. Two partial differential equations describing the lateral and longitudinal vibration are obtained. The singularity theory is utilized to analyze the stability and the bifurcation of the system solutions. The transition sets and the bifurcation diagrams are obtained both in the unfolding parameter space and the physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The frequency response and the relationship between the critical thermal rate and the pulsating fluid velocity are obtained. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and the stability and local bifurcation analyses. It also confirms the existence of the chaos. The presented work can provide valuable information for the design of the pipeline and the controllers to prevent the structural instability. | ||
650 | 4 | |a thermal load | |
650 | 4 | |a parameter excited | |
650 | 4 | |a local bifurcation | |
650 | 4 | |a unfolding parameter space | |
650 | 4 | |a physical parameter space | |
700 | 1 | |a Liu, Jianlin |4 aut | |
700 | 1 | |a Wu, C. Q. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Ying yong shu xue he li xue / English edition |d Shanghai University, 1980 |g 36(2015), 8 vom: Aug., Seite 1017-1032 |w (DE-627)130523747 |w (DE-600)770632-7 |w (DE-576)016095987 |x 0253-4827 |7 nnns |
773 | 1 | 8 | |g volume:36 |g year:2015 |g number:8 |g month:08 |g pages:1017-1032 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10483-015-1960-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 36 |j 2015 |e 8 |c 08 |h 1017-1032 |
author_variant |
d z dz j l jl c q w cq cqw |
---|---|
matchkey_str |
article:02534827:2015----::tbltadoabfrainfaaeeectdirtooppsovynplai |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s10483-015-1960-7 doi (DE-627)OLC2042874752 (DE-He213)s10483-015-1960-7-p DE-627 ger DE-627 rakwb eng 510 VZ Zhao, Demin verfasserin aut Stability and local bifurcation of parameter-excited vibration of pipes conveying pulsating fluid under thermal loading 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Shanghai University and Springer-Verlag Berlin Heidelberg 2015 Abstract The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been studied. The stability and the local bifurcations of the lateral parametric resonance of the pipe induced by the pulsating fluid velocity and the thermal loading are studied. A mathematical model for a simply supported pipe is developed according to the Hamilton principle. Two partial differential equations describing the lateral and longitudinal vibration are obtained. The singularity theory is utilized to analyze the stability and the bifurcation of the system solutions. The transition sets and the bifurcation diagrams are obtained both in the unfolding parameter space and the physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The frequency response and the relationship between the critical thermal rate and the pulsating fluid velocity are obtained. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and the stability and local bifurcation analyses. It also confirms the existence of the chaos. The presented work can provide valuable information for the design of the pipeline and the controllers to prevent the structural instability. thermal load parameter excited local bifurcation unfolding parameter space physical parameter space Liu, Jianlin aut Wu, C. Q. aut Enthalten in Ying yong shu xue he li xue / English edition Shanghai University, 1980 36(2015), 8 vom: Aug., Seite 1017-1032 (DE-627)130523747 (DE-600)770632-7 (DE-576)016095987 0253-4827 nnns volume:36 year:2015 number:8 month:08 pages:1017-1032 https://doi.org/10.1007/s10483-015-1960-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 AR 36 2015 8 08 1017-1032 |
spelling |
10.1007/s10483-015-1960-7 doi (DE-627)OLC2042874752 (DE-He213)s10483-015-1960-7-p DE-627 ger DE-627 rakwb eng 510 VZ Zhao, Demin verfasserin aut Stability and local bifurcation of parameter-excited vibration of pipes conveying pulsating fluid under thermal loading 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Shanghai University and Springer-Verlag Berlin Heidelberg 2015 Abstract The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been studied. The stability and the local bifurcations of the lateral parametric resonance of the pipe induced by the pulsating fluid velocity and the thermal loading are studied. A mathematical model for a simply supported pipe is developed according to the Hamilton principle. Two partial differential equations describing the lateral and longitudinal vibration are obtained. The singularity theory is utilized to analyze the stability and the bifurcation of the system solutions. The transition sets and the bifurcation diagrams are obtained both in the unfolding parameter space and the physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The frequency response and the relationship between the critical thermal rate and the pulsating fluid velocity are obtained. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and the stability and local bifurcation analyses. It also confirms the existence of the chaos. The presented work can provide valuable information for the design of the pipeline and the controllers to prevent the structural instability. thermal load parameter excited local bifurcation unfolding parameter space physical parameter space Liu, Jianlin aut Wu, C. Q. aut Enthalten in Ying yong shu xue he li xue / English edition Shanghai University, 1980 36(2015), 8 vom: Aug., Seite 1017-1032 (DE-627)130523747 (DE-600)770632-7 (DE-576)016095987 0253-4827 nnns volume:36 year:2015 number:8 month:08 pages:1017-1032 https://doi.org/10.1007/s10483-015-1960-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 AR 36 2015 8 08 1017-1032 |
