Design optimization and background modeling of the HEX experiment on Chandrayaan-I
Abstract Spacecraft and their subsystem components are subject to a very hazardous radiation environment in both near-Earth and deep space orbits. Knowledge of the effects of this high energy particle and electromagnetic radiation is essential in designing sensors, electronic circuits and living hab...
Ausführliche Beschreibung
Autor*in: |
Sudhakar, Manju [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media B.V. 2012 |
---|
Übergeordnetes Werk: |
Enthalten in: Experimental astronomy - Springer Netherlands, 1989, 34(2012), 3 vom: 06. Juli, Seite 653-668 |
---|---|
Übergeordnetes Werk: |
volume:34 ; year:2012 ; number:3 ; day:06 ; month:07 ; pages:653-668 |
Links: |
---|
DOI / URN: |
10.1007/s10686-012-9308-z |
---|
Katalog-ID: |
OLC2042943150 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2042943150 | ||
003 | DE-627 | ||
005 | 20230503055220.0 | ||
007 | tu | ||
008 | 200819s2012 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10686-012-9308-z |2 doi | |
035 | |a (DE-627)OLC2042943150 | ||
035 | |a (DE-He213)s10686-012-9308-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 520 |a 530 |q VZ |
084 | |a 16,12 |2 ssgn | ||
084 | |a 39.00 |2 bkl | ||
100 | 1 | |a Sudhakar, Manju |e verfasserin |4 aut | |
245 | 1 | 0 | |a Design optimization and background modeling of the HEX experiment on Chandrayaan-I |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media B.V. 2012 | ||
520 | |a Abstract Spacecraft and their subsystem components are subject to a very hazardous radiation environment in both near-Earth and deep space orbits. Knowledge of the effects of this high energy particle and electromagnetic radiation is essential in designing sensors, electronic circuits and living habitats for humans in near Earth orbit, en route to and on the Moon and Mars. This paper discusses the use of Monte Carlo simulations to optimize system design, radiation source modeling, and determination of background in sensors due to galactic cosmic rays and radiation from the Moon. The results demonstrate the use of Monte Carlo particle transport toolkits to predict secondary production, determine dose rates in space and design required shielding geometry. | ||
650 | 4 | |a Detector design optimization | |
650 | 4 | |a Background modeling | |
700 | 1 | |a Sreekumar, P. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Experimental astronomy |d Springer Netherlands, 1989 |g 34(2012), 3 vom: 06. Juli, Seite 653-668 |w (DE-627)130767123 |w (DE-600)1001704-5 |w (DE-576)023036176 |x 0922-6435 |7 nnns |
773 | 1 | 8 | |g volume:34 |g year:2012 |g number:3 |g day:06 |g month:07 |g pages:653-668 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10686-012-9308-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-AST | ||
912 | |a SSG-OPC-AST | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_4012 | ||
936 | b | k | |a 39.00 |q VZ |
951 | |a AR | ||
952 | |d 34 |j 2012 |e 3 |b 06 |c 07 |h 653-668 |
author_variant |
m s ms p s ps |
---|---|
matchkey_str |
article:09226435:2012----::einpiiainnbcgonmdlnoteeep |
hierarchy_sort_str |
2012 |
bklnumber |
39.00 |
publishDate |
2012 |
allfields |
10.1007/s10686-012-9308-z doi (DE-627)OLC2042943150 (DE-He213)s10686-012-9308-z-p DE-627 ger DE-627 rakwb eng 520 530 VZ 16,12 ssgn 39.00 bkl Sudhakar, Manju verfasserin aut Design optimization and background modeling of the HEX experiment on Chandrayaan-I 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2012 Abstract Spacecraft and their subsystem components are subject to a very hazardous radiation environment in both near-Earth and deep space orbits. Knowledge of the effects of this high energy particle and electromagnetic radiation is essential in designing sensors, electronic circuits and living habitats for humans in near Earth orbit, en route to and on the Moon and Mars. This paper discusses the use of Monte Carlo simulations to optimize system design, radiation source modeling, and determination of background in sensors due to galactic cosmic rays and radiation from the Moon. The results demonstrate the use of Monte Carlo particle transport toolkits to predict secondary production, determine dose rates in space and design required shielding geometry. Detector design optimization Background modeling Sreekumar, P. aut Enthalten in Experimental astronomy Springer Netherlands, 1989 34(2012), 3 vom: 06. Juli, Seite 653-668 (DE-627)130767123 (DE-600)1001704-5 (DE-576)023036176 0922-6435 nnns volume:34 year:2012 number:3 day:06 month:07 pages:653-668 https://doi.org/10.1007/s10686-012-9308-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_40 GBV_ILN_70 GBV_ILN_2012 GBV_ILN_4012 39.00 VZ AR 34 2012 3 06 07 653-668 |
spelling |
10.1007/s10686-012-9308-z doi (DE-627)OLC2042943150 (DE-He213)s10686-012-9308-z-p DE-627 ger DE-627 rakwb eng 520 530 VZ 16,12 ssgn 39.00 bkl Sudhakar, Manju verfasserin aut Design optimization and background modeling of the HEX experiment on Chandrayaan-I 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2012 Abstract Spacecraft and their subsystem components are subject to a very hazardous radiation environment in both near-Earth and deep space orbits. Knowledge of the effects of this high energy particle and electromagnetic radiation is essential in designing sensors, electronic circuits and living habitats for humans in near Earth orbit, en route to and on the Moon and Mars. This paper discusses the use of Monte Carlo simulations to optimize system design, radiation source modeling, and determination of background in sensors due to galactic cosmic rays and radiation from the Moon. The results demonstrate the use of Monte Carlo particle transport toolkits to predict secondary production, determine dose rates in space and design required shielding geometry. Detector design optimization Background modeling Sreekumar, P. aut Enthalten in Experimental astronomy Springer Netherlands, 1989 34(2012), 3 vom: 06. Juli, Seite 653-668 (DE-627)130767123 (DE-600)1001704-5 (DE-576)023036176 0922-6435 nnns volume:34 year:2012 number:3 day:06 month:07 pages:653-668 https://doi.org/10.1007/s10686-012-9308-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_40 GBV_ILN_70 GBV_ILN_2012 GBV_ILN_4012 39.00 VZ AR 34 2012 3 06 07 653-668 |
allfields_unstemmed |
10.1007/s10686-012-9308-z doi (DE-627)OLC2042943150 (DE-He213)s10686-012-9308-z-p DE-627 ger DE-627 rakwb eng 520 530 VZ 16,12 ssgn 39.00 bkl Sudhakar, Manju verfasserin aut Design optimization and background modeling of the HEX experiment on Chandrayaan-I 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2012 Abstract Spacecraft and their subsystem components are subject to a very hazardous radiation environment in both near-Earth and deep space orbits. Knowledge of the effects of this high energy particle and electromagnetic radiation is essential in designing sensors, electronic circuits and living habitats for humans in near Earth orbit, en route to and on the Moon and Mars. This paper discusses the use of Monte Carlo simulations to optimize system design, radiation source modeling, and determination of background in sensors due to galactic cosmic rays and radiation from the Moon. The results demonstrate the use of Monte Carlo particle transport toolkits to predict secondary production, determine dose rates in space and design required shielding geometry. Detector design optimization Background modeling Sreekumar, P. aut Enthalten in Experimental astronomy Springer Netherlands, 1989 34(2012), 3 vom: 06. Juli, Seite 653-668 (DE-627)130767123 (DE-600)1001704-5 (DE-576)023036176 0922-6435 nnns volume:34 year:2012 number:3 day:06 month:07 pages:653-668 https://doi.org/10.1007/s10686-012-9308-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_40 GBV_ILN_70 GBV_ILN_2012 GBV_ILN_4012 39.00 VZ AR 34 2012 3 06 07 653-668 |
allfieldsGer |
10.1007/s10686-012-9308-z doi (DE-627)OLC2042943150 (DE-He213)s10686-012-9308-z-p DE-627 ger DE-627 rakwb eng 520 530 VZ 16,12 ssgn 39.00 bkl Sudhakar, Manju verfasserin aut Design optimization and background modeling of the HEX experiment on Chandrayaan-I 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2012 Abstract Spacecraft and their subsystem components are subject to a very hazardous radiation environment in both near-Earth and deep space orbits. Knowledge of the effects of this high energy particle and electromagnetic radiation is essential in designing sensors, electronic circuits and living habitats for humans in near Earth orbit, en route to and on the Moon and Mars. This paper discusses the use of Monte Carlo simulations to optimize system design, radiation source modeling, and determination of background in sensors due to galactic cosmic rays and radiation from the Moon. The results demonstrate the use of Monte Carlo particle transport toolkits to predict secondary production, determine dose rates in space and design required shielding geometry. Detector design optimization Background modeling Sreekumar, P. aut Enthalten in Experimental astronomy Springer Netherlands, 1989 34(2012), 3 vom: 06. Juli, Seite 653-668 (DE-627)130767123 (DE-600)1001704-5 (DE-576)023036176 0922-6435 nnns volume:34 year:2012 number:3 day:06 month:07 pages:653-668 https://doi.org/10.1007/s10686-012-9308-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_40 GBV_ILN_70 GBV_ILN_2012 GBV_ILN_4012 39.00 VZ AR 34 2012 3 06 07 653-668 |