allfields_unstemmed |
10.1007/s10483-015-1960-7 doi (DE-627)OLC2042874752 (DE-He213)s10483-015-1960-7-p DE-627 ger DE-627 rakwb eng 510 VZ Zhao, Demin verfasserin aut Stability and local bifurcation of parameter-excited vibration of pipes conveying pulsating fluid under thermal loading 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Shanghai University and Springer-Verlag Berlin Heidelberg 2015 Abstract The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been studied. The stability and the local bifurcations of the lateral parametric resonance of the pipe induced by the pulsating fluid velocity and the thermal loading are studied. A mathematical model for a simply supported pipe is developed according to the Hamilton principle. Two partial differential equations describing the lateral and longitudinal vibration are obtained. The singularity theory is utilized to analyze the stability and the bifurcation of the system solutions. The transition sets and the bifurcation diagrams are obtained both in the unfolding parameter space and the physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The frequency response and the relationship between the critical thermal rate and the pulsating fluid velocity are obtained. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and the stability and local bifurcation analyses. It also confirms the existence of the chaos. The presented work can provide valuable information for the design of the pipeline and the controllers to prevent the structural instability. thermal load parameter excited local bifurcation unfolding parameter space physical parameter space Liu, Jianlin aut Wu, C. Q. aut Enthalten in Ying yong shu xue he li xue / English edition Shanghai University, 1980 36(2015), 8 vom: Aug., Seite 1017-1032 (DE-627)130523747 (DE-600)770632-7 (DE-576)016095987 0253-4827 nnns volume:36 year:2015 number:8 month:08 pages:1017-1032 https://doi.org/10.1007/s10483-015-1960-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 AR 36 2015 8 08 1017-1032 |
allfieldsGer |
10.1007/s10483-015-1960-7 doi (DE-627)OLC2042874752 (DE-He213)s10483-015-1960-7-p DE-627 ger DE-627 rakwb eng 510 VZ Zhao, Demin verfasserin aut Stability and local bifurcation of parameter-excited vibration of pipes conveying pulsating fluid under thermal loading 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Shanghai University and Springer-Verlag Berlin Heidelberg 2015 Abstract The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been studied. The stability and the local bifurcations of the lateral parametric resonance of the pipe induced by the pulsating fluid velocity and the thermal loading are studied. A mathematical model for a simply supported pipe is developed according to the Hamilton principle. Two partial differential equations describing the lateral and longitudinal vibration are obtained. The singularity theory is utilized to analyze the stability and the bifurcation of the system solutions. The transition sets and the bifurcation diagrams are obtained both in the unfolding parameter space and the physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The frequency response and the relationship between the critical thermal rate and the pulsating fluid velocity are obtained. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and the stability and local bifurcation analyses. It also confirms the existence of the chaos. The presented work can provide valuable information for the design of the pipeline and the controllers to prevent the structural instability. thermal load parameter excited local bifurcation unfolding parameter space physical parameter space Liu, Jianlin aut Wu, C. Q. aut Enthalten in Ying yong shu xue he li xue / English edition Shanghai University, 1980 36(2015), 8 vom: Aug., Seite 1017-1032 (DE-627)130523747 (DE-600)770632-7 (DE-576)016095987 0253-4827 nnns volume:36 year:2015 number:8 month:08 pages:1017-1032 https://doi.org/10.1007/s10483-015-1960-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 AR 36 2015 8 08 1017-1032 |
allfieldsSound |
10.1007/s10483-015-1960-7 doi (DE-627)OLC2042874752 (DE-He213)s10483-015-1960-7-p DE-627 ger DE-627 rakwb eng 510 VZ Zhao, Demin verfasserin aut Stability and local bifurcation of parameter-excited vibration of pipes conveying pulsating fluid under thermal loading 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Shanghai University and Springer-Verlag Berlin Heidelberg 2015 Abstract The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been studied. The stability and the local bifurcations of the lateral parametric resonance of the pipe induced by the pulsating fluid velocity and the thermal loading are studied. A mathematical model for a simply supported pipe is developed according to the Hamilton principle. Two partial differential equations describing the lateral and longitudinal vibration are obtained. The singularity theory is utilized to analyze the stability and the bifurcation of the system solutions. The transition sets and the bifurcation diagrams are obtained both in the unfolding parameter space and the physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The frequency response and the relationship between the critical thermal rate and the pulsating fluid velocity are obtained. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and the stability and local bifurcation analyses. It also confirms the existence of the chaos. The presented work can provide valuable information for the design of the pipeline and the controllers to prevent the structural instability. thermal load parameter excited local bifurcation unfolding parameter space physical parameter space Liu, Jianlin aut Wu, C. Q. aut Enthalten in Ying yong shu xue he li xue / English edition Shanghai University, 1980 36(2015), 8 vom: Aug., Seite 1017-1032 (DE-627)130523747 (DE-600)770632-7 (DE-576)016095987 0253-4827 nnns volume:36 year:2015 number:8 month:08 pages:1017-1032 https://doi.org/10.1007/s10483-015-1960-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 AR 36 2015 8 08 1017-1032 |
language |
English |
source |
Enthalten in Ying yong shu xue he li xue / English edition 36(2015), 8 vom: Aug., Seite 1017-1032 volume:36 year:2015 number:8 month:08 pages:1017-1032 |
sourceStr |
Enthalten in Ying yong shu xue he li xue / English edition 36(2015), 8 vom: Aug., Seite 1017-1032 volume:36 year:2015 number:8 month:08 pages:1017-1032 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
thermal load parameter excited local bifurcation unfolding parameter space physical parameter space |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Ying yong shu xue he li xue / English edition |
authorswithroles_txt_mv |
Zhao, Demin @@aut@@ Liu, Jianlin @@aut@@ Wu, C. Q. @@aut@@ |
publishDateDaySort_date |
2015-08-01T00:00:00Z |
hierarchy_top_id |
130523747 |
dewey-sort |
3510 |
id |
OLC2042874752 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2042874752</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502204329.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10483-015-1960-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2042874752</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10483-015-1960-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhao, Demin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stability and local bifurcation of parameter-excited vibration of pipes conveying pulsating fluid under thermal loading</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Shanghai University and Springer-Verlag Berlin Heidelberg 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been studied. The stability and the local bifurcations of the lateral parametric resonance of the pipe induced by the pulsating fluid velocity and the thermal loading are studied. A mathematical model for a simply supported pipe is developed according to the Hamilton principle. Two partial differential equations describing the lateral and longitudinal vibration are obtained. The singularity theory is utilized to analyze the stability and the bifurcation of the system solutions. The transition sets and the bifurcation diagrams are obtained both in the unfolding parameter space and the physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The frequency response and the relationship between the critical thermal rate and the pulsating fluid velocity are obtained. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and the stability and local bifurcation analyses. It also confirms the existence of the chaos. The presented work can provide valuable information for the design of the pipeline and the controllers to prevent the structural instability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermal load</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">parameter excited</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">local bifurcation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">unfolding parameter space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">physical parameter space</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Jianlin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, C. Q.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ying yong shu xue he li xue / English edition</subfield><subfield code="d">Shanghai University, 1980</subfield><subfield code="g">36(2015), 8 vom: Aug., Seite 1017-1032</subfield><subfield code="w">(DE-627)130523747</subfield><subfield code="w">(DE-600)770632-7</subfield><subfield code="w">(DE-576)016095987</subfield><subfield code="x">0253-4827</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:36</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:8</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:1017-1032</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10483-015-1960-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">36</subfield><subfield code="j">2015</subfield><subfield code="e">8</subfield><subfield code="c">08</subfield><subfield code="h">1017-1032</subfield></datafield></record></collection>