allfieldsSound |
10.1007/s10686-012-9308-z doi (DE-627)OLC2042943150 (DE-He213)s10686-012-9308-z-p DE-627 ger DE-627 rakwb eng 520 530 VZ 16,12 ssgn 39.00 bkl Sudhakar, Manju verfasserin aut Design optimization and background modeling of the HEX experiment on Chandrayaan-I 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2012 Abstract Spacecraft and their subsystem components are subject to a very hazardous radiation environment in both near-Earth and deep space orbits. Knowledge of the effects of this high energy particle and electromagnetic radiation is essential in designing sensors, electronic circuits and living habitats for humans in near Earth orbit, en route to and on the Moon and Mars. This paper discusses the use of Monte Carlo simulations to optimize system design, radiation source modeling, and determination of background in sensors due to galactic cosmic rays and radiation from the Moon. The results demonstrate the use of Monte Carlo particle transport toolkits to predict secondary production, determine dose rates in space and design required shielding geometry. Detector design optimization Background modeling Sreekumar, P. aut Enthalten in Experimental astronomy Springer Netherlands, 1989 34(2012), 3 vom: 06. Juli, Seite 653-668 (DE-627)130767123 (DE-600)1001704-5 (DE-576)023036176 0922-6435 nnns volume:34 year:2012 number:3 day:06 month:07 pages:653-668 https://doi.org/10.1007/s10686-012-9308-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_40 GBV_ILN_70 GBV_ILN_2012 GBV_ILN_4012 39.00 VZ AR 34 2012 3 06 07 653-668 |
language |
English |
source |
Enthalten in Experimental astronomy 34(2012), 3 vom: 06. Juli, Seite 653-668 volume:34 year:2012 number:3 day:06 month:07 pages:653-668 |
sourceStr |
Enthalten in Experimental astronomy 34(2012), 3 vom: 06. Juli, Seite 653-668 volume:34 year:2012 number:3 day:06 month:07 pages:653-668 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Detector design optimization Background modeling |
dewey-raw |
520 |
isfreeaccess_bool |
false |
container_title |
Experimental astronomy |
authorswithroles_txt_mv |
Sudhakar, Manju @@aut@@ Sreekumar, P. @@aut@@ |
publishDateDaySort_date |
2012-07-06T00:00:00Z |
hierarchy_top_id |
130767123 |
dewey-sort |
3520 |
id |
OLC2042943150 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2042943150</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503055220.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10686-012-9308-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2042943150</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10686-012-9308-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">520</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">39.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sudhakar, Manju</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design optimization and background modeling of the HEX experiment on Chandrayaan-I</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media B.V. 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Spacecraft and their subsystem components are subject to a very hazardous radiation environment in both near-Earth and deep space orbits. Knowledge of the effects of this high energy particle and electromagnetic radiation is essential in designing sensors, electronic circuits and living habitats for humans in near Earth orbit, en route to and on the Moon and Mars. This paper discusses the use of Monte Carlo simulations to optimize system design, radiation source modeling, and determination of background in sensors due to galactic cosmic rays and radiation from the Moon. The results demonstrate the use of Monte Carlo particle transport toolkits to predict secondary production, determine dose rates in space and design required shielding geometry.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Detector design optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Background modeling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sreekumar, P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Experimental astronomy</subfield><subfield code="d">Springer Netherlands, 1989</subfield><subfield code="g">34(2012), 3 vom: 06. Juli, Seite 653-668</subfield><subfield code="w">(DE-627)130767123</subfield><subfield code="w">(DE-600)1001704-5</subfield><subfield code="w">(DE-576)023036176</subfield><subfield code="x">0922-6435</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:34</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:3</subfield><subfield code="g">day:06</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:653-668</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10686-012-9308-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">39.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">34</subfield><subfield code="j">2012</subfield><subfield code="e">3</subfield><subfield code="b">06</subfield><subfield code="c">07</subfield><subfield code="h">653-668</subfield></datafield></record></collection>
|
author |
Sudhakar, Manju |
spellingShingle |
Sudhakar, Manju ddc 520 ssgn 16,12 bkl 39.00 misc Detector design optimization misc Background modeling Design optimization and background modeling of the HEX experiment on Chandrayaan-I |
authorStr |
Sudhakar, Manju |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130767123 |
format |
Article |
dewey-ones |
520 - Astronomy & allied sciences 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0922-6435 |
topic_title |
520 530 VZ 16,12 ssgn 39.00 bkl Design optimization and background modeling of the HEX experiment on Chandrayaan-I Detector design optimization Background modeling |
topic |
ddc 520 ssgn 16,12 bkl 39.00 misc Detector design optimization misc Background modeling |
topic_unstemmed |
ddc 520 ssgn 16,12 bkl 39.00 misc Detector design optimization misc Background modeling |
topic_browse |
ddc 520 ssgn 16,12 bkl 39.00 misc Detector design optimization misc Background modeling |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Experimental astronomy |
hierarchy_parent_id |
130767123 |
dewey-tens |
520 - Astronomy 530 - Physics |
hierarchy_top_title |
Experimental astronomy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130767123 (DE-600)1001704-5 (DE-576)023036176 |
title |
Design optimization and background modeling of the HEX experiment on Chandrayaan-I |
ctrlnum |
(DE-627)OLC2042943150 (DE-He213)s10686-012-9308-z-p |
title_full |
Design optimization and background modeling of the HEX experiment on Chandrayaan-I |
author_sort |
Sudhakar, Manju |
journal |
Experimental astronomy |
journalStr |
Experimental astronomy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
653 |
author_browse |
Sudhakar, Manju Sreekumar, P. |
container_volume |
34 |
class |
520 530 VZ 16,12 ssgn 39.00 bkl |
format_se |
Aufsätze |
author-letter |
Sudhakar, Manju |
doi_str_mv |
10.1007/s10686-012-9308-z |
dewey-full |
520 530 |
title_sort |
design optimization and background modeling of the hex experiment on chandrayaan-i |
title_auth |
Design optimization and background modeling of the HEX experiment on Chandrayaan-I |
abstract |
Abstract Spacecraft and their subsystem components are subject to a very hazardous radiation environment in both near-Earth and deep space orbits. Knowledge of the effects of this high energy particle and electromagnetic radiation is essential in designing sensors, electronic circuits and living habitats for humans in near Earth orbit, en route to and on the Moon and Mars. This paper discusses the use of Monte Carlo simulations to optimize system design, radiation source modeling, and determination of background in sensors due to galactic cosmic rays and radiation from the Moon. The results demonstrate the use of Monte Carlo particle transport toolkits to predict secondary production, determine dose rates in space and design required shielding geometry. © Springer Science+Business Media B.V. 2012 |
abstractGer |
Abstract Spacecraft and their subsystem components are subject to a very hazardous radiation environment in both near-Earth and deep space orbits. Knowledge of the effects of this high energy particle and electromagnetic radiation is essential in designing sensors, electronic circuits and living habitats for humans in near Earth orbit, en route to and on the Moon and Mars. This paper discusses the use of Monte Carlo simulations to optimize system design, radiation source modeling, and determination of background in sensors due to galactic cosmic rays and radiation from the Moon. The results demonstrate the use of Monte Carlo particle transport toolkits to predict secondary production, determine dose rates in space and design required shielding geometry. © Springer Science+Business Media B.V. 2012 |