|
author |
Zhao, Demin |
spellingShingle |
Zhao, Demin ddc 510 misc thermal load misc parameter excited misc local bifurcation misc unfolding parameter space misc physical parameter space Stability and local bifurcation of parameter-excited vibration of pipes conveying pulsating fluid under thermal loading |
authorStr |
Zhao, Demin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130523747 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0253-4827 |
topic_title |
510 VZ Stability and local bifurcation of parameter-excited vibration of pipes conveying pulsating fluid under thermal loading thermal load parameter excited local bifurcation unfolding parameter space physical parameter space |
topic |
ddc 510 misc thermal load misc parameter excited misc local bifurcation misc unfolding parameter space misc physical parameter space |
topic_unstemmed |
ddc 510 misc thermal load misc parameter excited misc local bifurcation misc unfolding parameter space misc physical parameter space |
topic_browse |
ddc 510 misc thermal load misc parameter excited misc local bifurcation misc unfolding parameter space misc physical parameter space |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Ying yong shu xue he li xue / English edition |
hierarchy_parent_id |
130523747 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Ying yong shu xue he li xue / English edition |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130523747 (DE-600)770632-7 (DE-576)016095987 |
title |
Stability and local bifurcation of parameter-excited vibration of pipes conveying pulsating fluid under thermal loading |
ctrlnum |
(DE-627)OLC2042874752 (DE-He213)s10483-015-1960-7-p |
title_full |
Stability and local bifurcation of parameter-excited vibration of pipes conveying pulsating fluid under thermal loading |
author_sort |
Zhao, Demin |
journal |
Ying yong shu xue he li xue / English edition |
journalStr |
Ying yong shu xue he li xue / English edition |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
1017 |
author_browse |
Zhao, Demin Liu, Jianlin Wu, C. Q. |
container_volume |
36 |
class |
510 VZ |
format_se |
Aufsätze |
author-letter |
Zhao, Demin |
doi_str_mv |
10.1007/s10483-015-1960-7 |
dewey-full |
510 |
title_sort |
stability and local bifurcation of parameter-excited vibration of pipes conveying pulsating fluid under thermal loading |
title_auth |
Stability and local bifurcation of parameter-excited vibration of pipes conveying pulsating fluid under thermal loading |
abstract |
Abstract The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been studied. The stability and the local bifurcations of the lateral parametric resonance of the pipe induced by the pulsating fluid velocity and the thermal loading are studied. A mathematical model for a simply supported pipe is developed according to the Hamilton principle. Two partial differential equations describing the lateral and longitudinal vibration are obtained. The singularity theory is utilized to analyze the stability and the bifurcation of the system solutions. The transition sets and the bifurcation diagrams are obtained both in the unfolding parameter space and the physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The frequency response and the relationship between the critical thermal rate and the pulsating fluid velocity are obtained. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and the stability and local bifurcation analyses. It also confirms the existence of the chaos. The presented work can provide valuable information for the design of the pipeline and the controllers to prevent the structural instability. © Shanghai University and Springer-Verlag Berlin Heidelberg 2015 |
abstractGer |
Abstract The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been studied. The stability and the local bifurcations of the lateral parametric resonance of the pipe induced by the pulsating fluid velocity and the thermal loading are studied. A mathematical model for a simply supported pipe is developed according to the Hamilton principle. Two partial differential equations describing the lateral and longitudinal vibration are obtained. The singularity theory is utilized to analyze the stability and the bifurcation of the system solutions. The transition sets and the bifurcation diagrams are obtained both in the unfolding parameter space and the physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The frequency response and the relationship between the critical thermal rate and the pulsating fluid velocity are obtained. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and the stability and local bifurcation analyses. It also confirms the existence of the chaos. The presented work can provide valuable information for the design of the pipeline and the controllers to prevent the structural instability. © Shanghai University and Springer-Verlag Berlin Heidelberg 2015 |