abstract_unstemmed |
Abstract Spacecraft and their subsystem components are subject to a very hazardous radiation environment in both near-Earth and deep space orbits. Knowledge of the effects of this high energy particle and electromagnetic radiation is essential in designing sensors, electronic circuits and living habitats for humans in near Earth orbit, en route to and on the Moon and Mars. This paper discusses the use of Monte Carlo simulations to optimize system design, radiation source modeling, and determination of background in sensors due to galactic cosmic rays and radiation from the Moon. The results demonstrate the use of Monte Carlo particle transport toolkits to predict secondary production, determine dose rates in space and design required shielding geometry. © Springer Science+Business Media B.V. 2012 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_40 GBV_ILN_70 GBV_ILN_2012 GBV_ILN_4012 |
container_issue |
3 |
title_short |
Design optimization and background modeling of the HEX experiment on Chandrayaan-I |
url |
https://doi.org/10.1007/s10686-012-9308-z |
remote_bool |
false |
author2 |
Sreekumar, P. |
author2Str |
Sreekumar, P. |
ppnlink |
130767123 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10686-012-9308-z |
up_date |
2024-07-03T17:17:36.505Z |
_version_ |
1803579090800738304 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2042943150</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503055220.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10686-012-9308-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2042943150</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10686-012-9308-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">520</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">39.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sudhakar, Manju</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design optimization and background modeling of the HEX experiment on Chandrayaan-I</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media B.V. 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Spacecraft and their subsystem components are subject to a very hazardous radiation environment in both near-Earth and deep space orbits. Knowledge of the effects of this high energy particle and electromagnetic radiation is essential in designing sensors, electronic circuits and living habitats for humans in near Earth orbit, en route to and on the Moon and Mars. This paper discusses the use of Monte Carlo simulations to optimize system design, radiation source modeling, and determination of background in sensors due to galactic cosmic rays and radiation from the Moon. The results demonstrate the use of Monte Carlo particle transport toolkits to predict secondary production, determine dose rates in space and design required shielding geometry.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Detector design optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Background modeling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sreekumar, P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Experimental astronomy</subfield><subfield code="d">Springer Netherlands, 1989</subfield><subfield code="g">34(2012), 3 vom: 06. Juli, Seite 653-668</subfield><subfield code="w">(DE-627)130767123</subfield><subfield code="w">(DE-600)1001704-5</subfield><subfield code="w">(DE-576)023036176</subfield><subfield code="x">0922-6435</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:34</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:3</subfield><subfield code="g">day:06</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:653-668</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10686-012-9308-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">39.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">34</subfield><subfield code="j">2012</subfield><subfield code="e">3</subfield><subfield code="b">06</subfield><subfield code="c">07</subfield><subfield code="h">653-668</subfield></datafield></record></collection>
|
score |
7.4011087 |