abstract_unstemmed |
Abstract The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been studied. The stability and the local bifurcations of the lateral parametric resonance of the pipe induced by the pulsating fluid velocity and the thermal loading are studied. A mathematical model for a simply supported pipe is developed according to the Hamilton principle. Two partial differential equations describing the lateral and longitudinal vibration are obtained. The singularity theory is utilized to analyze the stability and the bifurcation of the system solutions. The transition sets and the bifurcation diagrams are obtained both in the unfolding parameter space and the physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The frequency response and the relationship between the critical thermal rate and the pulsating fluid velocity are obtained. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and the stability and local bifurcation analyses. It also confirms the existence of the chaos. The presented work can provide valuable information for the design of the pipeline and the controllers to prevent the structural instability. © Shanghai University and Springer-Verlag Berlin Heidelberg 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 |
container_issue |
8 |
title_short |
Stability and local bifurcation of parameter-excited vibration of pipes conveying pulsating fluid under thermal loading |
url |
https://doi.org/10.1007/s10483-015-1960-7 |
remote_bool |
false |
author2 |
Liu, Jianlin Wu, C. Q. |
author2Str |
Liu, Jianlin Wu, C. Q. |
ppnlink |
130523747 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10483-015-1960-7 |
up_date |
2024-07-03T17:00:55.815Z |
_version_ |
1803578041506463744 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2042874752</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502204329.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10483-015-1960-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2042874752</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10483-015-1960-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhao, Demin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stability and local bifurcation of parameter-excited vibration of pipes conveying pulsating fluid under thermal loading</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Shanghai University and Springer-Verlag Berlin Heidelberg 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been studied. The stability and the local bifurcations of the lateral parametric resonance of the pipe induced by the pulsating fluid velocity and the thermal loading are studied. A mathematical model for a simply supported pipe is developed according to the Hamilton principle. Two partial differential equations describing the lateral and longitudinal vibration are obtained. The singularity theory is utilized to analyze the stability and the bifurcation of the system solutions. The transition sets and the bifurcation diagrams are obtained both in the unfolding parameter space and the physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The frequency response and the relationship between the critical thermal rate and the pulsating fluid velocity are obtained. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and the stability and local bifurcation analyses. It also confirms the existence of the chaos. The presented work can provide valuable information for the design of the pipeline and the controllers to prevent the structural instability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermal load</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">parameter excited</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">local bifurcation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">unfolding parameter space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">physical parameter space</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Jianlin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, C. Q.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ying yong shu xue he li xue / English edition</subfield><subfield code="d">Shanghai University, 1980</subfield><subfield code="g">36(2015), 8 vom: Aug., Seite 1017-1032</subfield><subfield code="w">(DE-627)130523747</subfield><subfield code="w">(DE-600)770632-7</subfield><subfield code="w">(DE-576)016095987</subfield><subfield code="x">0253-4827</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:36</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:8</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:1017-1032</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10483-015-1960-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">36</subfield><subfield code="j">2015</subfield><subfield code="e">8</subfield><subfield code="c">08</subfield><subfield code="h">1017-1032</subfield></datafield></record></collection>
|
score |
7.4017515 |